Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
Physiol Plant ; 176(3): e14327, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716559

RESUMO

Our goal was to determine whether anthocyanin-producing species (red) use different photoprotective strategies to cope with excess light during fall senescence compared with non-anthocyanin-producing species (yellow). In a previous study, we found that a yellow species retained the photoprotective PsbS protein in late autumn, while a red species did not. Specifically, we tested the hypothesis that red species make less use of zeaxanthin and PsbS-mediated thermal dissipation, as they rely on anthocyanins for photoprotection. We monitored four red (Acer ginnala, Rhus typhnia, Parenthocissus quinquefolia, Viburnum dentatum) and four yellow species (Acer negundo, Ostrya virginiana, Vitis riparia, Zanthoxylum americanum) throughout autumn senescence and analyzed pigments, protein content, and chlorophyll fluorescence. We found yellow species retained the PsbS protein at higher levels, and had higher dark retention of zeaxanthin in late autumn relative to red species. All species retained lutein and the pool of xanthophyll cycle pigments in higher amounts than other carotenoids in late autumn. Our data support the hypothesis that red species use anthocyanins as a photoprotective strategy during autumn senescence, and therefore make less use of PsbS and zeaxanthin-mediated thermal dissipation. We also found species-specific variation in the particular combination of photoprotective strategies used.


Assuntos
Antocianinas , Clorofila , Folhas de Planta , Estações do Ano , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Folhas de Planta/fisiologia , Antocianinas/metabolismo , Clorofila/metabolismo , Senescência Vegetal , Zeaxantinas/metabolismo , Carotenoides/metabolismo , Luz , Proteínas de Plantas/metabolismo , Xantofilas/metabolismo
2.
BMC Plant Biol ; 24(1): 419, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760728

RESUMO

BACKGROUND: Rice (Oryza sativa L.) is one of the most important food crops in the world and the application of nitrogen fertilizer is an effective means of ensuring stable and high rice yields. However, excessive application of nitrogen fertilizer not only causes a decline in the quality of rice, but also leads to a series of environmental costs. Nitrogen reutilization is closely related to leaf senescence, and nitrogen deficiency will lead to early functional leaf senescence, whereas moderate nitrogen application will help to delay leaf senescence and promote the production of photosynthetic assimilation products in leaves to achieve yield increase. Therefore, it is important to explore the mechanism by which nitrogen affects rice senescence, to search for genes that are tolerant to low nitrogen, and to delay the premature senescence of rice functional leaves. RESULTS: The present study was investigated the transcriptional changes in flag leaves between full heading and mature grain stages of rice (O. sativa) sp. japonica 'NanGeng 5718' under varying nitrogen (N) application: 0 kg/ha (no nitrogen; 0N), 240 kg/ha (moderate nitrogen; MN), and 300 kg/ha (high nitrogen; HN). Compared to MN condition, a total of 10427 and 8177 differentially expressed genes (DEGs) were detected in 0N and HN, respectively. We selected DEGs with opposite expression trends under 0N and HN conditions for GO and KEGG analyses to reveal the molecular mechanisms of nitrogen response involving DEGs. We confirmed that different N applications caused reprogramming of plant hormone signal transduction, glycolysis/gluconeogenesis, ascorbate and aldarate metabolism and photosynthesis pathways in regulating leaf senescence. Most DEGs of the jasmonic acid, ethylene, abscisic acid and salicylic acid metabolic pathways were up-regulated under 0N condition, whereas DEGs related to cytokinin and ascorbate metabolic pathways were induced in HN. Major transcription factors include ERF, WRKY, NAC and bZIP TF families have similar expression patterns which were induced under N starvation condition. CONCLUSION: Our results revealed that different nitrogen levels regulate rice leaf senescence mainly by affecting hormone levels and ascorbic acid biosynthesis. Jasmonic acid, ethylene, abscisic acid and salicylic acid promote early leaf senescence under low nitrogen condition, ethylene and ascorbate delay senescence under high nitrogen condition. In addition, ERF, WRKY, NAC and bZIP TF families promote early leaf senescence. The relevant genes can be used as candidate genes for the regulation of senescence. The results will provide gene reference for further genomic studies and new insights into the gene functions, pathways and transcription factors of N level regulates leaf senescence in rice, thereby improving NUE and reducing the adverse effects of over-application of N.


Assuntos
Perfilação da Expressão Gênica , Nitrogênio , Oryza , Folhas de Planta , Fatores de Transcrição , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oryza/fisiologia , Nitrogênio/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Senescência Vegetal/genética , Regulação da Expressão Gênica de Plantas , Vias Biossintéticas/genética , Transcriptoma , Fertilizantes , Genes de Plantas
3.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612502

RESUMO

Leaf senescence is the terminal stage of leaf development, and its initiation and progression are closely controlled by the integration of a myriad of endogenous signals and environmental stimuli. It has been documented that WRKY transcription factors (TFs) play essential roles in regulating leaf senescence, yet the molecular mechanism of WRKY-mediated leaf senescence still lacks detailed elucidation in crop plants. In this study, we cloned and identified a tobacco WRKY TF gene, designated NtWRKY70b, acting as a positive regulator of natural leaf senescence. The expression profile analysis showed that NtWRKY70b transcript levels were induced by aging and hydrogen peroxide (H2O2) and downregulated upon hydrogen sulfide (H2S) treatment. The physiological and biochemical assays revealed that overexpression of NtWRKY70b (OE) clearly promoted leaf senescence, triggering increased levels of reactive oxygen species (ROS) and decreased H2S content, while disruption of NtWRKY70b by chimeric repressor silencing technology (SRDX) significantly delayed the onset of leaf senescence, leading to a decreased accumulation of ROS and elevated concentration of H2S. The quantitative real-time PCR analysis showed that the expression levels of various senescence-associated genes and ROS biosynthesis-related genes (NtRbohD and NtRbohE) were upregulated in OE lines, while the expression of H2S biosynthesis-related genes (NtDCD and NtCYSC1) were inhibited in OE lines. Furthermore, the Yeast one-hybrid analysis (Y1H) and dual luciferase assays showed that NtWRKY70b could directly upregulate the expression of an ROS biosynthesis-related gene (NtRbohD) and a chlorophyll degradation-related gene (NtPPH) by binding to their promoter sequences. Accordingly, these results indicated that NtWYKY70b directly activated the transcript levels of NtRbohD and NtPPH and repressed the expression of NtDCD and NtCYCS1, thereby promoting ROS accumulation and impairing the endogenous H2S production, and subsequently accelerating leaf aging. These observations improve our knowledge of the regulatory mechanisms of WRKY TFs controlling leaf senescence and provide a novel method for ensuring high agricultural crop productivity via genetic manipulation of leaf senescence in crops.


Assuntos
Sulfeto de Hidrogênio , Fatores de Transcrição , Fatores de Transcrição/genética , Espécies Reativas de Oxigênio , Senescência Vegetal , Peróxido de Hidrogênio , Nicotiana/genética , Saccharomyces cerevisiae
4.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612713

RESUMO

Leaf senescence, a pivotal process in plants, directly influences both crop yield and nutritional quality. Foxtail millet (Setaria italica) is a C4 model crop renowned for its exceptional nutritional value and stress tolerance characteristics. However, there is a lack of research on the identification of senescence-associated genes (SAGs) and the underlying molecular regulatory mechanisms governing this process. In this study, a dark-induced senescence (DIS) experimental system was applied to investigate the extensive physiological and transcriptomic changes in two foxtail millet varieties with different degrees of leaf senescence. The physiological and biochemical indices revealed that the light senescence (LS) variety exhibited a delayed senescence phenotype, whereas the severe senescence (SS) variety exhibited an accelerated senescence phenotype. The most evident differences in gene expression profiles between these two varieties during DIS included photosynthesis, chlorophyll, and lipid metabolism. Comparative transcriptome analysis further revealed a significant up-regulation of genes related to polysaccharide and calcium ion binding, nitrogen utilization, defense response, and malate metabolism in LS. In contrast, the expression of genes associated with redox homeostasis, carbohydrate metabolism, lipid homeostasis, and hormone signaling was significantly altered in SS. Through WGCNA and RT-qPCR analyses, we identified three SAGs that exhibit potential negative regulation towards dark-induced leaf senescence in foxtail millet. This study establishes the foundation for a further comprehensive examination of the regulatory network governing leaf senescence and provides potential genetic resources for manipulating senescence in foxtail millet.


Assuntos
Setaria (Planta) , Transcriptoma , Setaria (Planta)/genética , Senescência Vegetal , Perfilação da Expressão Gênica , Clorofila
5.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1065-1075, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658149

RESUMO

Autophagy plays an essential role in recycling/re-utilizing nutrients and in adaptions to numerous stresses. However, the roles of autophagy in soybean have not been investigated extensively. In this study, a virus-induced gene silencing approach mediated by bean pod mottle virus (BPMV) was used to silence autophagy-related gene 5 (ATG5) genes in soybean (referred to as GmATG5). Our results showed that ATG8 proteins were massively accumulated in the dark-treated leaves of the GmATG5-silenced plants relative to the vector control plants (BPMV-0), indicating that autophagy pathway is impaired in the GmATG5-silenced plants. Consistent with the impaired autophagy, an accelerated senescence phenotype was observed on the leaves of the dark-treated GmATG5-silenced plants, which was not shown on the leaves of the dark-treated BPMV-0 plants. In addition, the accumulation levels of both reactive oxygen species (ROS) and salicylic acid (SA) were significantly induced in the GmATG5-silenced plants compared with that of the vector control plants (BPMV-0), indicating an activated immunity. Accordingly, the GmATG5-silenced plants exhibited significantly enhanced resistance against Pseudomonas syringae pv. glycinea (Psg) in comparison with the BPMV-0 plants. Nevertheless, the activated immunity observed in the GmATG5-silenced plant was independent of the activation of mitogen-activated protein kinase (MAPK).


Assuntos
Autofagia , Comovirus , Resistência à Doença , Inativação Gênica , Glycine max , Doenças das Plantas , Glycine max/genética , Glycine max/microbiologia , Glycine max/imunologia , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Autofagia/genética , Comovirus/genética , Senescência Vegetal/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Plantas/genética , Ácido Salicílico/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Plantas Geneticamente Modificadas/genética
6.
Plant Signal Behav ; 19(1): 2334511, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650457

RESUMO

Saline and alkaline stress is one of the major abiotic stresses facing agricultural production, which severely inhibits the growth and yield of plant. The application of plant growth regulators can effectively prevent crop yield reduction caused by saline and alkaline stress. Exogenous melatonin (MT) can act as a signaling molecule involved in the regulation of a variety of physiological processes in plants, has been found to play a key role in enhancing the improvement of plant tolerance to abiotic stresses. However, the effects of exogenous MT on saline and alkaline tolerance of table grape seedlings and its mechanism have not been clarified. The aim of this study was to investigate the role of exogenous MT on morphological and physiological growth of table grape seedlings (Vitis vinifera L.) under saline and alkaline stress. The results showed that saline and alkaline stress resulted in yellowing and wilting of grape leaves and a decrease in chlorophyll content, whereas the application of exogenous MT alleviated the degradation of chlorophyll in grape seedling leaves caused by saline and alkaline stress and promoted the accumulation of soluble sugars and proline content. In addition, exogenous MT increased the activity of antioxidant enzymes, which resulted in the scavenging of reactive oxygen species (ROS) generated by saline and alkaline stress. In conclusion, exogenous MT was involved in the tolerance of grape seedlings to saline and alkaline stress, and enhanced the saline and alkaline resistance of grape seedlings to promote the growth and development of the grape industry in saline and alkaline areas.


Assuntos
Melatonina , Folhas de Planta , Plântula , Estresse Fisiológico , Vitis , Vitis/efeitos dos fármacos , Vitis/metabolismo , Vitis/fisiologia , Melatonina/farmacologia , Melatonina/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Senescência Vegetal/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Clorofila/metabolismo , Álcalis , Antioxidantes/metabolismo , Prolina/metabolismo
7.
Plant Cell Rep ; 43(5): 125, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647720

RESUMO

KEY MESSAGE: The interaction network and pathway map uncover the potential crosstalk between sugar and hormone metabolisms as a possible reason for leaf senescence in P. ternata. Pinellia ternata, an environmentally sensitive medicinal plant, undergoes leaf senescence twice a year, affecting its development and yield. Understanding the potential mechanism that delays leaf senescence could theoretically decrease yield losses. In this study, a typical senescent population model was constructed, and an integrated analysis of transcriptomic and metabolomic profiles of P. ternata was conducted using two early leaf senescence populations and two stay-green populations. The result showed that two key gene modules were associated with leaf senescence which were mainly enriched in sugar and hormone signaling pathways, respectively. A network constructed by unigenes and metabolisms related to the obtained two pathways revealed that several compounds such as D-arabitol and 2MeScZR have a higher significance ranking. In addition, a total of 130 hub genes in this network were categorized into 3 classes based on connectivity. Among them, 34 hub genes were further analyzed through a pathway map, the potential crosstalk between sugar and hormone metabolisms might be an underlying reason of leaf senescence in P. ternata. These findings address the knowledge gap regarding leaf senescence in P. ternata, providing candidate germplasms for molecular breeding and laying theoretical basis for the realization of finely regulated cultivation in future.


Assuntos
Regulação da Expressão Gênica de Plantas , Metabolômica , Pinellia , Reguladores de Crescimento de Plantas , Folhas de Planta , Transcriptoma , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Pinellia/genética , Pinellia/metabolismo , Pinellia/fisiologia , Pinellia/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma/genética , Senescência Vegetal/genética , Perfilação da Expressão Gênica , Açúcares/metabolismo , Metaboloma/genética , Redes Reguladoras de Genes , Metabolismo dos Carboidratos/genética
8.
Plant Physiol Biochem ; 210: 108650, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38653095

RESUMO

Plants have evolved the adaptive capacity to mitigate the negative effect of external adversities at chemical, molecular, cellular, and physiological levels. This capacity is conferred by triggering the coordinated action of internal regulatory factors, in which sugars play an essential role in the regulating chloroplast degradation and leaf senescence under various stresses. In this review, we summarize the recent findings on the senescent-associated changes in carbohydrate metabolism and its relation to chlorophyl degradation, oxidative damage, photosynthesis inhibition, programmed cell death (PCD), and sink-source relation as affected by abiotic stresses. The action of sugar signaling in regulating the initiation and progression of leaf senescence under abiotic stresses involves interactions with various plant hormones, reactive oxygen species (ROS) burst, and protein kinases. This discussion aims to elucidate the complex regulatory network and molecular mechanisms that underline sugar-induced leaf senescence in response to various abiotic stresses. The imperative role of sugar signaling in regulating plant stress responses potentially enables the production of crop plants with modified sugar metabolism. This, in turn, may facilitate the engineering of plants with improved stress responses, optimal life span and higher yield achievement.


Assuntos
Folhas de Planta , Senescência Vegetal , Transdução de Sinais , Estresse Fisiológico , Açúcares , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Açúcares/metabolismo , Metabolismo dos Carboidratos , Fotossíntese , Cloroplastos/metabolismo
9.
Plant Physiol Biochem ; 210: 108658, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677188

RESUMO

In gramineae-soybean intercropping systems, shade stress caused by taller plants impacts soybean growth specifically during the reproductive stage. However, the effects of shade stress on soybean senescence remain largely unexplored. In this research, we applied artificial shade treatments with intensities of 75% (S75) and 50% (S50) to soybean plants at the onset of flowering to simulate the shade stress experienced by soybeans in the traditional and optimized maize-soybean intercropping systems, respectively. Compared to the normal light control, both shade treatments led to a rapid decline in the dry matter content of soybean vegetative organs and accelerated their abscission. Moreover, shade treatments triggered the degradation of chlorophyll and soluble proteins in leaves and increased the expression of genes associated with leaf senescence. Metabolic profiling further revealed that ethylene biosynthesis and signal transduction were induced by shade treatment. In addition, the examination of nitrogen content demonstrated that shade treatments impeded the remobilization of nitrogen in vegetative tissues, consequently reducing the seed nitrogen harvest. It's worth noting that these negative effects were less pronounced under the S50 treatment compared to the S75 treatment. Taken together, this research demonstrates that shade stress during the reproductive stage accelerates soybean senescence and impedes nitrogen remobilization, while optimizing the field layout to improve soybean growth light conditions could mitigate these challenges in the maize-soybean intercropping system.


Assuntos
Etilenos , Glycine max , Nitrogênio , Estresse Fisiológico , Glycine max/metabolismo , Glycine max/efeitos da radiação , Glycine max/crescimento & desenvolvimento , Nitrogênio/metabolismo , Etilenos/metabolismo , Etilenos/biossíntese , Senescência Vegetal , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Regulação da Expressão Gênica de Plantas , Luz , Clorofila/metabolismo
10.
BMC Plant Biol ; 24(1): 177, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38448830

RESUMO

Lamins are the major components of the nuclear lamina, which regulate chromatin structure and gene expression. KAKU4 is a unique nuclear lamina component in the nuclear periphery, modulates nuclear shape and size in Arabidopsis. The knowledge about the regulatory role of KAKU4 in leaf development remains limited. Here we found that knockdown of KAKU4 resulted in an accelerated leaf senescence phenotype, with elevated levels of H2O2 and hormones, particularly SA, JA, and ABA. Our results demonstrated the importance of KAKU4 as a potential negative regulator in age-triggered leaf senescence in Arabidopsis. Furthermore, we conducted combination analyses of transcriptomic and epigenomic data for the kaku4 mutant and WT leaves. The knockdown of KAKU4 lowered H3K27me3 deposition in the up-regulated genes associated with hormone pathways, programmed cell death, and leaf senescence, including SARD1, SAG113/HAI1, PR2, and so forth. In addition, we found the functional crosstalks between KAKU4 and its associated proteins (CRWN1/4, PNET2, GBPL3, etc.) through comparing multiple transcriptome datasets. Overall, our results indicated that KAKU4 may inhibit the expression of a series of genes related to hormone signals and H2O2 metabolism by affecting the deposition of H3K27me3, thereby suppressing leaf senescence.


Assuntos
Arabidopsis , Arabidopsis/genética , Histonas , Peróxido de Hidrogênio , Senescência Vegetal , Hormônios
12.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396927

RESUMO

Melatonin, a pleiotropic small molecule, is employed in horticultural crops to delay senescence and preserve postharvest quality. In this study, 100 µM melatonin treatment delayed a decline in the color difference index h* and a*, maintaining the content of chlorophyll and carotenoids, thereby delaying the yellowing and senescence of Chinese kale. Transcriptome analysis unequivocally validates melatonin's efficacy in delaying leaf senescence in postharvest Chinese kale stored at 20 °C. Following a three-day storage period, the melatonin treatment group exhibited 1637 differentially expressed genes (DEGs) compared to the control group. DEG analysis elucidated that melatonin-induced antisenescence primarily governs phenylpropanoid biosynthesis, lipid metabolism, plant signal transduction, and calcium signal transduction. Melatonin treatment up-regulated core enzyme genes associated with general phenylpropanoid biosynthesis, flavonoid biosynthesis, and the α-linolenic acid biosynthesis pathway. It influenced the redirection of lignin metabolic flux, suppressed jasmonic acid and abscisic acid signal transduction, and concurrently stimulated auxin signal transduction. Additionally, melatonin treatment down-regulated RBOH expression and up-regulated genes encoding CaM, thereby influencing calcium signal transduction. This study underscores melatonin as a promising approach for delaying leaf senescence and provides insights into the mechanism of melatonin-mediated antisenescence in postharvest Chinese kale.


Assuntos
Brassica , Melatonina , Humanos , Brassica/genética , Brassica/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Senescência Vegetal , Cálcio/metabolismo , Atraso no Tratamento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Transcriptoma
13.
Genes Genomics ; 46(4): 399-408, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38319456

RESUMO

BACKGROUND: Sweet osmanthus (Osmanthus fragrans) is an ornamental evergreen tree species in China, whose flowers are sensitive to ethylene. The synthesis of ethylene is controlled by key enzymes and restriction enzymes, 1-aminocyclopropane-1-carboxylic acid synthase (ACS) and 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), which are encoded by multigene families. However, the key synthase responsible for ethylene regulation in O. fragrans is still unknown. OBJECTIVE: This study aims to screen the key ethylene synthase genes of sweet osmanthus flowers in response to ethylene regulation. METHODS: In this study, we used the ACO and ACS sequences of Arabidopsis thaliana to search for homologous genes in the O. fragrans petal transcriptome database. These genes were also analyzed bioinformatically. Finally, the expression levels of O. fragrans were compared before and after senescence, as well as after ethephon and silver nitrate treatments. RESULTS: The results showed that there are five ACO genes and one ACS gene in O. fragrans transcriptome database, and the phylogenetic tree revealed that the proteins encoded by these genes had high homology to the ACS and ACO proteins in plants. Sequence alignment shows that the OfACO1-5 proteins have the 2OG-Fe(II) oxygenase domain, while OfACS1 contains seven conserved domains, as well as conserved amino acids in transaminases and glutamate residues related to substrate specificity. Expression analysis revealed that the expression levels of OfACS1 and OfACO1-5 were significantly higher at the early senescence stage compared to the full flowering stage. The transcripts of the OfACS1, OfACO2, and OfACO5 genes were upregulated by treatment with ethephon. However, out of these three genes, only OfACO2 was significantly downregulated by treatment with AgNO3. CONCLUSION: Our study found that OfACO2 is an important synthase gene in response to ethylene regulation in sweet osmanthus, which would provide valuable data for further investigation into the mechanisms of ethylene-induced senescence in sweet osmanthus flowers.


Assuntos
Compostos Organofosforados , Senescência Vegetal , Nitrato de Prata , Nitrato de Prata/farmacologia , Filogenia , Etilenos/farmacologia , Etilenos/metabolismo
14.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339152

RESUMO

Calcium (Ca2+) is a versatile intracellular second messenger that regulates several signaling pathways involved in growth, development, stress tolerance, and immune response in plants. Autoinhibited Ca2+-ATPases (ACAs) play an important role in the regulation of cellular Ca2+ homeostasis. Here, we systematically analyzed the putative OsACA family members in rice, and according to the phylogenetic tree of OsACAs, OsACA9 was clustered into a separated branch in which its homologous gene in Arabidopsis thaliana was reported to be involved in defense response. When the OsACA9 gene was knocked out by CRISPR/Cas9, significant accumulation of reactive oxygen species (ROS) was detected in the mutant lines. Meanwhile, the OsACA9 knock out lines showed enhanced disease resistance to both rice bacterial blight (BB) and bacterial leaf streak (BLS). In addition, compared to the wild-type (WT), the mutant lines displayed an early leaf senescence phenotype, and the agronomy traits of their plant height, panicle length, and grain yield were significantly decreased. Transcriptome analysis by RNA-Seq showed that the differentially expressed genes (DEGs) between WT and the Osaca9 mutant were mainly enriched in basal immune pathways and antibacterial metabolite synthesis pathways. Among them, multiple genes related to rice disease resistance, receptor-like cytoplasmic kinases (RLCKs) and cell wall-associated kinases (WAKs) genes were upregulated. Our results suggest that the Ca2+-ATPase OsACA9 may trigger oxidative burst in response to various pathogens and synergically regulate disease resistance and leaf senescence in rice.


Assuntos
Resistência à Doença , Oryza , Resistência à Doença/genética , Adenosina Trifosfatases/metabolismo , Oryza/metabolismo , Senescência Vegetal , Filogenia , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo
15.
Plant Cell ; 36(5): 1736-1754, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38315889

RESUMO

Roses are among the most popular ornamental plants cultivated worldwide for their great economic, symbolic, and cultural importance. Nevertheless, rapid petal senescence markedly reduces rose (Rosa hybrida) flower quality and value. Petal senescence is a developmental process tightly regulated by various phytohormones. Ethylene accelerates petal senescence, while gibberellic acid (GA) delays this process. However, the molecular mechanisms underlying the crosstalk between these phytohormones in the regulation of petal senescence remain largely unclear. Here, we identified SENESCENCE-ASSOCIATED F-BOX (RhSAF), an ethylene-induced F-box protein gene encoding a recognition subunit of the SCF-type E3 ligase. We demonstrated that RhSAF promotes degradation of the GA receptor GIBBERELLIN INSENSITIVE DWARF1 (RhGID1) to accelerate petal senescence. Silencing RhSAF expression delays petal senescence, while suppressing RhGID1 expression accelerates petal senescence. RhSAF physically interacts with RhGID1s and targets them for ubiquitin/26S proteasome-mediated degradation. Accordingly, ethylene-induced RhGID1C degradation and RhDELLA3 accumulation are compromised in RhSAF-RNAi lines. Our results demonstrate that ethylene antagonizes GA activity through RhGID1 degradation mediated by the E3 ligase RhSAF. These findings enhance our understanding of the phytohormone crosstalk regulating petal senescence and provide insights for improving flower longevity.


Assuntos
Etilenos , Proteínas F-Box , Flores , Regulação da Expressão Gênica de Plantas , Giberelinas , Proteínas de Plantas , Rosa , Etilenos/metabolismo , Etilenos/farmacologia , Giberelinas/metabolismo , Giberelinas/farmacologia , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rosa/genética , Rosa/efeitos dos fármacos , Rosa/metabolismo , Flores/genética , Flores/efeitos dos fármacos , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Senescência Vegetal/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética
16.
New Phytol ; 241(4): 1605-1620, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38179647

RESUMO

Dynamic DNA methylation regulatory networks are involved in many biological processes. However, how DNA methylation patterns change during flower senescence and their relevance with gene expression and related molecular mechanism remain largely unknown. Here, we used whole genome bisulfite sequencing to reveal a significant increase of DNA methylation in the promoter region of genes during natural and ethylene-induced flower senescence in carnation (Dianthus caryophyllus L.), which was correlated with decreased expression of DNA demethylase gene DcROS1. Silencing of DcROS1 accelerated while overexpression of DcROS1 delayed carnation flower senescence. Moreover, among the hypermethylated differentially expressed genes during flower senescence, we identified two amino acid biosynthesis genes, DcCARA and DcDHAD, with increased DNA methylation and reduced expression in DcROS1 silenced petals, and decreased DNA methylation and increased expression in DcROS1 overexpression petals, accompanied by decreased or increased amino acids content. Silencing of DcCARA and DcDHAD accelerates carnation flower senescence. We further showed that adding corresponding amino acids could largely rescue the senescence phenotype of DcROS1, DcCARA and DcDHAD silenced plants. Our study not only demonstrates an essential role of DcROS1-mediated remodeling of DNA methylation in flower senescence but also unravels a novel epigenetic regulatory mechanism underlying DNA methylation and amino acid biosynthesis during flower senescence.


Assuntos
Dianthus , Syzygium , Dianthus/genética , Syzygium/metabolismo , Senescência Vegetal , Metilação de DNA/genética , Aminoácidos/metabolismo , Flores/genética , Flores/metabolismo
17.
Glob Chang Biol ; 30(1): e17099, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273506

RESUMO

The timing of leaf senescence in deciduous trees influences carbon uptake and the resources available for tree growth, defense, and reproduction. Therefore, simulated biosphere-atmosphere interactions and, eventually, estimates of the biospheric climate change mitigation potential are affected by the accuracy of process-oriented leaf senescence models. However, current leaf senescence models are likely to suffer from a bias towards the mean (BTM). This may lead to overly flat trends, whereby errors would increase with increasing difference from the average timing of leaf senescence, ultimately distorting model performance and projected future shifts. However, such effects of the BTM on model performance and future shifts have rarely been investigated. We analyzed >17 × 106 past dates and >49 × 106 future shifts of leaf senescence simulated by 21 process-oriented models that had been calibrated with >45,000 observations from Central Europe for three major European tree species. The surmised effects on model performance and future shifts occurred in all 21 models, revealing strong model-specific BTM. In general, the models performed only slightly better than a null model that just simulates the average timing of leaf senescence. While standard comparisons of model performance favored models with stronger BTM, future shifts of leaf senescence were smaller when projected by models with weaker BTM. Overall, the future shifts for 2090-2099 relative to 1990-1999 increased by an average of 13-14 days after correcting for the BTM. In conclusion, the BTM substantially affects simulations by state-of-the-art leaf senescence models, which compromises model comparisons and distorts projections of future shifts. Smaller shifts result from flatter trends associated with stronger BTM. Therefore, smaller shifts according to models with weaker BTM illustrate the considerable uncertainty in current leaf senescence projections. It is likely that state-of-the-art projections of future biosphere behavior under global change are distorted by erroneous leaf senescence models.


Assuntos
Folhas de Planta , Senescência Vegetal , Temperatura , Estações do Ano , Árvores , Mudança Climática
18.
Plant Cell Rep ; 43(1): 29, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38183427

RESUMO

KEY MESSAGE: OsSWEET1b is a hexose transporter protein, which localized in cell membranes and interacting with itself to form homodimer and knockout of OsSWEET1b resulted in reduced leaves sugar content and accelerating leaf senescence. In the rice genome, the SWEET gene family contains 21 homologous members, but the role of some of them in rice growth and development is still unknown. The function of the sugar transporter OsSWEET1b protein in rice was identified in this research. Expression analysis showed that the expression levels of OsSWEET1b in leaves were higher than that in other tissues. The hexose transport experiment confirmed that OsSWEET1b has glucose and galactose transporter activity in yeast. Subcellular localization indicates that OsSWEET1b protein was targeted to the plasma membrane and BiFC analysis showed that OsSWEET1b interacts with itself to form homodimers. Functional analysis demonstrated that the ossweet1b mutant plants were have reduced the sucrose, glucose, fructose, starch and galactose contents, and induced carbon starvation-related gene expression, which might lead to carbon starvation in leaves at filling stage. The ossweet1b knockout plants showed decreased chlorophyll content and antioxidant enzyme activity, and increased ROS accumulation in leaves, leading to leaf cell death and premature senescence phenotype at filling stage. In ossweet1b mutants, the leaf senescence-related gene expression levels were increased and the abundance of photosynthesis-related proteins was decreased. Loss of OsSWEET1b were affected the starch, sucrose metabolism and carbon fixation in photosynthetic organelles pathway by RNA-seq analysis. The destruction of OsSWEET1b function will cause sugar starvation, decreased photosynthesis and leaf senescence, which leading to reduced rice yield. Collectively, our results suggest that the OsSWEET1b plays a key role in rice leaves carbohydrate metabolism and leaf senescence.


Assuntos
Galactose , Proteínas de Transporte de Monossacarídeos , Proteínas de Transporte de Monossacarídeos/genética , Senescência Vegetal , Metabolismo dos Carboidratos , Glucose , Antioxidantes , Carbono , Membrana Celular , Amido , Sacarose
19.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279327

RESUMO

As the final stage of leaf development, leaf senescence is affected by a variety of internal and external signals including age and environmental stresses. Although significant progress has been made in elucidating the mechanisms of age-dependent leaf senescence, it is not clear how stress conditions induce a similar process. Here, we report the roles of a stress-responsive and senescence-induced gene, ERD7 (EARLY RESPONSIVE TO DEHYDRATION 7), in regulating both age-dependent and stress-induced leaf senescence in Arabidopsis. The results showed that the leaves of erd7 mutant exhibited a significant delay in both age-dependent and stress-induced senescence, while transgenic plants overexpressing the gene exhibited an obvious accelerated leaf senescence. Furthermore, based on the results of LC-MS/MS and PRM quantitative analyses, we selected two phosphorylation sites, Thr-225 and Ser-262, which have a higher abundance during senescence, and demonstrated that they play a key role in the function of ERD7 in regulating senescence. Transgenic plants overexpressing the phospho-mimetic mutant of the activation segment residues ERD7T225D and ERD7T262D exhibited a significantly early senescence, while the inactivation segment ERD7T225A and ERD7T262A displayed a delayed senescence. Moreover, we found that ERD7 regulates ROS accumulation by enhancing the expression of AtrbohD and AtrbohF, which is dependent on the critical residues, i.e., Thr-225 and Ser-262. Our findings suggest that ERD7 is a positive regulator of senescence, which might function as a crosstalk hub between age-dependent and stress-induced leaf senescence.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Peróxido de Hidrogênio , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cromatografia Líquida , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Fosforilação , Folhas de Planta/metabolismo , Senescência Vegetal , Plantas Geneticamente Modificadas/metabolismo , Espectrometria de Massas em Tandem
20.
J Exp Bot ; 75(8): 2351-2371, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38205848

RESUMO

Plant senescence, as a highly integrated developmental stage, involves functional degeneration and nutrient redistribution. NAM/ATAF1/CUC (NAC) transcription factors orchestrate various senescence-related signals and mediate the fine-tuning underlying plant senescence. Previous data revealed that knockout of either NtNAC028 or NtNAC080 leads to delayed leaf senescence in tobacco (Nicotiana tabacum), which implies that NtNAC028 and NtNAC080 play respective roles in the regulation of leaf senescence, although they share 91.87% identity with each other. However, the mechanism underlying NtNAC028- and NtNAC080-regulated leaf senescence remains obscure. Here, we determined that NtNAC028 and NtNAC080 activate a putative jasmonic acid (JA) biosynthetic gene, NtLOX3, and enhance the JA level in vivo. We found that NtNAC028 and NtNAC080 interact with each other and themselves through their NA-terminal region. Remarkably, only the dimerization between NtNAC028 and NtNAC080 stimulated the transcriptional activation activity, but not the DNA binding activity of this heterodimer on NtLOX3. Metabolome analysis indicated that overexpression of either NtNAC028 or NtNAC080 augments both biosynthesis and degradation of nicotine in the senescent stages. Thus, we conclude that NtNAC028 cooperates with NtNAC080 and forms a heterodimer to enhance NtLOX3 expression and JA biosynthesis to trigger the onset of leaf senescence and impact secondary metabolism in tobacco.


Assuntos
Ciclopentanos , Nicotiana , Oxilipinas , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Nicotiana/genética , Senescência Vegetal , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA