Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.607
Filtrar
1.
BMC Infect Dis ; 24(1): 508, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773469

RESUMO

Chromobacterium violaceum is a rare but severe and often fatal cause of disease in humans. We present 2 clinical cases of sepsis and skin abscesses / cellulitis caused by C. violaceum seen in a referral hospital for infectious diseases in Vietnam. Both patients survived, but appropriate antibiotic treatment was only installed after culture of the organism. We reviewed and summarised the characteristics of C. violaceum infection and treatment.


Assuntos
Antibacterianos , Chromobacterium , Infecções por Bactérias Gram-Negativas , Humanos , Chromobacterium/isolamento & purificação , Chromobacterium/efeitos dos fármacos , Vietnã , Antibacterianos/uso terapêutico , Masculino , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Feminino , Sepse/microbiologia , Sepse/tratamento farmacológico , Adulto , Celulite (Flegmão)/microbiologia , Celulite (Flegmão)/tratamento farmacológico , Pessoa de Meia-Idade
2.
Immun Inflamm Dis ; 12(5): e1229, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38775678

RESUMO

BACKGROUND: Dioscin has many pharmacological effects; however, its role in sepsis-induced cardiomyopathy (SIC) is unknown. Accordingly, we concentrate on elucidating the mechanism of Dioscin in SIC rat model. METHODS: The SIC rat and H9c2 cell models were established by lipopolysaccharide (LPS) induction. The heart rate (HR), left ventricle ejection fraction (LVEF), mean arterial blood pressure (MAP), and heart weight index (HWI) of rats were evaluated. The myocardial tissue was observed by hematoxylin and eosin staining. 4-Hydroxy-2-nonenal (4-HNE) level in myocardial tissue was detected by immunohistochemistry. Superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) activities in serum samples of rats and H9c2 cells were determined by colorimetric assay. Bax, B-cell lymphoma-2 (Bcl-2), toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), phosphorylated-p65 (p-p65), and p65 levels in myocardial tissues of rats and treated H9c2 cells were measured by quantitative real-time PCR and Western blot. Viability and reactive oxygen species (ROS) accumulation of treated H9c2 cells were assayed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and dihydroethidium staining assays. RESULTS: Dioscin decreased HR and HWI, increased LVEF and MAP, alleviated the myocardial tissue damage, and reduced 4-HNE level in SIC rats. Dioscin reversed LPS-induced reduction on SOD, CAT, GSH, and Bcl-2 levels, and increment on Bax and TLR4 levels in rats and H9c2 cells. Overexpressed TLR4 attenuated the effects of Dioscin on promoting viability, as well as dwindling TLR4, ROS and MyD88 levels, and p-p65/p65 value in LPS-induced H9c2 cells. CONCLUSION: Protective effects of Dioscin against LPS-induced SIC are achieved via regulation of TLR4/MyD88/p65 signal pathway.


Assuntos
Cardiomiopatias , Diosgenina , Fator 88 de Diferenciação Mieloide , Sepse , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Diosgenina/análogos & derivados , Diosgenina/farmacologia , Diosgenina/uso terapêutico , Receptor 4 Toll-Like/metabolismo , Ratos , Fator 88 de Diferenciação Mieloide/metabolismo , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Cardiomiopatias/prevenção & controle , Linhagem Celular , Ratos Sprague-Dawley , Fator de Transcrição RelA/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Lipopolissacarídeos , Modelos Animais de Doenças , Apoptose/efeitos dos fármacos
3.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 319-326, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38710516

RESUMO

Objective To investigate the impact of the cannabinoid receptor agonist arachidonyl-2'-chloroethylamide (ACEA) on cognitive function in mice with sepsis-associated encephalopathy (SAE). Methods C57BL/6 mice were randomly divided into artificial cerebrospinal fluid (ACSF) and lipopolysaccharide (LPS) groups. The SAE model was established by intraventricular injection of LPS. The severity of sepsis in mice was assessed by sepsis severity score (MSS) and body mass changes. Behavioral paradigms were used to evaluate motor ability (open field test) and cognitive function (contextual fear conditioning test, Y-maze test). To evaluate the effects of ACEA intervention on SAE, mice were randomly assigned to ACSF group, ACEA intervention combined with ACSF group, LPS group, and ACEA intervention combined with LPS group. The dosage of ACEA intervention was 1.5 mg/kg. Real-time quantitative PCR was used to measure the mRNA expression levels of interleukin 1ß (IL-1ß), IL-6, and tumor necrosis factor α (TNF-α) in mouse hippocampal tissues. Western blot analysis was used to assess the protein levels of IL-6 and TNF-α in the hippocampus. Nissl staining was performed to examine neuronal damage in the CA1 region of the mouse hippocampus. Behavioral paradigms were again employed to evaluate motor ability and cognitive function. Results Three days after intraventricular LPS injection, mice exhibited significant cognitive dysfunction, confirming SAE modeling. Compared to the control group, the LPS group showed significant increases in mRNA of inflammatory factors such as IL-6, TNF-α, and IL-1ß, together with significant increases in IL-6 and TNF-α protein levels in the hippocampus, a decrease in Nissl bodies in the CA1 region, and significant cognitive dysfunction. Compared to the LPS group, the ACEA intervention group showed a significant decrease in the mRNA of IL-6, TNF-α, and IL-1ß, a significant reduction in IL-6 and TNF-α protein levels, an increase in Nissl bodies, and improved cognitive function. Conclusion ACEA improves cognitive function in SAE mice by inhibiting the expression levels of inflammatory factors IL-6 and TNF-α.


Assuntos
Ácidos Araquidônicos , Camundongos Endogâmicos C57BL , Encefalopatia Associada a Sepse , Animais , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/metabolismo , Camundongos , Masculino , Ácidos Araquidônicos/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Lipopolissacarídeos/efeitos adversos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/agonistas , Cognição/efeitos dos fármacos , Sepse/tratamento farmacológico , Sepse/complicações , Sepse/metabolismo
4.
Front Immunol ; 15: 1394925, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690282

RESUMO

Sepsis is a life-threatening organ dysfunction caused by the host's dysfunctional response to infection. Abnormal activation of the immune system and disturbance of energy metabolism play a key role in the development of sepsis. In recent years, the Sirtuins (SIRTs) family has been found to play an important role in the pathogenesis of sepsis. SIRTs, as a class of histone deacetylases (HDACs), are widely involved in cellular inflammation regulation, energy metabolism and oxidative stress. The effects of SIRTs on immune cells are mainly reflected in the regulation of inflammatory pathways. This regulation helps balance the inflammatory response and may lessen cell damage and organ dysfunction in sepsis. In terms of energy metabolism, SIRTs can play a role in immunophenotypic transformation by regulating cell metabolism, improve mitochondrial function, increase energy production, and maintain cell energy balance. SIRTs also regulate the production of reactive oxygen species (ROS), protecting cells from oxidative stress damage by activating antioxidant defense pathways and maintaining a balance between oxidants and reducing agents. Current studies have shown that several potential drugs, such as Resveratrol and melatonin, can enhance the activity of SIRT. It can help to reduce inflammatory response, improve energy metabolism and reduce oxidative stress, showing potential clinical application prospects for the treatment of sepsis. This review focuses on the regulation of SIRT on inflammatory response, energy metabolism and oxidative stress of immune cells, as well as its important influence on multiple organ dysfunction in sepsis, and discusses and summarizes the effects of related drugs and compounds on reducing multiple organ damage in sepsis through the pathway involving SIRTs. SIRTs may become a new target for the treatment of sepsis and its resulting organ dysfunction, providing new ideas and possibilities for the treatment of this life-threatening disease.


Assuntos
Metabolismo Energético , Estresse Oxidativo , Sepse , Sirtuínas , Humanos , Sepse/tratamento farmacológico , Sepse/imunologia , Sepse/metabolismo , Animais , Sirtuínas/metabolismo , Metabolismo Energético/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Inflamação/tratamento farmacológico , Inflamação/imunologia
5.
J Interferon Cytokine Res ; 44(5): 208-220, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38691831

RESUMO

Intestinal damage and secondary bacterial translocation are caused by the inflammatory response induced by sepsis. Tongfu Lifei (TLF) decoction has a protective effect on sepsis-related gastrointestinal function injury. However, the relation between gut microbiota, immune barrier, and sepsis under the treatment of TLF have not been well clarified yet. Here, rats were subjected to cecal ligation and puncture (CLP) to create a sepsis model. Subsequently, the TLF decoction was given to CLP rats by gavage, fecal microbiota transplantation (FMT), and antibiotic were used as positive control. TLF suppressed the inflammatory response and improved the pathological changes in the intestines of CLP rats. Besides, TLF promoted the balance of the percentage of the Th17 and Treg cells. Intestinal barrier function was also improved by TLF through enhancing ZO-1, and Occludin and Claudin 1 expression, preventing the secondary translocation of other gut microbiota. TLF dramatically boosted the gut microbiota's alpha- and beta-diversity in CLP rats. Moreover, it increased the relative abundance of anti-inflammatory gut microbiota and changed the progress of the glucose metabolism. In short, TLF regulated the gut microbiota to balance the ratio of Th17/Treg cells, reducing the inflammation in serum and intestinal mucosal injury in rats.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Mucosa Intestinal , Sepse , Linfócitos T Reguladores , Células Th17 , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Sepse/imunologia , Sepse/tratamento farmacológico , Sepse/complicações , Células Th17/imunologia , Células Th17/efeitos dos fármacos , Ratos , Medicamentos de Ervas Chinesas/farmacologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Mucosa Intestinal/microbiologia , Masculino , Ratos Sprague-Dawley
6.
PLoS One ; 19(5): e0302628, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38723000

RESUMO

Blood vessels permit the selective passage of molecules and immune cells between tissues and circulation. Uncontrolled inflammatory responses from an infection can increase vascular permeability and edema, which can occasionally lead to fatal organ failure. We identified mexenone as a vascular permeability blocker by testing 2,910 compounds in the Clinically Applied Compound Library using the lipopolysaccharide (LPS)-induced vascular permeability assay. Mexenone suppressed the LPS-induced downregulation of junctional proteins and phosphorylation of VE-cadherin in Bovine Aortic Endothelial Cells (BAECs). The injection of mexenone 1 hr before LPS administration completely blocked LPS-induced lung vascular permeability and acute lung injury in mice after 18hr. Our results suggest that mexenone-induced endothelial cell (EC) barrier stabilization could be effective in treating sepsis patients.


Assuntos
Células Endoteliais , Lipopolissacarídeos , Sepse , Animais , Sepse/tratamento farmacológico , Sepse/induzido quimicamente , Sepse/metabolismo , Camundongos , Bovinos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/prevenção & controle , Masculino , Caderinas/metabolismo , Camundongos Endogâmicos C57BL , Antígenos CD/metabolismo
7.
Respir Res ; 25(1): 201, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725041

RESUMO

Growth differentiation factor 15 (GDF15) as a stress response cytokine is involved in the development and progression of several diseases associated with metabolic disorders. However, the regulatory role and the underlying mechanisms of GDF15 in sepsis remain poorly defined. Our study analyzed the levels of GDF15 and its correlations with the clinical prognosis of patients with sepsis. In vivo and in vitro models of sepsis were applied to elucidate the role and mechanisms of GDF15 in sepsis-associated lung injury. We observed strong correlations of plasma GDF15 levels with the levels of C-reactive protein (CRP), procalcitonin (PCT), lactate dehydrogenase (LDH), and lactate as well as Sequential Organ Failure Assessment (SOFA) scores in patients with sepsis. In the mouse model of lipopolysaccharide-induced sepsis, recombinant GDF15 inhibited the proinflammatory responses and alleviated lung tissue injury. In addition, GDF15 decreased the levels of cytokines produced by alveolar macrophages (AMs). The anti-inflammatory effect of glycolysis inhibitor 2-DG on AMs during sepsis was mediated by GDF15 via inducing the phosphorylation of the α-subunit of eukaryotic initiation factor 2 (eIF2α) and the expression of activating transcription factor 4 (ATF4). Furthermore, we explored the mechanism underlying the beneficial effects of GDF15 and found that GDF15 inhibited glycolysis and mitogen-activated protein kinases (MAPK)/nuclear factor-κB (NF-κB) signaling via promoting AMPK phosphorylation. This study demonstrated that GDF15 inhibited glycolysis and NF-κB/MAPKs signaling via activating AMP-activated protein kinase (AMPK), thereby alleviating the inflammatory responses of AMs and sepsis-associated lung injury. Our findings provided new insights into novel therapeutic strategies for treating sepsis.


Assuntos
Proteínas Quinases Ativadas por AMP , Glicólise , Fator 15 de Diferenciação de Crescimento , Macrófagos Alveolares , Camundongos Endogâmicos C57BL , Sepse , Fator 15 de Diferenciação de Crescimento/metabolismo , Animais , Camundongos , Sepse/metabolismo , Sepse/tratamento farmacológico , Masculino , Glicólise/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Humanos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Lesão Pulmonar/metabolismo , Feminino , Pessoa de Meia-Idade
8.
Clin Transl Sci ; 17(5): e13829, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38769746

RESUMO

To investigate the effects of neutrophil elastase inhibitor (sivelestat sodium) on gastrointestinal function in sepsis. A reanalysis of the data from previous clinical trials conducted at our center was performed. Septic patients were divided into either the sivelestat group or the non-sivelestat group. The gastrointestinal dysfunction score (GIDS), feeding intolerance (FI) incidence, serum levels of intestinal barrier function and inflammatory biomarkers were recorded. The clinical severity and outcome variables were also documented. A total of 163 septic patients were included. The proportion of patients with GIDS ≥2 in the sivelestat group was reduced relative to that in the non-sivelestat group (9.6% vs. 22.5%, p = 0.047) on the 7th day of intensive care unit (ICU) admission. The FI incidence was also remarkably reduced in the sivelestat group in contrast to that in the non-sivelestat group (21.2% vs. 37.8%, p = 0.034). Furthermore, the sivelestat group had fewer days of FI [4 (3, 4) vs. 5 (4-6), p = 0.008]. The serum levels of d-lactate (p = 0.033), intestinal fatty acid-binding protein (p = 0.005), interleukin-6 (p = 0.001), white blood cells (p = 0.007), C-reactive protein (p = 0.001), and procalcitonin (p < 0.001) of the sivelestat group were lower than those of the non-sivelestat group. The sivelestat group also demonstrated longer ICU-free days [18 (0-22) vs. 13 (0-17), p = 0.004] and ventilator-free days [22 (1-24) vs. 16 (1-19), p = 0.002] compared with the non-sivelestat group. In conclusion, sivelestat sodium administration appears to improve gastrointestinal dysfunction, mitigate dysregulated inflammation, and reduce disease severity in septic patients.


Assuntos
Gastroenteropatias , Glicina , Sepse , Sulfonamidas , Humanos , Sepse/tratamento farmacológico , Sepse/complicações , Sepse/sangue , Masculino , Feminino , Glicina/análogos & derivados , Glicina/uso terapêutico , Pessoa de Meia-Idade , Idoso , Sulfonamidas/uso terapêutico , Sulfonamidas/administração & dosagem , Gastroenteropatias/tratamento farmacológico , Proteínas Secretadas Inibidoras de Proteinases , Biomarcadores/sangue , Resultado do Tratamento
9.
Nat Commun ; 15(1): 4340, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773142

RESUMO

Macrophage-orchestrated inflammation contributes to multiple diseases including sepsis. However, the underlying mechanisms remain to be defined clearly. Here, we show that macrophage TP53-induced glycolysis and apoptosis regulator (TIGAR) is up-regulated in murine sepsis models. When myeloid Tigar is ablated, sepsis induced by either lipopolysaccharide treatment or cecal ligation puncture in male mice is attenuated via inflammation inhibition. Mechanistic characterizations indicate that TIGAR directly binds to transforming growth factor ß-activated kinase (TAK1) and promotes tumor necrosis factor receptor-associated factor 6-mediated ubiquitination and auto-phosphorylation of TAK1, in which residues 152-161 of TIGAR constitute crucial motif independent of its phosphatase activity. Interference with the binding of TIGAR to TAK1 by 5Z-7-oxozeaenol exhibits therapeutic effects in male murine model of sepsis. These findings demonstrate a non-canonical function of macrophage TIGAR in promoting inflammation, and confer a potential therapeutic target for sepsis by disruption of TIGAR-TAK1 interaction.


Assuntos
Proteínas Reguladoras de Apoptose , Modelos Animais de Doenças , Lipopolissacarídeos , MAP Quinase Quinase Quinases , Macrófagos , Sepse , Animais , Sepse/imunologia , Sepse/tratamento farmacológico , Sepse/metabolismo , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/genética , Masculino , Camundongos , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Camundongos Endogâmicos C57BL , Fosforilação , Humanos , Ubiquitinação , Zearalenona/análogos & derivados , Zearalenona/farmacologia , Zearalenona/administração & dosagem , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Inflamação/metabolismo , Inflamação/patologia , Monoéster Fosfórico Hidrolases/metabolismo , Camundongos Knockout , Lactonas , Resorcinóis
10.
Ann Intern Med ; 177(5): JC50, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38710088

RESUMO

SOURCE CITATION: Chaudhuri D, Nei AM, Rochwerg B, et al. 2024 focused update: guidelines on use of corticosteroids in sepsis, acute respiratory distress syndrome, and community-acquired pneumonia. Crit Care Med. 2024;52:e219-e233. 38240492.


Assuntos
Corticosteroides , Infecções Comunitárias Adquiridas , Síndrome do Desconforto Respiratório , Sepse , Humanos , Síndrome do Desconforto Respiratório/tratamento farmacológico , Sepse/tratamento farmacológico , Corticosteroides/uso terapêutico , Infecções Comunitárias Adquiridas/tratamento farmacológico , Pneumonia/tratamento farmacológico , Adulto
11.
Sci Rep ; 14(1): 10477, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714743

RESUMO

Endothelial glycocalyx (eGC) covers the inner surface of the vessels and plays a role in vascular homeostasis. Syndecan is considered the "backbone" of this structure. Several studies have shown eGC shedding in sepsis and its involvement in organ dysfunction. Matrix metalloproteinases (MMP) contribute to eGC shedding through their ability for syndecan-1 cleavage. This study aimed to investigate if doxycycline, a potent MMP inhibitor, could protect against eGC shedding in lipopolysaccharide (LPS)-induced sepsis and if it could interrupt the vascular hyperpermeability, neutrophil transmigration, and microvascular impairment. Rats that received pretreatment with doxycycline before LPS displayed ultrastructural preservation of the eGC observed using transmission electronic microscopy of the lung and heart. In addition, these animals exhibited lower serum syndecan-1 levels, a biomarker of eGC injury, and lower perfused boundary region (PBR) in the mesenteric video capillaroscopy, which is inversely related to the eGC thickness compared with rats that only received LPS. Furthermore, this study revealed that doxycycline decreased sepsis-related vascular hyperpermeability in the lung and heart, reduced neutrophil transmigration in the peritoneal lavage and inside the lungs, and improved some microvascular parameters. These findings suggest that doxycycline protects against LPS-induced eGC shedding, and it could reduce vascular hyperpermeability, neutrophils transmigration, and microvascular impairment.


Assuntos
Doxiciclina , Glicocálix , Lipopolissacarídeos , Sepse , Glicocálix/metabolismo , Glicocálix/efeitos dos fármacos , Animais , Sepse/tratamento farmacológico , Sepse/metabolismo , Doxiciclina/farmacologia , Ratos , Masculino , Permeabilidade Capilar/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Sindecana-1/metabolismo , Ratos Wistar , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Inibidores de Metaloproteinases de Matriz/farmacologia
12.
Nat Commun ; 15(1): 4119, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750020

RESUMO

Sepsis results from systemic, dysregulated inflammatory responses to infection, culminating in multiple organ failure. Here, we demonstrate the utility of CD5L for treating experimental sepsis caused by cecal ligation and puncture (CLP). We show that CD5L's important features include its ability to enhance neutrophil recruitment and activation by increasing circulating levels of CXCL1, and to promote neutrophil phagocytosis. CD5L-deficient mice exhibit impaired neutrophil recruitment and compromised bacterial control, rendering them susceptible to attenuated CLP. CD5L-/- peritoneal cells from mice subjected to medium-grade CLP exhibit a heightened pro-inflammatory transcriptional profile, reflecting a loss of control of the immune response to the infection. Intravenous administration of recombinant CD5L (rCD5L) in immunocompetent C57BL/6 wild-type (WT) mice significantly ameliorates measures of disease in the setting of high-grade CLP-induced sepsis. Furthermore, rCD5L lowers endotoxin and damage-associated molecular pattern (DAMP) levels, and protects WT mice from LPS-induced endotoxic shock. These findings warrant the investigation of rCD5L as a possible treatment for sepsis in humans.


Assuntos
Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos , Sepse , Animais , Sepse/imunologia , Sepse/tratamento farmacológico , Camundongos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fagocitose , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/genética , Modelos Animais de Doenças , Masculino , Infiltração de Neutrófilos/efeitos dos fármacos , Ceco/cirurgia , Proteínas Recombinantes/uso terapêutico , Proteínas Recombinantes/administração & dosagem , Humanos , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Ligadura , Lipopolissacarídeos , Choque Séptico/imunologia
13.
J Emerg Med ; 66(5): e632-e641, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38704306

RESUMO

BACKGROUND: There is a lack of evidence-based guidelines for the administration methods of ceftriaxone in emergency departments (EDs), resulting in the reliance on individual institutional protocols for decision-making. OBJECTIVE: This study was performed to compare the effects of administering ceftriaxone via intravenous push (IVP) and intravenous piggyback (IVPB) on 28-day mortality in patients with sepsis. METHODS: This was a retrospective study of patients aged 18 years or older with sepsis or septic shock who visited an ED and were treated with ceftriaxone as an initial antibiotic between March 2010 and February 2019. Patients were divided into the IVP group and the IVPB group based on the administration method. The primary outcome was 28-day mortality, and multivariable Cox proportional hazards regression analysis was performed to evaluate the relationship between antibiotic administration methods and 28-day mortality. RESULTS: During the study period, a total of 939 patients were included in the final analysis, and the overall mortality rate was 12.2%. The antibiotic administration time was significantly lower in the IVP group than in the IVPB group, and the rates of antibiotic administration within 1 h and within 3 h were higher in the IVP group than in the IVPB group (p < 0.05). However, there was no significant difference in 28-day mortality between the two groups (hazard ratio 1.07, 95% confidence interval 0.69-1.65). CONCLUSIONS: IVP administration of ceftriaxone reduced the time of antibiotic administration compared with IVPB, but there was no difference in 28-day mortality.


Assuntos
Administração Intravenosa , Antibacterianos , Ceftriaxona , Serviço Hospitalar de Emergência , Sepse , Humanos , Ceftriaxona/uso terapêutico , Ceftriaxona/administração & dosagem , Estudos Retrospectivos , Masculino , Feminino , Antibacterianos/uso terapêutico , Antibacterianos/administração & dosagem , Sepse/tratamento farmacológico , Sepse/mortalidade , Pessoa de Meia-Idade , Idoso , Serviço Hospitalar de Emergência/organização & administração , Modelos de Riscos Proporcionais , Idoso de 80 Anos ou mais , Adulto
14.
Cytokine ; 179: 156637, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723454

RESUMO

Sepsis is understood as the result of initiating systemic inflammation derived from an inadequate host response against pathogens. In its acute phase, sepsis is marked by an exacerbated reaction to infection, tissue damage, organ failure, and metabolic dysfunction. Among these, hypoglycemia, characterized by disorders of the gluconeogenesis pathway, is related to one of the leading causes of mortality in septic patients. Recent research has investigated the involvement of sympathetic efferent neuroimmune pathways during systemic inflammation. These pathways can be stimulated by several centrally administered drugs, including Angiotensin-(1-7) (Ang-(1-7)). Therefore, the present study aims to evaluate the effects of central treatment with Ang-(1-7) on hypoglycemia during endotoxemia. For this, male Wistar Hannover rats underwent stereotaxic surgery for intracerebroventricular (i.c.v.) administration of Ang-(1-7) and cannulation of the jugular vein for lipopolysaccharide (LPS) injection. Our results demonstrate that LPS was capable of inducing hypoglycemia and that prior central treatment with Ang-(1-7) attenuated this effect. Our data also show that Ang-(1-7) reduced plasma concentrations of TNF-α, IL-1ß, IL-6, and nitric oxide, in addition to the decrease and increase of hepatic IL-6 and IL-10 respectively, in animals subjected to systemic inflammation by LPS, resulting in the reduction of systemic and hepatic inflammation, thus attenuating the deleterious effects of LPS on phosphoenolpyruvate carboxykinase protein content. In summary, the data suggest that central treatment with Ang-(1-7) attenuates hypoglycemia induced by endotoxemia, probably through anti-inflammatory action, leading to reestablishing hepatic gluconeogenesis.


Assuntos
Angiotensina I , Hipoglicemia , Lipopolissacarídeos , Fragmentos de Peptídeos , Ratos Wistar , Sepse , Animais , Angiotensina I/farmacologia , Masculino , Sepse/tratamento farmacológico , Sepse/metabolismo , Sepse/complicações , Fragmentos de Peptídeos/farmacologia , Hipoglicemia/tratamento farmacológico , Hipoglicemia/metabolismo , Ratos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Óxido Nítrico/metabolismo , Hepatite/tratamento farmacológico , Hepatite/metabolismo , Endotoxemia/tratamento farmacológico , Citocinas/metabolismo , Gluconeogênese/efeitos dos fármacos , Glicemia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
15.
J Agric Food Chem ; 72(15): 8460-8475, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564364

RESUMO

Liver injury and progressive liver failure are severe life-threatening complications in sepsis, further worsening the disease and leading to death. Macrophages and their mediated inflammatory cytokine storm are critical regulators in the occurrence and progression of liver injury in sepsis, for which effective treatments are still lacking. l-Ascorbic acid 6-palmitate (L-AP), a food additive, can inhibit neuroinflammation by modulating the phenotype of the microglia, but its pharmacological action in septic liver damage has not been fully explored. We aimed to investigate L-AP's antisepticemia action and the possible pharmacological mechanisms in attenuating septic liver damage by modulating macrophage function. We observed that L-AP treatment significantly increased survival in cecal ligation and puncture-induced WT mice and attenuated hepatic inflammatory injury, including the histopathology of the liver tissues, hepatocyte apoptosis, and the liver enzyme levels in plasma, which were comparable to NLRP3-deficiency in septic mice. L-AP supplementation significantly attenuated the excessive inflammatory response in hepatic tissues of septic mice in vivo and in cultured macrophages challenged by both LPS and ATP in vitro, by reducing the levels of NLRP3, pro-IL-1ß, and pro-IL-18 mRNA expression, as well as the levels of proteins for p-I-κB-α, p-NF-κB-p65, NLRP3, cleaved-caspase-1, IL-1ß, and IL-18. Additionally, it impaired the inflammasome ASC spot activation and reduced the inflammatory factor contents, including IL-1ß and IL-18 in plasma/cultured superannuants. It also prevented the infiltration/migration of macrophages and their M1-like inflammatory polarization while improving their M2-like polarization. Overall, our findings revealed that L-AP protected against sepsis by reducing macrophage activation and inflammatory cytokine production by suppressing their activation in NF-κB and NLRP3 inflammasome signal pathways in septic liver.


Assuntos
Inflamassomos , Sepse , Camundongos , Animais , Inflamassomos/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Caspase 1/genética , Caspase 1/metabolismo , Interleucina-18 , Ativação de Macrófagos , Transdução de Sinais , Fígado/metabolismo , Ácido Ascórbico , Sepse/complicações , Sepse/tratamento farmacológico , Lipopolissacarídeos/farmacologia
16.
AAPS J ; 26(3): 47, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622374

RESUMO

BACKGROUND: Sepsis-induced acute lung injury (ALI) is one of the serious life-threatening complications of sepsis and is pathologically associated with mitochondrial dysfunction. Ginsenoside Rg1 has good therapeutic effects on ALI. Herein, the pharmacological effects of Rg1 in sepsis-induced ALI were investigated. METHODS: Sepsis-induced ALI models were established by CLP operation and LPS treatment. HE staining was adopted to analyze lung pathological changes. The expression and secretion of cytokines were measured by RT-qPCR and ELISA. Cell viability and apoptosis were assessed by MTT assay, flow cytometry and TUNEL staining. ROS level and mitochondrial membrane potential (MMP) were analyzed using DHE probe and JC-1 staining, respectively. FBXO3 m6A level was assessed using MeRIP assay. The interactions between FBXO3, YTHDF1, and PGC-1α were analyzed by Co-IP or RIP. RESULTS: Rg1 administration ameliorated LPS-induced epithelial cell inflammation, apoptosis, and mitochondrial dysfunction in a dose-dependent manner. Mechanically, Rg1 reduced PGC-1α ubiquitination modification level by inhibiting FBXO3 expression m6A-YTHDF1 dependently. As expected, Rg1's mitigative effect on LPS-induced inflammation, apoptosis and mitochondrial dysfunction in lung epithelial cells was abolished by FBXO3 overexpression. Moreover, FBXO3 upregulation eliminated the restoring effect of Rg1 on CLP-induced lung injury in rats. CONCLUSION: Rg1 activated PGC-1α/Nrf2 signaling pathway by reducing FBXO3 stability in an m6A-YTHDF1-dependent manner to improve mitochondrial function in lung epithelial cells during sepsis-induced ALI progression.


Assuntos
Lesão Pulmonar Aguda , Ginsenosídeos , Doenças Mitocondriais , Sepse , Ratos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/uso terapêutico , Transdução de Sinais , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/complicações , Inflamação , Sepse/complicações , Sepse/tratamento farmacológico , Doenças Mitocondriais/complicações
17.
Immun Inflamm Dis ; 12(4): e1249, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38629726

RESUMO

BACKGROUND: Sepsis is perceived as lethal tissue damage and significantly increases mortality in combination with acute kidney injury (AKI). M2 macrophages play important roles in the secretion of anti-inflammatory and tissue repair mediators. We aimed to study the role of Dehydroandrographolide (Deh) in sepsis-associated AKI in vitro and in vivo through lipopolysaccharide (LPS)-induced macrophages model and cecal ligation and puncture-induced AKI mice model, and to reveal the mechanism related to M2 macrophage polarization. METHODS: Enzyme-linked immunosorbent assay kits were used to assess the levels of inflammatory factors. Expression of markers related to M1 macrophages and M2 macrophages were analyzed. Additionally, dual specificity phosphatase 3 (DUSP3) expression was tested. Cell apoptosis was evaluated by flow cytometry analysis and terminal-deoxynucleotidyl transferase-mediated nick end labeling staining. Moreover, renal histological assessment was performed by using hematoxylin and eosin staining. RESULTS: Deh reduced inflammation of THP-1-derived macrophages exposed to LPS. Besides, Deh induced the polarization of M1 macrophages to M2 and downregulated DUSP3 expression in THP-1-derived macrophages under LPS conditions. Further, DUSP3 overexpression reversed the impacts of Deh on the inflammation and M2 macrophages polarization of THP-1-derived macrophages stimulated by LPS. Additionally, human proximal tubular epithelial cells (HK-2) in the condition medium from DUSP3-overexpressed THP-1-derived macrophages treated with LPS and Deh displayed decreased viability and increased apoptosis and inflammation. The in vivo results suggested that Deh improved the renal function, ameliorated pathological injury, induced the polarization of M1 macrophages to M2, suppressed inflammation and apoptosis, and downregulated DUSP3 expression in sepsis-induced mice. CONCLUSION: Deh facilitated M2 macrophage polarization by downregulating DUSP3 to inhibit septic AKI.


Assuntos
Injúria Renal Aguda , Diterpenos , Sepse , Humanos , Camundongos , Animais , Fosfatase 3 de Especificidade Dupla/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Sepse/complicações , Sepse/tratamento farmacológico
18.
Behav Brain Res ; 466: 114995, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38599251

RESUMO

Neurodegenerative disorders have a pathophysiology that heavily involves neuroinflammation. In this study, we used lipopolysaccharide (LPS) to create a model of cognitive impairment by inducing systemic and neuroinflammation in experimental animals. LPS was injected intraperitoneally at a dose of 0.5 mg/kg during the last seven days of the study. Adalimumab (ADA), a TNF-α inhibitor, was injected at a dose of 10 mg/kg a total of 3 times throughout the study. On the last two days of the experiment, 50 mg/kg of curcumin was administered orally as a positive control group. Open field (OF) and elevated plus maze tests (EPM) were used to measure anxiety-like behaviors. The tail suspension test (TST) was used to measure depression-like behaviors, while the novel object recognition test (NOR) was used to measure learning and memory activities. Blood and hippocampal TNF α and nitric oxide (NO) levels, hippocampal BDNF, CREB, and ACh levels, and AChE activity were measured by ELISA. LPS increased anxiety and depression-like behaviors while decreasing the activity of the learning-memory system. LPS exerted this effect by causing systemic and neuroinflammation, cholinergic dysfunction, and impaired BDNF release. ADA controlled LPS-induced behavioral changes and improved biochemical markers. ADA prevented cognitive impairment induced by LPS by inhibiting inflammation and regulating the release of BDNF and the cholinergic pathway.


Assuntos
Acetilcolina , Fator Neurotrófico Derivado do Encéfalo , Disfunção Cognitiva , Doenças Neuroinflamatórias , Óxido Nítrico , Sepse , Fator de Necrose Tumoral alfa , Animais , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Camundongos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Óxido Nítrico/metabolismo , Masculino , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Acetilcolina/metabolismo , Sepse/complicações , Sepse/metabolismo , Sepse/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Adalimumab/farmacologia , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Modelos Animais de Doenças , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Ansiedade/etiologia , Homeostase/efeitos dos fármacos , Depressão/metabolismo , Depressão/tratamento farmacológico , Depressão/etiologia , Comportamento Animal/efeitos dos fármacos , Inibidores do Fator de Necrose Tumoral/farmacologia
19.
Braz J Cardiovasc Surg ; 39(3): e20230066, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569061

RESUMO

Microvasculature failure is expected in sepsis and at higher amine concentrations. Therefore, special attention focused individually on microcirculation is needed. Here, we present that methylene blue can prevent leukocytes from adhering to the endothelium in a rat model of lipopolysaccharide-induced endotoxemia. As hypothesis evidence, an intravital microscopy image is presented.


Assuntos
Sepse , Vasoplegia , Ratos , Animais , Azul de Metileno/farmacologia , Azul de Metileno/uso terapêutico , Vasoconstritores , Vasoplegia/tratamento farmacológico , Sepse/tratamento farmacológico , Microscopia Intravital
20.
BMC Pediatr ; 24(1): 245, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580931

RESUMO

BACKGROUND: Antibiotic use for early-onset sepsis represents a high percentage of antibiotic consumption in the neonatal setting. Measures to assess infants at risk of early-onset sepsis are needed to optimize antibiotic use. Our primary objective was to assess the impact of a departmental guideline on antibiotic use among term infants with suspected EOS not confirmed, in our neonatal unit. METHODS: Retrospective cohort study, to compare antibiotic use in term infants during a baseline period of January to December 2018, and a postintervention period from October 2019, to September 2020, respectively. The primary outcome was antibiotic use measured by days of therapy, the antibiotic spectrum index, the antibiotic use rate, and the length of therapy. RESULTS: We included 71 infants in the baseline period and 66 infants in the postintervention period. Compared to those in the baseline period, there was a significant reduction in overall antibiotic measures in the postintervention period, (P < 0.001). The total days of therapy/1000 patient-days decreased from 63/1000 patient-days during the baseline period to 25.8/1000 patient-days in the postintervention period, representing a relative reduction of 59%. The antibiotic use rate decreased by more than half of the infants, from 3.2% during the baseline period to 1.3% in the postintervention period. CONCLUSIONS: The use of a departmental guideline to assess infants at risk of early-onset sepsis based on their clinical condition and prompt discontinuation of antibiotics, is a simple and low-cost measure that contributed to an important decrease in antibiotic use.


Assuntos
Sepse Neonatal , Sepse , Recém-Nascido , Lactente , Humanos , Antibacterianos/uso terapêutico , Estudos Retrospectivos , Sepse/tratamento farmacológico , Sepse Neonatal/diagnóstico , Sepse Neonatal/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA