Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.013
Filtrar
1.
Cancer Immunol Immunother ; 73(6): 113, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693312

RESUMO

Senescent cells have a profound impact on the surrounding microenvironment through the secretion of numerous bioactive molecules and inflammatory factors. The induction of therapy-induced senescence by anticancer drugs is known, but how senescent tumor cells influence the tumor immune landscape, particularly neutrophil activity, is still unclear. In this study, we investigate the induction of cellular senescence in breast cancer cells and the subsequent immunomodulatory effects on neutrophils using the CDK4/6 inhibitor palbociclib, which is approved for the treatment of breast cancer and is under intense investigation for additional malignancies. Our research demonstrates that palbociclib induces a reversible form of senescence endowed with an inflammatory secretome capable of recruiting and activating neutrophils, in part through the action of interleukin-8 and acute-phase serum amyloid A1. The activation of neutrophils is accompanied by the release of neutrophil extracellular trap and the phagocytic removal of senescent tumor cells. These findings may be relevant for the success of cancer therapy as neutrophils, and neutrophil-driven inflammation can differently affect tumor progression. Our results reveal that neutrophils, as already demonstrated for macrophages and natural killer cells, can be recruited and engaged by senescent tumor cells to participate in their clearance. Understanding the interplay between senescent cells and neutrophils may lead to innovative strategies to cope with chronic or tumor-associated inflammation.


Assuntos
Neoplasias da Mama , Senescência Celular , Neutrófilos , Piperazinas , Piridinas , Humanos , Piperazinas/farmacologia , Piridinas/farmacologia , Senescência Celular/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Neutrófilos/metabolismo , Neutrófilos/imunologia , Neutrófilos/efeitos dos fármacos , Linhagem Celular Tumoral , Ativação de Neutrófilo/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
2.
Nat Commun ; 15(1): 3883, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719805

RESUMO

The long interspersed nuclear element-1 (LINE-1 or L1) retrotransposon is the only active autonomously replicating retrotransposon in the human genome. L1 harms the cell by inserting new copies, generating DNA damage, and triggering inflammation. Therefore, L1 inhibition could be used to treat many diseases associated with these processes. Previous research has focused on inhibition of the L1 reverse transcriptase due to the prevalence of well-characterized inhibitors of related viral enzymes. Here we present the L1 endonuclease as another target for reducing L1 activity. We characterize structurally diverse small molecule endonuclease inhibitors using computational, biochemical, and biophysical methods. We also show that these inhibitors reduce L1 retrotransposition, L1-induced DNA damage, and inflammation reinforced by L1 in senescent cells. These inhibitors could be used for further pharmacological development and as tools to better understand the life cycle of this element and its impact on disease processes.


Assuntos
Endonucleases , Elementos Nucleotídeos Longos e Dispersos , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Endonucleases/metabolismo , Endonucleases/genética , Endonucleases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Dano ao DNA , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Senescência Celular/efeitos dos fármacos , Desoxirribonuclease I
3.
Nat Commun ; 15(1): 3873, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719882

RESUMO

Human glial progenitor cells (hGPCs) exhibit diminished expansion competence with age, as well as after recurrent demyelination. Using RNA-sequencing to compare the gene expression of fetal and adult hGPCs, we identify age-related changes in transcription consistent with the repression of genes enabling mitotic expansion, concurrent with the onset of aging-associated transcriptional programs. Adult hGPCs develop a repressive transcription factor network centered on MYC, and regulated by ZNF274, MAX, IKZF3, and E2F6. Individual over-expression of these factors in iPSC-derived hGPCs lead to a loss of proliferative gene expression and an induction of mitotic senescence, replicating the transcriptional changes incurred during glial aging. miRNA profiling identifies the appearance of an adult-selective miRNA signature, imposing further constraints on the expansion competence of aged GPCs. hGPC aging is thus associated with acquisition of a MYC-repressive environment, suggesting that suppression of these repressors of glial expansion may permit the rejuvenation of aged hGPCs.


Assuntos
Envelhecimento , MicroRNAs , Neuroglia , Fatores de Transcrição , Humanos , Neuroglia/metabolismo , Neuroglia/citologia , Envelhecimento/genética , Envelhecimento/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Senescência Celular/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco/metabolismo , Células-Tronco/citologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Adulto , Redes Reguladoras de Genes , Proliferação de Células/genética , Regulação da Expressão Gênica no Desenvolvimento , Perfilação da Expressão Gênica
4.
Int J Biol Sci ; 20(7): 2370-2387, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725841

RESUMO

The pathogenesis of Intervertebral Disc Degeneration (IDD) is complex and multifactorial, with cellular senescence of nucleus pulposus (NP) cells and inflammation playing major roles in the progression of IDD. The stimulator of interferon genes (STING) axis is a key mediator of inflammation during infection, cellular stress, and tissue damage. Here, we present a progressive increase in STING in senescent NP cells with the degradation disorder. The STING degradation function in normal NP cells can prevent IDD. However, the dysfunction of STING degradation through autophagy causes the accumulation and high expression of STING in senescent NP cells as well as inflammation continuous activation together significantly promotes IDD. In senescent NP cells and intervertebral discs (IVDs), we found that STING autophagy degradation was significantly lower than that of normal NP cells and IVDs when STING was activated by 2'3'-cGAMP. Also, the above phenomenon was found in STINGgt/gt, cGAS-/- mice with models of age-induced, lumbar instability-induced IDD as well as found in the rat caudal IVD puncture models. Taken together, we suggested that the promotion of STING autophagy degradation in senescent NP Cells demonstrated a potential therapeutic modality for the treatment of IDD.


Assuntos
Autofagia , Senescência Celular , Degeneração do Disco Intervertebral , Proteínas de Membrana , Núcleo Pulposo , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Núcleo Pulposo/metabolismo , Animais , Autofagia/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Senescência Celular/fisiologia , Ratos , Masculino , Ratos Sprague-Dawley , Humanos , Camundongos Endogâmicos C57BL
5.
Cells ; 13(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38727285

RESUMO

With the increasing proportion of the aging population, neurodegenerative diseases have become one of the major health issues in society. Neurodegenerative diseases (NDs), including multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are characterized by progressive neurodegeneration associated with aging, leading to a gradual decline in cognitive, emotional, and motor functions in patients. The process of aging is a normal physiological process in human life and is accompanied by the aging of the immune system, which is known as immunosenescence. T-cells are an important part of the immune system, and their senescence is the main feature of immunosenescence. The appearance of senescent T-cells has been shown to potentially lead to chronic inflammation and tissue damage, with some studies indicating a direct link between T-cell senescence, inflammation, and neuronal damage. The role of these subsets with different functions in NDs is still under debate. A growing body of evidence suggests that in people with a ND, there is a prevalence of CD4+ T-cell subsets exhibiting characteristics that are linked to senescence. This underscores the significance of CD4+ T-cells in NDs. In this review, we summarize the classification and function of CD4+ T-cell subpopulations, the characteristics of CD4+ T-cell senescence, the potential roles of these cells in animal models and human studies of NDs, and therapeutic strategies targeting CD4+ T-cell senescence.


Assuntos
Linfócitos T CD4-Positivos , Senescência Celular , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia , Linfócitos T CD4-Positivos/imunologia , Senescência Celular/imunologia , Animais , Envelhecimento/imunologia , Envelhecimento/patologia , Senescência de Células T
6.
Cells ; 13(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38727294

RESUMO

Information on long-term effects of postovulatory oocyte aging (POA) on offspring is limited. Whether POA affects offspring by causing oxidative stress (OS) and mitochondrial damage is unknown. Here, in vivo-aged (IVA) mouse oocytes were collected 9 h after ovulation, while in vitro-aged (ITA) oocytes were obtained by culturing freshly ovulated oocytes for 9 h in media with low, moderate, or high antioxidant potential. Oocytes were fertilized in vitro and blastocysts transferred to produce F1 offspring. F1 mice were mated with naturally bred mice to generate F2 offspring. Both IVA and the ITA groups in low antioxidant medium showed significantly increased anxiety-like behavior and impaired spatial and fear learning/memory and hippocampal expression of anxiolytic and learning/memory-beneficial genes in both male and female F1 offspring. Furthermore, the aging in both groups increased OS and impaired mitochondrial function in oocytes, blastocysts, and hippocampus of F1 offspring; however, it did not affect the behavior of F2 offspring. It is concluded that POA caused OS and damaged mitochondria in aged oocytes, leading to defects in anxiety-like behavior and learning/memory of F1 offspring. Thus, POA is a crucial factor that causes psychological problems in offspring, and antioxidant measures may be taken to ameliorate the detrimental effects of POA on offspring.


Assuntos
Comportamento Animal , Mitocôndrias , Oócitos , Estresse Oxidativo , Animais , Oócitos/metabolismo , Mitocôndrias/metabolismo , Feminino , Camundongos , Masculino , Ovulação , Ansiedade/metabolismo , Ansiedade/patologia , Antioxidantes/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Blastocisto/metabolismo , Senescência Celular , Memória
7.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731817

RESUMO

MCPH1 has been identified as the causal gene for primary microcephaly type 1, a neurodevelopmental disorder characterized by reduced brain size and delayed growth. As a multifunction protein, MCPH1 has been reported to repress the expression of TERT and interact with transcriptional regulator E2F1. However, it remains unclear whether MCPH1 regulates brain development through its transcriptional regulation function. This study showed that the knockout of Mcph1 in mice leads to delayed growth as early as the embryo stage E11.5. Transcriptome analysis (RNA-seq) revealed that the deletion of Mcph1 resulted in changes in the expression levels of a limited number of genes. Although the expression of some of E2F1 targets, such as Satb2 and Cdkn1c, was affected, the differentially expressed genes (DEGs) were not significantly enriched as E2F1 target genes. Further investigations showed that primary and immortalized Mcph1 knockout mouse embryonic fibroblasts (MEFs) exhibited cell cycle arrest and cellular senescence phenotype. Interestingly, the upregulation of p19ARF was detected in Mcph1 knockout MEFs, and silencing p19Arf restored the cell cycle and growth arrest to wild-type levels. Our findings suggested it is unlikely that MCPH1 regulates neurodevelopment through E2F1-mediated transcriptional regulation, and p19ARF-dependent cell cycle arrest and cellular senescence may contribute to the developmental abnormalities observed in primary microcephaly.


Assuntos
Pontos de Checagem do Ciclo Celular , Senescência Celular , Inibidor p16 de Quinase Dependente de Ciclina , Camundongos Knockout , Microcefalia , Animais , Camundongos , Senescência Celular/genética , Microcefalia/genética , Microcefalia/metabolismo , Microcefalia/patologia , Pontos de Checagem do Ciclo Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Fibroblastos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
8.
Acta Neuropathol ; 147(1): 82, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722375

RESUMO

Aging affects all cell types in the CNS and plays an important role in CNS diseases. However, the underlying molecular mechanisms driving these age-associated changes and their contribution to diseases are only poorly understood. The white matter in the aging brain as well as in diseases, such as Multiple sclerosis is characterized by subtle abnormalities in myelin sheaths and paranodes, suggesting that oligodendrocytes, the myelin-maintaining cells of the CNS, lose the capacity to preserve a proper myelin structure and potentially function in age and certain diseases. Here, we made use of directly converted oligodendrocytes (dchiOL) from young, adult and old human donors to study age-associated changes. dchiOL from all three age groups differentiated in an comparable manner into O4 + immature oligodendrocytes, but the proportion of MBP + mature dchiOL decreased with increasing donor age. This was associated with an increased ROS production and upregulation of cellular senescence markers such as CDKN1A, CDKN2A in old dchiOL. Comparison of the transcriptomic profiles of dchiOL from adult and old donors revealed 1324 differentially regulated genes with limited overlap with transcriptomic profiles of the donors' fibroblasts or published data sets from directly converted human neurons or primary rodent oligodendroglial lineage cells. Methylome analyses of dchiOL and human white matter tissue samples demonstrate that chronological and epigenetic age correlate in CNS white matter as well as in dchiOL and resulted in the identification of an age-specific epigenetic signature. Furthermore, we observed an accelerated epigenetic aging of the myelinated, normal appearing white matter of multiple sclerosis (MS) patients compared to healthy individuals. Impaired differentiation and upregulation of cellular senescence markers could be induced in young dchiOL in vitro using supernatants from pro-inflammatory microglia. In summary, our data suggest that physiological aging as well as inflammation-induced cellular senescence contribute to oligodendroglial pathology in inflammatory demyelinating diseases such as MS.


Assuntos
Envelhecimento , Senescência Celular , Esclerose Múltipla , Oligodendroglia , Humanos , Oligodendroglia/patologia , Oligodendroglia/metabolismo , Senescência Celular/fisiologia , Envelhecimento/patologia , Esclerose Múltipla/patologia , Esclerose Múltipla/metabolismo , Adulto , Idoso , Pessoa de Meia-Idade , Masculino , Feminino , Adulto Jovem , Inflamação/patologia , Inflamação/metabolismo , Substância Branca/patologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21
9.
Commun Biol ; 7(1): 541, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714838

RESUMO

Age-related diseases pose great challenges to health care systems worldwide. During aging, endothelial senescence increases the risk for cardiovascular disease. Recently, it was described that Phosphatase 1 Nuclear Targeting Subunit (PNUTS) has a central role in cardiomyocyte aging and homeostasis. Here, we determine the role of PNUTS in endothelial cell aging. We confirm that PNUTS is repressed in senescent endothelial cells (ECs). Moreover, PNUTS silencing elicits several of the hallmarks of endothelial aging: senescence, reduced angiogenesis and loss of barrier function. Findings are validate in vivo using endothelial-specific inducible PNUTS-deficient mice (Cdh5-CreERT2;PNUTSfl/fl), termed PNUTSEC-KO. Two weeks after PNUTS deletion, PNUTSEC-KO mice present severe multiorgan failure and vascular leakage. Transcriptomic analysis of PNUTS-silenced HUVECs and lungs of PNUTSEC-KO mice reveal that the PNUTS-PP1 axis tightly regulates the expression of semaphorin 3B (SEMA3B). Indeed, silencing of SEMA3B completely restores barrier function after PNUTS loss-of-function. These results reveal a pivotal role for PNUTS in endothelial homeostasis through a SEMA3B downstream pathway that provides a potential target against the effects of aging in ECs.


Assuntos
Senescência Celular , Células Endoteliais da Veia Umbilical Humana , Camundongos Knockout , Semaforinas , Animais , Camundongos , Humanos , Semaforinas/metabolismo , Semaforinas/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais/metabolismo , Envelhecimento/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Camundongos Endogâmicos C57BL , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Endotélio Vascular/metabolismo
10.
Commun Biol ; 7(1): 539, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714886

RESUMO

Intervertebral disc degeneration (IDD) is a highly prevalent musculoskeletal disorder affecting millions of adults worldwide, but a poor understanding of its pathogenesis has limited the effectiveness of therapy. In the current study, we integrated untargeted LC/MS metabolomics and magnetic resonance spectroscopy data to investigate metabolic profile alterations during IDD. Combined with validation via a large-cohort analysis, we found excessive lipid droplet accumulation in the nucleus pulposus cells of advanced-stage IDD samples. We also found abnormal palmitic acid (PA) accumulation in IDD nucleus pulposus cells, and PA exposure resulted in lipid droplet accumulation and cell senescence in an endoplasmic reticulum stress-dependent manner. Complementary transcriptome and proteome profiles enabled us to identify solute carrier transporter (SLC) 43A3 involvement in the regulation of the intracellular PA level. SLC43A3 was expressed at low levels and negatively correlated with intracellular lipid content in IDD nucleus pulposus cells. Overexpression of SLC43A3 significantly alleviated PA-induced endoplasmic reticulum stress, lipid droplet accumulation and cell senescence by inhibiting PA uptake. This work provides novel integration analysis-based insight into the metabolic profile alterations in IDD and further reveals new therapeutic targets for IDD treatment.


Assuntos
Senescência Celular , Estresse do Retículo Endoplasmático , Degeneração do Disco Intervertebral , Gotículas Lipídicas , Núcleo Pulposo , Ácido Palmítico , Núcleo Pulposo/metabolismo , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/patologia , Núcleo Pulposo/citologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia , Senescência Celular/efeitos dos fármacos , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Humanos , Gotículas Lipídicas/metabolismo , Masculino , Feminino , Adulto , Pessoa de Meia-Idade
11.
Exp Dermatol ; 33(5): e15093, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38742821

RESUMO

Senile skin hyperpigmentation displays remarkable histopathological features of dermal aging. The crosstalk between melanocytes and dermal fibroblasts plays crucial roles in aging-related pigmentation. While senescent fibroblasts can upregulate pro-melanogenic factors, the role of anti-melanogenic factors, such as dickkopf1 (DKK1), and the upstream regulatory mechanism during aging remain obscure. This study investigated the roles of yes-associated protein (YAP) and DKK1 in the regulation of dermal fibroblast senescence and melanogenesis. Our findings demonstrated decreased YAP activity and DKK1 levels in intrinsic and extrinsic senescent fibroblasts. YAP depletion induced fibroblast senescence and downregulated the expression and secretion of DKK1, whereas YAP overexpression partially reversed the effect. The transcriptional regulation of DKK1 by YAP was supported by dual-luciferase reporter and chromatin immunoprecipitation assays. Moreover, YAP depletion in fibroblasts upregulated Wnt/ß-catenin in melanocytes and stimulated melanogenesis, which was partially rescued by the re-supplementation of DKK1. Conversely, overexpression of YAP in senescent fibroblasts decreased Wnt/ß-catenin levels in melanocytes and inhibited melanogenesis. Additionally, reduced levels of YAP and DKK1 were verified in the dermis of solar lentigines. These findings suggest that, during skin aging, epidermal pigmentation may be influenced by YAP in the dermal microenvironment via the paracrine effect of DKK1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Senescência Celular , Fibroblastos , Peptídeos e Proteínas de Sinalização Intercelular , Melaninas , Melanócitos , Comunicação Parácrina , Envelhecimento da Pele , Fatores de Transcrição , Proteínas de Sinalização YAP , Fibroblastos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Humanos , Melanócitos/metabolismo , Proteínas de Sinalização YAP/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Melaninas/metabolismo , Melaninas/biossíntese , Via de Sinalização Wnt , Derme/citologia , Células Cultivadas , Melanogênese
12.
Nat Commun ; 15(1): 4061, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744897

RESUMO

Transcription stress has been linked to DNA damage -driven aging, yet the underlying mechanism remains unclear. Here, we demonstrate that Tcea1-/- cells, which harbor a TFIIS defect in transcription elongation, exhibit RNAPII stalling at oxidative DNA damage sites, impaired transcription, accumulation of R-loops, telomere uncapping, chromatin bridges, and genome instability, ultimately resulting in cellular senescence. We found that R-loops at telomeres causally contribute to the release of telomeric DNA fragments in the cytoplasm of Tcea1-/- cells and primary cells derived from naturally aged animals triggering a viral-like immune response. TFIIS-defective cells release extracellular vesicles laden with telomeric DNA fragments that target neighboring cells, which consequently undergo cellular senescence. Thus, transcription stress elicits paracrine signals leading to cellular senescence, promoting aging.


Assuntos
Senescência Celular , Citosol , Dano ao DNA , Comunicação Parácrina , Telômero , Senescência Celular/genética , Animais , Telômero/metabolismo , Telômero/genética , Camundongos , Citosol/metabolismo , DNA/metabolismo , Transcrição Gênica , Camundongos Knockout , Humanos , Vesículas Extracelulares/metabolismo , Instabilidade Genômica , Envelhecimento/genética , Envelhecimento/metabolismo , Estresse Oxidativo , Camundongos Endogâmicos C57BL
13.
Elife ; 122024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713053

RESUMO

Uncovering the regulators of cellular aging will unravel the complexity of aging biology and identify potential therapeutic interventions to delay the onset and progress of chronic, aging-related diseases. In this work, we systematically compared genesets involved in regulating the lifespan of Saccharomyces cerevisiae (a powerful model organism to study the cellular aging of humans) and those with expression changes under rapamycin treatment. Among the functionally uncharacterized genes in the overlap set, YBR238C stood out as the only one downregulated by rapamycin and with an increased chronological and replicative lifespan upon deletion. We show that YBR238C and its paralog RMD9 oppositely affect mitochondria and aging. YBR238C deletion increases the cellular lifespan by enhancing mitochondrial function. Its overexpression accelerates cellular aging via mitochondrial dysfunction. We find that the phenotypic effect of YBR238C is largely explained by HAP4- and RMD9-dependent mechanisms. Furthermore, we find that genetic- or chemical-based induction of mitochondrial dysfunction increases TORC1 (Target of Rapamycin Complex 1) activity that, subsequently, accelerates cellular aging. Notably, TORC1 inhibition by rapamycin (or deletion of YBR238C) improves the shortened lifespan under these mitochondrial dysfunction conditions in yeast and human cells. The growth of mutant cells (a proxy of TORC1 activity) with enhanced mitochondrial function is sensitive to rapamycin whereas the growth of defective mitochondrial mutants is largely resistant to rapamycin compared to wild type. Our findings demonstrate a feedback loop between TORC1 and mitochondria (the TORC1-MItochondria-TORC1 (TOMITO) signaling process) that regulates cellular aging processes. Hereby, YBR238C is an effector of TORC1 modulating mitochondrial function.


Assuntos
Senescência Celular , Mitocôndrias , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transdução de Sinais , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , Senescência Celular/genética , Sirolimo/farmacologia , Regulação Fúngica da Expressão Gênica , Deleção de Genes , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética
14.
Front Immunol ; 15: 1366841, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711521

RESUMO

Introduction: Age-related macular degeneration (AMD) is a prevalent, chronic and progressive retinal degenerative disease characterized by an inflammatory response mediated by activated microglia accumulating in the retina. In this study, we demonstrate the therapeutically effects and the underlying mechanisms of microglial repopulation in the laser-induced choroidal neovascularization (CNV) model of exudative AMD. Methods: The CSF1R inhibitor PLX3397 was used to establish a treatment paradigm for microglial repopulation in the retina. Neovascular leakage and neovascular area were examined by fundus fluorescein angiography (FFA) and immunostaining of whole-mount RPE-choroid-sclera complexes in CNV mice receiving PLX3397. Altered cellular senescence was measured by beta-galactosidase (SA-ß-gal) activity and p16INK4a expression. The effect and mechanisms of repopulated microglia on leukocyte infiltration and the inflammatory response in CNV lesions were analyzed. Results: We showed that ten days of the CSF1R inhibitor PLX3397 treatment followed by 11 days of drug withdrawal was sufficient to stimulate rapid repopulation of the retina with new microglia. Microglial repopulation attenuated pathological choroid neovascularization and dampened cellular senescence in CNV lesions. Repopulating microglia exhibited lower levels of activation markers, enhanced phagocytic function and produced fewer cytokines involved in the immune response, thereby ameliorating leukocyte infiltration and attenuating the inflammatory response in CNV lesions. Discussion: The microglial repopulation described herein are therefore a promising strategy for restricting inflammation and choroidal neovascularization, which are important players in the pathophysiology of AMD.


Assuntos
Aminopiridinas , Neovascularização de Coroide , Modelos Animais de Doenças , Microglia , Animais , Neovascularização de Coroide/etiologia , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Microglia/metabolismo , Microglia/efeitos dos fármacos , Camundongos , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Camundongos Endogâmicos C57BL , Degeneração Macular/patologia , Degeneração Macular/metabolismo , Degeneração Macular/tratamento farmacológico , Inflamação , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Pirróis/farmacologia , Pirróis/uso terapêutico , Senescência Celular/efeitos dos fármacos
15.
Cell Biol Toxicol ; 40(1): 29, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700571

RESUMO

Premature ovarian failure (POF) affects many adult women less than 40 years of age and leads to infertility. Mesenchymal stem cells-derived small extracellular vesicles (MSCs-sEVs) are attractive candidates for ovarian function restoration and folliculogenesis for POF due to their safety and efficacy, however, the key mediator in MSCs-sEVs that modulates this response and underlying mechanisms remains elusive. Herein, we reported that YB-1 protein was markedly downregulated in vitro and in vivo models of POF induced with H2O2 and CTX respectively, accompanied by granulosa cells (GCs) senescence phenotype. Notably, BMSCs-sEVs transplantation upregulated YB-1, attenuated oxidative damage-induced cellular senescence in GCs, and significantly improved the ovarian function of POF rats, but that was reversed by YB-1 depletion. Moreover, YB-1 showed an obvious decline in serum and GCs in POF patients. Mechanistically, YB-1 as an RNA-binding protein (RBP) physically interacted with a long non-coding RNA, MALAT1, and increased its stability, further, MALAT1 acted as a competing endogenous RNA (ceRNA) to elevate FOXO3 levels by sequestering miR-211-5p to prevent its degradation, leading to repair of ovarian function. In summary, we demonstrated that BMSCs-sEVs improve ovarian function by releasing YB-1, which mediates MALAT1/miR-211-5p/FOXO3 axis regulation, providing a possible therapeutic target for patients with POF.


Assuntos
Exossomos , Proteína Forkhead Box O3 , Células da Granulosa , Células-Tronco Mesenquimais , MicroRNAs , Insuficiência Ovariana Primária , RNA Longo não Codificante , Proteína 1 de Ligação a Y-Box , Feminino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Animais , Proteína 1 de Ligação a Y-Box/metabolismo , Proteína 1 de Ligação a Y-Box/genética , Humanos , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Ratos , Células da Granulosa/metabolismo , Células-Tronco Mesenquimais/metabolismo , Insuficiência Ovariana Primária/metabolismo , Insuficiência Ovariana Primária/genética , Exossomos/metabolismo , Ovário/metabolismo , Ratos Sprague-Dawley , Senescência Celular
16.
Acta Neuropathol ; 147(1): 78, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695952

RESUMO

Aging is associated with cell senescence and is the major risk factor for AD. We characterized premature cell senescence in postmortem brains from non-diseased controls (NDC) and donors with Alzheimer's disease (AD) using imaging mass cytometry (IMC) and single nuclear RNA (snRNA) sequencing (> 200,000 nuclei). We found increases in numbers of glia immunostaining for galactosidase beta (> fourfold) and p16INK4A (up to twofold) with AD relative to NDC. Increased glial expression of genes related to senescence was associated with greater ß-amyloid load. Prematurely senescent microglia downregulated phagocytic pathways suggesting reduced capacity for ß-amyloid clearance. Gene set enrichment and pseudo-time trajectories described extensive DNA double-strand breaks (DSBs), mitochondrial dysfunction and ER stress associated with increased ß-amyloid leading to premature senescence in microglia. We replicated these observations with independent AD snRNA-seq datasets. Our results describe a burden of senescent glia with AD that is sufficiently high to contribute to disease progression. These findings support the hypothesis that microglia are a primary target for senolytic treatments in AD.


Assuntos
Doença de Alzheimer , Senescência Celular , Transcriptoma , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Humanos , Senescência Celular/fisiologia , Senescência Celular/genética , Idoso , Masculino , Idoso de 80 Anos ou mais , Feminino , Microglia/patologia , Microglia/metabolismo , Encéfalo/patologia , Encéfalo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Neuroglia/patologia , Neuroglia/metabolismo
17.
Cell Mol Biol Lett ; 29(1): 64, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698311

RESUMO

Osteoarthritis (OA), known as one of the most common types of aseptic inflammation of the musculoskeletal system, is characterized by chronic pain and whole-joint lesions. With cellular and molecular changes including senescence, inflammatory alterations, and subsequent cartilage defects, OA eventually leads to a series of adverse outcomes such as pain and disability. CRISPR-Cas-related technology has been proposed and explored as a gene therapy, offering potential gene-editing tools that are in the spotlight. Considering the genetic and multigene regulatory mechanisms of OA, we systematically review current studies on CRISPR-Cas technology for improving OA in terms of senescence, inflammation, and cartilage damage and summarize various strategies for delivering CRISPR products, hoping to provide a new perspective for the treatment of OA by taking advantage of CRISPR technology.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Inflamação , Osteoartrite , Humanos , Osteoartrite/genética , Osteoartrite/terapia , Sistemas CRISPR-Cas/genética , Inflamação/genética , Edição de Genes/métodos , Animais , Terapia Genética/métodos , Cartilagem/metabolismo , Cartilagem/patologia , Senescência Celular/genética , Cartilagem Articular/patologia , Cartilagem Articular/metabolismo
18.
J Clin Invest ; 134(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690734

RESUMO

There is intense interest in identifying compounds that selectively kill senescent cells, termed senolytics, for ameliorating age-related comorbidities. However, screening for senolytic compounds currently relies on primary cells or cell lines where senescence is induced in vitro. Given the complexity of senescent cells across tissues and diseases, this approach may not target the senescent cells that develop under specific conditions in vivo. In this issue of the JCI, Lee et al. describe a pipeline for high-throughput drug screening of senolytic compounds where senescence was induced in vivo and identify the HSP90 inhibitor XL888 as a candidate senolytic to treat idiopathic pulmonary fibrosis.


Assuntos
Senescência Celular , Proteínas de Choque Térmico HSP90 , Fibrose Pulmonar Idiopática , Senoterapia , Humanos , Senoterapia/farmacologia , Senescência Celular/efeitos dos fármacos , Animais , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/metabolismo , Camundongos
19.
Front Immunol ; 15: 1395047, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694500

RESUMO

The emergence of resistance to prostate cancer (PCa) treatment, particularly to androgen deprivation therapy (ADT), has posed a significant challenge in the field of PCa management. Among the therapeutic options for PCa, radiotherapy, chemotherapy, and hormone therapy are commonly used modalities. However, these therapeutic approaches, while inducing apoptosis in tumor cells, may also trigger stress-induced premature senescence (SIPS). Cellular senescence, an entropy-driven transition from an ordered to a disordered state, ultimately leading to cell growth arrest, exhibits a dual role in PCa treatment. On one hand, senescent tumor cells may withdraw from the cell cycle, thereby reducing tumor growth rate and exerting a positive effect on treatment. On the other hand, senescent tumor cells may secrete a plethora of cytokines, growth factors and proteases that can affect neighboring tumor cells, thereby exerting a negative impact on treatment. This review explores how radiotherapy, chemotherapy, and hormone therapy trigger SIPS and the nuanced impact of senescent tumor cells on PCa treatment. Additionally, we aim to identify novel therapeutic strategies to overcome resistance in PCa treatment, thereby enhancing patient outcomes.


Assuntos
Senescência Celular , Resistencia a Medicamentos Antineoplásicos , Neoplasias da Próstata , Humanos , Senescência Celular/efeitos dos fármacos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Neoplasias da Próstata/metabolismo , Animais
20.
Front Endocrinol (Lausanne) ; 15: 1361289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694941

RESUMO

Mitochondria plays an essential role in regulating cellular metabolic homeostasis, proliferation/differentiation, and cell death. Mitochondrial dysfunction is implicated in many age-related pathologies. Evidence supports that the dysfunction of mitochondria and the decline of mitochondrial DNA copy number negatively affect ovarian aging. However, the mechanism of ovarian aging is still unclear. Treatment methods, including antioxidant applications, mitochondrial transplantation, emerging biomaterials, and advanced technologies, are being used to improve mitochondrial function and restore oocyte quality. This article reviews key evidence and research updates on mitochondrial damage in the pathogenesis of ovarian aging, emphasizing that mitochondrial damage may accelerate and lead to cellular senescence and ovarian aging, as well as exploring potential methods for using mitochondrial mechanisms to slow down aging and improve oocyte quality.


Assuntos
Envelhecimento , Mitocôndrias , Ovário , Humanos , Mitocôndrias/metabolismo , Feminino , Envelhecimento/fisiologia , Envelhecimento/patologia , Ovário/metabolismo , Ovário/patologia , Animais , Senescência Celular , DNA Mitocondrial/metabolismo , DNA Mitocondrial/genética , Oócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA