Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.966
Filtrar
1.
Nat Commun ; 15(1): 3839, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714659

RESUMO

Pre-mRNA splicing, a key process in gene expression, can be therapeutically modulated using various drug modalities, including antisense oligonucleotides (ASOs). However, determining promising targets is hampered by the challenge of systematically mapping splicing-regulatory elements (SREs) in their native sequence context. Here, we use the catalytically inactive CRISPR-RfxCas13d RNA-targeting system (dCas13d/gRNA) as a programmable platform to bind SREs and modulate splicing by competing against endogenous splicing factors. SpliceRUSH, a high-throughput screening method, was developed to map SREs in any gene of interest using a lentivirus gRNA library that tiles the genetic region, including distal intronic sequences. When applied to SMN2, a therapeutic target for spinal muscular atrophy, SpliceRUSH robustly identifies not only known SREs but also a previously unknown distal intronic SRE, which can be targeted to alter exon 7 splicing using either dCas13d/gRNA or ASOs. This technology enables a deeper understanding of splicing regulation with applications for RNA-based drug discovery.


Assuntos
Sistemas CRISPR-Cas , Éxons , Íntrons , Splicing de RNA , RNA Guia de Sistemas CRISPR-Cas , Proteína 2 de Sobrevivência do Neurônio Motor , Humanos , Splicing de RNA/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética , RNA Guia de Sistemas CRISPR-Cas/genética , Íntrons/genética , Éxons/genética , Células HEK293 , Oligonucleotídeos Antissenso/genética , Atrofia Muscular Espinal/genética , Sequências Reguladoras de Ácido Nucleico/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo
2.
BMC Bioinformatics ; 25(1): 179, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714913

RESUMO

BACKGROUND: As genomic studies continue to implicate non-coding sequences in disease, testing the roles of these variants requires insights into the cell type(s) in which they are likely to be mediating their effects. Prior methods for associating non-coding variants with cell types have involved approaches using linkage disequilibrium or ontological associations, incurring significant processing requirements. GaiaAssociation is a freely available, open-source software that enables thousands of genomic loci implicated in a phenotype to be tested for enrichment at regulatory loci of multiple cell types in minutes, permitting insights into the cell type(s) mediating the studied phenotype. RESULTS: In this work, we present Regulatory Landscape Enrichment Analysis (RLEA) by GaiaAssociation and demonstrate its capability to test the enrichment of 12,133 variants across the cis-regulatory regions of 44 cell types. This analysis was completed in 134.0 ± 2.3 s, highlighting the efficient processing provided by GaiaAssociation. The intuitive interface requires only four inputs, offers a collection of customizable functions, and visualizes variant enrichment in cell-type regulatory regions through a heatmap matrix. GaiaAssociation is available on PyPi for download as a command line tool or Python package and the source code can also be installed from GitHub at https://github.com/GreallyLab/gaiaAssociation . CONCLUSIONS: GaiaAssociation is a novel package that provides an intuitive and efficient resource to understand the enrichment of non-coding variants across the cis-regulatory regions of different cells, empowering studies seeking to identify disease-mediating cell types.


Assuntos
Software , Variação Genética , Humanos , Genômica/métodos , Biologia Computacional/métodos , Fenótipo , Sequências Reguladoras de Ácido Nucleico/genética , Desequilíbrio de Ligação
3.
Nat Commun ; 15(1): 3699, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698035

RESUMO

In silico identification of viral anti-CRISPR proteins (Acrs) has relied largely on the guilt-by-association method using known Acrs or anti-CRISPR associated proteins (Acas) as the bait. However, the low number and limited spread of the characterized archaeal Acrs and Aca hinders our ability to identify Acrs using guilt-by-association. Here, based on the observation that the few characterized archaeal Acrs and Aca are transcribed immediately post viral infection, we hypothesize that these genes, and many other unidentified anti-defense genes (ADG), are under the control of conserved regulatory sequences including a strong promoter, which can be used to predict anti-defense genes in archaeal viruses. Using this consensus sequence based method, we identify 354 potential ADGs in 57 archaeal viruses and 6 metagenome-assembled genomes. Experimental validation identified a CRISPR subtype I-A inhibitor and the first virally encoded inhibitor of an archaeal toxin-antitoxin based immune system. We also identify regulatory proteins potentially akin to Acas that can facilitate further identification of ADGs combined with the guilt-by-association approach. These results demonstrate the potential of regulatory sequence analysis for extensive identification of ADGs in viruses of archaea and bacteria.


Assuntos
Archaea , Vírus de Archaea , Vírus de Archaea/genética , Archaea/genética , Archaea/virologia , Archaea/imunologia , Regiões Promotoras Genéticas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Proteínas Virais/genética , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Metagenoma/genética , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética
4.
Sci Rep ; 14(1): 10078, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698030

RESUMO

Comparative analyses between traditional model organisms, such as the fruit fly Drosophila melanogaster, and more recent model organisms, such as the red flour beetle Tribolium castaneum, have provided a wealth of insight into conserved and diverged aspects of gene regulation. While the study of trans-regulatory components is relatively straightforward, the study of cis-regulatory elements (CREs, or enhancers) remains challenging outside of Drosophila. A central component of this challenge has been finding a core promoter suitable for enhancer-reporter assays in diverse insect species. Previously, we demonstrated that a Drosophila Synthetic Core Promoter (DSCP) functions in a cross-species manner in Drosophila and Tribolium. Given the over 300 million years of divergence between the Diptera and Coleoptera, we reasoned that DSCP-based reporter constructs will be useful when studying cis-regulation in a variety of insect models across the holometabola and possibly beyond. To this end, we sought to create a suite of new DSCP-based reporter vectors, leveraging dual compatibility with piggyBac and PhiC31-integration, the 3xP3 universal eye marker, GATEWAY cloning, different colors of reporters and markers, as well as Gal4-UAS binary expression. While all constructs functioned properly with a Tc-nub enhancer in Drosophila, complications arose with tissue-specific Gal4-UAS binary expression in Tribolium. Nevertheless, the functionality of these constructs across multiple holometabolous orders suggests a high potential compatibility with a variety of other insects. In addition, we present the piggyLANDR (piggyBac-LoxP AttP Neutralizable Destination Reporter) platform for the establishment of proper PhiC31 landing sites free from position effects. As a proof-of-principle, we demonstrated the workflow for piggyLANDR in Drosophila. The potential utility of these tools ranges from molecular biology research to pest and disease-vector management, and will help advance the study of gene regulation beyond traditional insect models.


Assuntos
Drosophila melanogaster , Genes Reporter , Vetores Genéticos , Regiões Promotoras Genéticas , Tribolium , Animais , Vetores Genéticos/genética , Tribolium/genética , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos , Sequências Reguladoras de Ácido Nucleico/genética , Insetos/genética , Animais Geneticamente Modificados
5.
Mol Biol Rep ; 51(1): 612, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704770

RESUMO

BACKGROUND: The α-Major Regulatory Element (α-MRE), also known as HS-40, is located upstream of the α-globin gene cluster and has a crucial role in the long-range regulation of the α-globin gene expression. This enhancer is polymorphic and several haplotypes were identified in different populations, with haplotype D almost exclusively found in African populations. The purpose of this research was to identify the HS-40 haplotype associated with the 3.7 kb α-thalassemia deletion (-α3.7del) in the Portuguese population, and determine its ancestry and influence on patients' hematological phenotype. METHODS AND RESULTS: We selected 111 Portuguese individuals previously analyzed by Gap-PCR to detect the presence of the -α3.7del: 50 without the -α3.7del, 34 heterozygous and 27 homozygous for the -α3.7del. The HS-40 region was amplified by PCR followed by Sanger sequencing. Four HS-40 haplotypes were found (A to D). The distribution of HS-40 haplotypes and genotypes are significantly different between individuals with and without the -α3.7del, being haplotype D and genotype AD the most prevalent in patients with this deletion in homozygosity. Furthermore, multiple correspondence analysis revealed that individuals without the -α3.7del are grouped with other European populations, while samples with the -α3.7del are separated from these and found more closely related to the African population. CONCLUSION: This study revealed for the first time an association of the HS-40 haplotype D with the -α3.7del in the Portuguese population, and its likely African ancestry. These results may have clinical importance as in vitro analysis of haplotype D showed a decrease in its enhancer activity on α-globin gene.


Assuntos
Haplótipos , Deleção de Sequência , alfa-Globinas , Talassemia alfa , Feminino , Humanos , Masculino , alfa-Globinas/genética , Talassemia alfa/genética , População Negra/genética , Frequência do Gene/genética , Genótipo , Haplótipos/genética , Portugal , Sequências Reguladoras de Ácido Nucleico/genética , Deleção de Sequência/genética
7.
Sci Adv ; 10(21): eadj4452, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781344

RESUMO

Most genetic variants associated with psychiatric disorders are located in noncoding regions of the genome. To investigate their functional implications, we integrate epigenetic data from the PsychENCODE Consortium and other published sources to construct a comprehensive atlas of candidate brain cis-regulatory elements. Using deep learning, we model these elements' sequence syntax and predict how binding sites for lineage-specific transcription factors contribute to cell type-specific gene regulation in various types of glia and neurons. The elements' evolutionary history suggests that new regulatory information in the brain emerges primarily via smaller sequence mutations within conserved mammalian elements rather than entirely new human- or primate-specific sequences. However, primate-specific candidate elements, particularly those active during fetal brain development and in excitatory neurons and astrocytes, are implicated in the heritability of brain-related human traits. Additionally, we introduce PsychSCREEN, a web-based platform offering interactive visualization of PsychENCODE-generated genetic and epigenetic data from diverse brain cell types in individuals with psychiatric disorders and healthy controls.


Assuntos
Encéfalo , Epigênese Genética , Sequências Reguladoras de Ácido Nucleico , Humanos , Encéfalo/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Evolução Molecular , Transtornos Mentais/genética , Elementos Reguladores de Transcrição/genética , Neurônios/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Cell Genom ; 4(4): 100536, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604126

RESUMO

Gene regulatory divergence between species can result from cis-acting local changes to regulatory element DNA sequences or global trans-acting changes to the regulatory environment. Understanding how these mechanisms drive regulatory evolution has been limited by challenges in identifying trans-acting changes. We present a comprehensive approach to directly identify cis- and trans-divergent regulatory elements between human and rhesus macaque lymphoblastoid cells using assay for transposase-accessible chromatin coupled to self-transcribing active regulatory region (ATAC-STARR) sequencing. In addition to thousands of cis changes, we discover an unexpected number (∼10,000) of trans changes and show that cis and trans elements exhibit distinct patterns of sequence divergence and function. We further identify differentially expressed transcription factors that underlie ∼37% of trans differences and trace how cis changes can produce cascades of trans changes. Overall, we find that most divergent elements (67%) experienced changes in both cis and trans, revealing a substantial role for trans divergence-alone and together with cis changes-in regulatory differences between species.


Assuntos
Regulação da Expressão Gênica , Sequências Reguladoras de Ácido Nucleico , Animais , Humanos , Macaca mulatta/genética , Sequências Reguladoras de Ácido Nucleico/genética , Regulação da Expressão Gênica/genética , Fatores de Transcrição/genética , Cromatina/genética
9.
Nat Commun ; 15(1): 3488, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664394

RESUMO

Elucidating the relationship between non-coding regulatory element sequences and gene expression is crucial for understanding gene regulation and genetic variation. We explored this link with the training of interpretable deep learning models predicting gene expression profiles from gene flanking regions of the plant species Arabidopsis thaliana, Solanum lycopersicum, Sorghum bicolor, and Zea mays. With over 80% accuracy, our models enabled predictive feature selection, highlighting e.g. the significant role of UTR regions in determining gene expression levels. The models demonstrated remarkable cross-species performance, effectively identifying both conserved and species-specific regulatory sequence features and their predictive power for gene expression. We illustrated the application of our approach by revealing causal links between genetic variation and gene expression changes across fourteen tomato genomes. Lastly, our models efficiently predicted genotype-specific expression of key functional gene groups, exemplified by underscoring known phenotypic and metabolic differences between Solanum lycopersicum and its wild, drought-resistant relative, Solanum pennellii.


Assuntos
Arabidopsis , Aprendizado Profundo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum , Sorghum , Zea mays , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Sorghum/genética , Sorghum/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Zea mays/genética , Sequências Reguladoras de Ácido Nucleico/genética , Genoma de Planta , Variação Genética , Especificidade da Espécie
10.
Nature ; 629(8010): 127-135, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658750

RESUMO

Phenotypic variation among species is a product of evolutionary changes to developmental programs1,2. However, how these changes generate novel morphological traits remains largely unclear. Here we studied the genomic and developmental basis of the mammalian gliding membrane, or patagium-an adaptative trait that has repeatedly evolved in different lineages, including in closely related marsupial species. Through comparative genomic analysis of 15 marsupial genomes, both from gliding and non-gliding species, we find that the Emx2 locus experienced lineage-specific patterns of accelerated cis-regulatory evolution in gliding species. By combining epigenomics, transcriptomics and in-pouch marsupial transgenics, we show that Emx2 is a critical upstream regulator of patagium development. Moreover, we identify different cis-regulatory elements that may be responsible for driving increased Emx2 expression levels in gliding species. Lastly, using mouse functional experiments, we find evidence that Emx2 expression patterns in gliders may have been modified from a pre-existing program found in all mammals. Together, our results suggest that patagia repeatedly originated through a process of convergent genomic evolution, whereby regulation of Emx2 was altered by distinct cis-regulatory elements in independently evolved species. Thus, different regulatory elements targeting the same key developmental gene may constitute an effective strategy by which natural selection has harnessed regulatory evolution in marsupial genomes to generate phenotypic novelty.


Assuntos
Evolução Molecular , Proteínas de Homeodomínio , Locomoção , Marsupiais , Fatores de Transcrição , Animais , Feminino , Masculino , Camundongos , Epigenômica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genoma/genética , Genômica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Locomoção/genética , Marsupiais/anatomia & histologia , Marsupiais/classificação , Marsupiais/genética , Marsupiais/crescimento & desenvolvimento , Filogenia , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fenótipo , Humanos
11.
Cell Rep ; 43(4): 113983, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38517895

RESUMO

Transcriptional silencing in Saccharomyces cerevisiae involves the generation of a chromatin state that stably represses transcription. Using multiple reporter assays, a diverse set of upstream activating sequence enhancers and core promoters were investigated for their susceptibility to silencing. We show that heterochromatin stably silences only weak and stress-induced regulatory elements but is unable to stably repress housekeeping gene regulatory elements, and the partial repression of these elements did not result in bistable expression states. Permutation analysis of enhancers and promoters indicates that both elements are targets of repression. Chromatin remodelers help specific regulatory elements to resist repression, most probably by altering nucleosome mobility and changing transcription burst duration. The strong enhancers/promoters can be repressed if silencer-bound Sir1 is increased. Together, our data suggest that the heterochromatic locus has been optimized to stably silence the weak mating-type gene regulatory elements but not strong housekeeping gene regulatory sequences.


Assuntos
Regulação Fúngica da Expressão Gênica , Inativação Gênica , Heterocromatina , Regiões Promotoras Genéticas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Heterocromatina/metabolismo , Heterocromatina/genética , Regiões Promotoras Genéticas/genética , Elementos Facilitadores Genéticos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Sequências Reguladoras de Ácido Nucleico/genética , Nucleossomos/metabolismo , Nucleossomos/genética
12.
Sci Rep ; 14(1): 7370, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548819

RESUMO

Class switch recombination (CSR) plays an important role in adaptive immune response by enabling mature B cells to replace the initial IgM by another antibody class (IgG, IgE or IgA). CSR is preceded by transcription of the IgH constant genes and is controlled by the super-enhancer 3' regulatory region (3'RR) in an activation-specific manner. The 3'RR is composed of four enhancers (hs3a, hs1-2, hs3b and hs4). In mature B cells, 3'RR activity correlates with transcription of its enhancers. CSR can also occur in primary developing B cells though at low frequency, but in contrast to mature B cells, the transcriptional elements that regulate the process in developing B cells are ill-known. In particular, the role of the 3'RR in the control of constant genes' transcription and CSR has not been addressed. Here, by using a mouse line devoid of the 3'RR and a culture system that highly enriches in pro-B cells, we show that the 3'RR activity is indeed required for switch transcription and CSR, though its effect varies in an isotype-specific manner and correlates with transcription of hs4 enhancer only.


Assuntos
Cadeias Pesadas de Imunoglobulinas , Super Intensificadores , Cadeias Pesadas de Imunoglobulinas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Switching de Imunoglobulina/genética , Linfócitos B , Isotipos de Imunoglobulinas/genética , Elementos Facilitadores Genéticos
13.
PLoS Genet ; 20(3): e1011174, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38437180

RESUMO

A striking paradox is that genes with conserved protein sequence, function and expression pattern over deep time often exhibit extremely divergent cis-regulatory sequences. It remains unclear how such drastic cis-regulatory evolution across species allows preservation of gene function, and to what extent these differences influence how cis-regulatory variation arising within species impacts phenotypic change. Here, we investigated these questions using a plant stem cell regulator conserved in expression pattern and function over ~125 million years. Using in-vivo genome editing in two distantly related models, Arabidopsis thaliana (Arabidopsis) and Solanum lycopersicum (tomato), we generated over 70 deletion alleles in the upstream and downstream regions of the stem cell repressor gene CLAVATA3 (CLV3) and compared their individual and combined effects on a shared phenotype, the number of carpels that make fruits. We found that sequences upstream of tomato CLV3 are highly sensitive to even small perturbations compared to its downstream region. In contrast, Arabidopsis CLV3 function is tolerant to severe disruptions both upstream and downstream of the coding sequence. Combining upstream and downstream deletions also revealed a different regulatory outcome. Whereas phenotypic enhancement from adding downstream mutations was predominantly weak and additive in tomato, mutating both regions of Arabidopsis CLV3 caused substantial and synergistic effects, demonstrating distinct distribution and redundancy of functional cis-regulatory sequences. Our results demonstrate remarkable malleability in cis-regulatory structural organization of a deeply conserved plant stem cell regulator and suggest that major reconfiguration of cis-regulatory sequence space is a common yet cryptic evolutionary force altering genotype-to-phenotype relationships from regulatory variation in conserved genes. Finally, our findings underscore the need for lineage-specific dissection of the spatial architecture of cis-regulation to effectively engineer trait variation from conserved productivity genes in crops.


Assuntos
Arabidopsis , Arabidopsis/genética , Sequências Reguladoras de Ácido Nucleico/genética , Produtos Agrícolas , Alelos , Sequência de Aminoácidos
14.
Nat Commun ; 15(1): 1600, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383453

RESUMO

Cross-species genome comparisons have revealed a substantial number of ultraconserved non-coding elements (UCNEs). Several of these elements have proved to be essential tissue- and cell type-specific cis-regulators of developmental gene expression. Here, we characterize a set of UCNEs as candidate CREs (cCREs) during retinal development and evaluate the contribution of their genomic variation to rare eye diseases, for which pathogenic non-coding variants are emerging. Integration of bulk and single-cell retinal multi-omics data reveals 594 genes under potential cis-regulatory control of UCNEs, of which 45 are implicated in rare eye disease. Mining of candidate cis-regulatory UCNEs in WGS data derived from the rare eye disease cohort of Genomics England reveals 178 ultrarare variants within 84 UCNEs associated with 29 disease genes. Overall, we provide a comprehensive annotation of ultraconserved non-coding regions acting as cCREs during retinal development which can be targets of non-coding variation underlying rare eye diseases.


Assuntos
Oftalmopatias , Multiômica , Humanos , Retina/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Genoma , Oftalmopatias/genética , Oftalmopatias/metabolismo
15.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339181

RESUMO

The concept of cis-regulatory modules located in gene promoters represents today's vision of the organization of gene transcriptional regulation. Such modules are a combination of two or more single, short DNA motifs. The bioinformatic identification of such modules belongs to so-called NP-hard problems with extreme computational complexity, and therefore, simplifications, assumptions, and heuristics are usually deployed to tackle the problem. In practice, this requires, first, many parameters to be set before the search, and second, it leads to the identification of locally optimal results. Here, a novel method is presented, aimed at identifying the cis-regulatory elements in gene promoters based on an exhaustive search of all the feasible modules' configurations. All required parameters are automatically estimated using positive and negative datasets. To be computationally efficient, the search is accelerated using a multidimensional hash function, allowing the search to complete in a few hours on a regular laptop (for example, a CPU Intel i7, 3.2 GH, 32 Gb RAM). Tests on an established benchmark and real data show better performance of BestCRM compared to the available methods according to several metrics like specificity, sensitivity, AUC, etc. A great practical advantage of the method is its minimum number of input parameters-apart from positive and negative promoters, only a desired level of module presence in promoters is required.


Assuntos
Algoritmos , Sequências Reguladoras de Ácido Nucleico , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico/genética , Regulação da Expressão Gênica , Biologia Computacional/métodos
17.
Am J Hum Genet ; 111(2): 259-279, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38232730

RESUMO

Tauopathies are a group of neurodegenerative diseases defined by abnormal aggregates of tau, a microtubule-associated protein encoded by MAPT. MAPT expression is near absent in neural progenitor cells (NPCs) and increases during differentiation. This temporally dynamic expression pattern suggests that MAPT expression could be controlled by transcription factors and cis-regulatory elements specific to differentiated cell types. Given the relevance of MAPT expression to neurodegeneration pathogenesis, identification of such elements is relevant to understanding disease risk and pathogenesis. Here, we performed chromatin conformation assays (HiC & Capture-C), single-nucleus multiomics (RNA-seq+ATAC-seq), bulk ATAC-seq, and ChIP-seq for H3K27ac and CTCF in NPCs and differentiated neurons to nominate candidate cis-regulatory elements (cCREs). We assayed these cCREs using luciferase assays and CRISPR interference (CRISPRi) experiments to measure their effects on MAPT expression. Finally, we integrated cCRE annotations into an analysis of genetic variation in neurodegeneration-affected individuals and control subjects. We identified both proximal and distal regulatory elements for MAPT and confirmed the regulatory function for several regions, including three regions centromeric to MAPT beyond the H1/H2 haplotype inversion breakpoint. We also found that rare and predicted damaging genetic variation in nominated CREs was nominally depleted in dementia-affected individuals relative to control subjects, consistent with the hypothesis that variants that disrupt MAPT enhancer activity, and thereby reduced MAPT expression, may be protective against neurodegenerative disease. Overall, this study provides compelling evidence for pursuing detailed knowledge of CREs for genes of interest to permit better understanding of disease risk.


Assuntos
Doenças Neurodegenerativas , Proteínas tau , Humanos , Cromatina/genética , Haplótipos , Doenças Neurodegenerativas/genética , Neurônios , Sequências Reguladoras de Ácido Nucleico/genética , Proteínas tau/genética
18.
Am J Hum Genet ; 111(2): 350-363, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38237594

RESUMO

Our ability to determine the clinical impact of variants in 3' untranslated regions (UTRs) of genes remains poor. We provide a thorough analysis of 3' UTR variants from several datasets. Variants in putative regulatory elements, including RNA-binding protein motifs, eCLIP peaks, and microRNA sites, are up to 16 times more likely than variants not in these elements to have gene expression and phenotype associations. Variants in regulatory motifs result in allele-specific protein binding in cell lines and allele-specific gene expression differences in population studies. In addition, variants in shared regions of alternatively polyadenylated isoforms and those proximal to polyA sites are more likely to affect gene expression and phenotype. Finally, pathogenic 3' UTR variants in ClinVar are up to 20 times more likely than benign variants to fall in a regulatory site. We incorporated these findings into RegVar, a software tool that interprets regulatory elements and annotations for any 3' UTR variant and predicts whether the variant is likely to affect gene expression or phenotype. This tool will help prioritize variants for experimental studies and identify pathogenic variants in individuals.


Assuntos
MicroRNAs , Humanos , Regiões 3' não Traduzidas/genética , MicroRNAs/genética , Sequências Reguladoras de Ácido Nucleico/genética , Linhagem Celular , Ligação Proteica
19.
Plant Physiol ; 194(4): 2240-2248, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38060616

RESUMO

Mutations in cis-regulatory regions play an important role in the domestication and improvement of crops by altering gene expression. However, assessing the in vivo impact of cis-regulatory elements (CREs) on transcriptional regulation and phenotypic outcomes remains challenging. Previously, we showed that the dominant Barren inflorescence3 (Bif3) mutant of maize (Zea mays) contains a duplicated copy of the homeobox transcription factor gene ZmWUSCHEL1 (ZmWUS1), named ZmWUS1-B. ZmWUS1-B is controlled by a spontaneously generated novel promoter region that dramatically increases its expression and alters patterning and development of young ears. Overexpression of ZmWUS1-B is caused by a unique enhancer region containing multimerized binding sites for type B RESPONSE REGULATORs (RRs), key transcription factors in cytokinin signaling. To better understand how the enhancer increases the expression of ZmWUS1 in vivo, we specifically targeted the ZmWUS1-B enhancer region by CRISPR-Cas9-mediated editing. A series of deletion events with different numbers of type B RR DNA binding motifs (AGATAT) enabled us to determine how the number of AGATAT motifs impacts in vivo expression of ZmWUS1-B and consequently ear development. In combination with dual-luciferase assays in maize protoplasts, our analysis reveals that AGATAT motifs have an additive effect on ZmWUS1-B expression, while the distance separating AGATAT motifs does not appear to have a meaningful impact, indicating that the enhancer activity derives from the sum of individual CREs. These results also suggest that in maize inflorescence development, there is a threshold of buffering capacity for ZmWUS1 overexpression.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Sítios de Ligação , Elementos Facilitadores Genéticos/genética
20.
Nature ; 625(7993): 41-50, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38093018

RESUMO

Gene expression is regulated by transcription factors that work together to read cis-regulatory DNA sequences. The 'cis-regulatory code' - how cells interpret DNA sequences to determine when, where and how much genes should be expressed - has proven to be exceedingly complex. Recently, advances in the scale and resolution of functional genomics assays and machine learning have enabled substantial progress towards deciphering this code. However, the cis-regulatory code will probably never be solved if models are trained only on genomic sequences; regions of homology can easily lead to overestimation of predictive performance, and our genome is too short and has insufficient sequence diversity to learn all relevant parameters. Fortunately, randomly synthesized DNA sequences enable testing a far larger sequence space than exists in our genomes, and designed DNA sequences enable targeted queries to maximally improve the models. As the same biochemical principles are used to interpret DNA regardless of its source, models trained on these synthetic data can predict genomic activity, often better than genome-trained models. Here we provide an outlook on the field, and propose a roadmap towards solving the cis-regulatory code by a combination of machine learning and massively parallel assays using synthetic DNA.


Assuntos
Genômica , Aprendizado de Máquina , Modelos Genéticos , Sequências Reguladoras de Ácido Nucleico , DNA/síntese química , DNA/genética , DNA/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA