Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.673
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1368923, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694516

RESUMO

Introduction: Diagnosing Mycoplasma faucium poses challenges, and it's unclear if its rare isolation is due to infrequent occurrence or its fastidious nutritional requirements. Methods: This study analyzes the complete genome sequence of M. faucium, obtained directly from the pus of a sternum infection in a lung transplant patient using metagenomic sequencing. Results: Genome analysis revealed limited therapeutic options for the M. faucium infection, primarily susceptibility to tetracyclines. Three classes of mobile genetic elements were identified: two new insertion sequences, a new prophage (phiUMCG-1), and a species-specific variant of a mycoplasma integrative and conjugative element (MICE). Additionally, a Type I Restriction-Modification system was identified, featuring 5'-terminally truncated hsdS pseudogenes with overlapping repeats, indicating the potential for forming alternative hsdS variants through recombination. Conclusion: This study represents the first-ever acquisition of a complete circularized bacterial genome directly from a patient sample obtained from invasive infection of a primary sterile site using culture-independent, PCR-free clinical metagenomics.


Assuntos
Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Mycoplasma , Humanos , Metagenômica/métodos , Mycoplasma/genética , Mycoplasma/isolamento & purificação , Mycoplasma/classificação , Infecções por Mycoplasma/microbiologia , Infecções por Mycoplasma/diagnóstico , Sequenciamento Completo do Genoma/métodos , Transplante de Pulmão , Prófagos/genética , Sequências Repetitivas Dispersas/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
2.
Environ Microbiol ; 26(4): e16630, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38643972

RESUMO

Horizontal gene transfer (HGT) is a fundamental process in prokaryotic evolution, contributing significantly to diversification and adaptation. HGT is typically facilitated by mobile genetic elements (MGEs), such as conjugative plasmids and phages, which often impose fitness costs on their hosts. However, a considerable number of bacterial genes are involved in defence mechanisms that limit the propagation of MGEs, suggesting they may actively restrict HGT. In our study, we investigated whether defence systems limit HGT by examining the relationship between the HGT rate and the presence of 73 defence systems across 12 bacterial species. We discovered that only six defence systems, three of which were different CRISPR-Cas subtypes, were associated with a reduced gene gain rate at the species evolution scale. Hosts of these defence systems tend to have a smaller pangenome size and fewer phage-related genes compared to genomes without these systems. This suggests that these defence mechanisms inhibit HGT by limiting prophage integration. We hypothesize that the restriction of HGT by defence systems is species-specific and depends on various ecological and genetic factors, including the burden of MGEs and the fitness effect of HGT in bacterial populations.


Assuntos
Bactérias , Transferência Genética Horizontal , Transferência Genética Horizontal/genética , Bactérias/classificação , Bactérias/genética , Sequências Repetitivas Dispersas/genética , Sistemas CRISPR-Cas/genética , Lisogenia/genética , Especificidade da Espécie , Evolução Molecular
3.
J Hazard Mater ; 471: 134353, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38678707

RESUMO

Aquatic microplastics (MPs) act as reservoirs for microbial communities, fostering the formation of a mobile resistome encompassing diverse antibiotic (ARGs) and biocide/metal resistance genes (BMRGs), and mobile genetic elements (MGEs). This collective genetic repertoire, referred to as the "plastiome," can potentially perpetuate environmental antimicrobial resistance (AMR). Our study examining two Japanese rivers near Tokyo revealed that waterborne MPs are primarily composed of polyethylene and polypropylene fibers and sheets of diverse origin. Clinically important genera like Exiguobacterium and Eubacterium were notably enriched on MPs. Metagenomic analysis uncovered a 3.46-fold higher enrichment of ARGs on MPs than those in water, with multidrug resistance genes (MDRGs) and BMRGs prevailing, particularly within MPs. Specific ARG and BMRG subtypes linked to resistance to vancomycin, beta-lactams, biocides, arsenic, and mercury showed selective enrichment on MPs. Network analysis revealed intense associations between host genera with ARGs, BMRGs, and MGEs on MPs, emphasizing their role in coselection. In contrast, river water exhibited weaker associations. This study underscores the complex interactions shaping the mobile plastiome in aquatic environments and emphasizes the global imperative for research to comprehend and effectively control AMR within the One Health framework.


Assuntos
Microplásticos , Rios , Rios/microbiologia , Rios/química , Microplásticos/toxicidade , Antibacterianos/farmacologia , Poluentes Químicos da Água/toxicidade , Bactérias/genética , Bactérias/efeitos dos fármacos , Microbiologia da Água , Sequências Repetitivas Dispersas , Genes Bacterianos , Farmacorresistência Bacteriana/genética , Desinfetantes/farmacologia , Microbiota/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética
4.
J Hazard Mater ; 471: 134344, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38678706

RESUMO

More information is needed to fully comprehend how acid mine drainage (AMD) affects the phototransformation of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in karst water and sewage-irrigated farmland soil with abundant carbonate rocks (CaCO3) due to increasing pollution of AMD formed from pyrite (FeS2). The results showed FeS2 accelerated the inactivation of ARB with an inactivation of 8.7 log. Notably, extracellular and intracellular ARGs and mobile genetic elements (MGEs) also experienced rapid degradation. Additionally, the pH of the solution buffered by CaCO3 significantly influenced the photo-inactivation of ARB. The Fe2+ in neutral solution was present in Fe(II) coordination with strong reducing potential and played a crucial role in generating •OH (7.0 µM), which caused severe damage to ARB, ARGs, and MGEs. The •OH induced by photo-Fenton of FeS2 posed pressure to ARB, promoting oxidative stress response and increasing generation of reactive oxygen species (ROS), ultimately damaging cell membranes, proteins and DNA. Moreover, FeS2 contributed to a decrease in MIC of ARB from 24 mg/L to 4 mg/L. These findings highlight the importance of AMD in influencing karst water and sewage-irrigated farmland soil ecosystems. They are also critical in advancing the utilization of FeS2 to inactivate pathogenic bacteria.


Assuntos
Carbonato de Cálcio , Ferro , Mineração , Sulfetos , Carbonato de Cálcio/química , Ferro/química , Sulfetos/química , Sequências Repetitivas Dispersas , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Bactérias/efeitos dos fármacos , Genes Bacterianos , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia
5.
Sci Total Environ ; 926: 172115, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38569972

RESUMO

Manure composting in traditional small-scale pig farms leads to the migration and diffusion of antibiotics and antibiotics resistance genes (ARGs) along the chain of transmission to the surrounding environment, increasing the risk of environmental resistance. Understanding the transmission patterns, driving factors, and health risks of ARGs on small-scale pig farms is important for effective control of ARGs transmission. This study was conducted on a small pig farm and its surrounding environment. The cross-media transmission of ARGs and their risks in the farming habitat were investigated using Metagenomic annotation and qPCR quantitative detection. The results indicate that ARGs in farms spread with manure pile-soil-channel sediment-mudflat sediment. Pig farm manure contributed 22.49 % of the mudflat sediment ARGs. Mobile genetic elements mediate the spread of ARGs across different media. Among them, tnpA and IS26 have the highest degree. Transmission of high-risk ARGs sul1 and tetM resulted in a 50 % and 116 % increase in host risk for sediment, respectively. This study provides a basis for farm manure management and control of the ARGs spread.


Assuntos
Antibacterianos , Genes Bacterianos , Animais , Suínos , Fazendas , Antibacterianos/farmacologia , Esterco/análise , Resistência Microbiana a Medicamentos/genética , Sequências Repetitivas Dispersas
6.
Nat Commun ; 15(1): 3477, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658529

RESUMO

Streptococcus dysgalactiae subspecies equisimilis (SDSE) and Streptococcus pyogenes share skin and throat niches with extensive genomic homology and horizontal gene transfer (HGT) possibly underlying shared disease phenotypes. It is unknown if cross-species transmission interaction occurs. Here, we conduct a genomic analysis of a longitudinal household survey in remote Australian First Nations communities for patterns of cross-species transmission interaction and HGT. Collected from 4547 person-consultations, we analyse 294 SDSE and 315 S. pyogenes genomes. We find SDSE and S. pyogenes transmission intersects extensively among households and show that patterns of co-occurrence and transmission links are consistent with independent transmission without inter-species interference. We identify at least one of three near-identical cross-species mobile genetic elements (MGEs) carrying antimicrobial resistance or streptodornase virulence genes in 55 (19%) SDSE and 23 (7%) S. pyogenes isolates. These findings demonstrate co-circulation of both pathogens and HGT in communities with a high burden of streptococcal disease, supporting a need to integrate SDSE and S. pyogenes surveillance and control efforts.


Assuntos
Transferência Genética Horizontal , Sequências Repetitivas Dispersas , Infecções Estreptocócicas , Streptococcus pyogenes , Streptococcus , Streptococcus pyogenes/genética , Streptococcus pyogenes/isolamento & purificação , Streptococcus pyogenes/classificação , Infecções Estreptocócicas/transmissão , Infecções Estreptocócicas/microbiologia , Humanos , Streptococcus/genética , Streptococcus/isolamento & purificação , Sequências Repetitivas Dispersas/genética , Austrália , Genoma Bacteriano/genética , Feminino , Masculino , Criança , Características da Família , Adulto , Pré-Escolar , Adolescente , Estudos Longitudinais , Farmacorresistência Bacteriana/genética , Adulto Jovem
7.
PLoS One ; 19(4): e0301642, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683832

RESUMO

Horizontal gene transfer (HGT) is a well-documented strategy used by bacteria to enhance their adaptability to challenging environmental conditions. Through HGT, a group of conserved genetic elements known as mobile genetic elements (MGEs) is disseminated within bacterial communities. MGEs offer numerous advantages to the host, increasing its fitness by acquiring new functions that help bacteria contend with adverse conditions, including exposure to heavy metal and antibiotics. This study explores MGEs within microbial communities along the Yucatan coast using a metatranscriptomics approach. Prior to this research, nothing was known about the coastal Yucatan's microbial environmental mobilome and HGT processes between these bacterial communities. This study reveals a positive correlation between MGEs and antibiotic resistance genes (ARGs) along the Yucatan coast, with higher MGEs abundance in more contaminated sites. The Proteobacteria and Firmicutes groups exhibited the highest number of MGEs. It's important to highlight that the most abundant classes of MGEs might not be the ones most strongly linked to ARGs, as observed for the recombination/repair class. This work presents the first geographical distribution of the environmental mobilome in Yucatan Peninsula mangroves.


Assuntos
Transferência Genética Horizontal , Sequências Repetitivas Dispersas , Microbiota , Sequências Repetitivas Dispersas/genética , Microbiota/genética , México , Bactérias/genética , Bactérias/classificação , Proteobactérias/genética
8.
PLoS Pathog ; 20(4): e1012169, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38640137

RESUMO

Integrative and conjugative elements (ICEs) play a vital role in bacterial evolution by carrying essential genes that confer adaptive functions to the host. Despite their importance, the mechanism underlying the stable inheritance of ICEs, which is necessary for the acquisition of new traits in bacteria, remains poorly understood. Here, we identified SezAT, a type II toxin-antitoxin (TA) system, and AbiE, a type IV TA system encoded within the ICESsuHN105, coordinately promote ICE stabilization and mediate multidrug resistance in Streptococcus suis. Deletion of SezAT or AbiE did not affect the strain's antibiotic susceptibility, but their duple deletion increased susceptibility, mainly mediated by the antitoxins SezA and AbiEi. Further studies have revealed that SezA and AbiEi affect the genetic stability of ICESsuHN105 by moderating the excision and extrachromosomal copy number, consequently affecting the antibiotic resistance conferred by ICE. The DNA-binding proteins AbiEi and SezA, which bind palindromic sequences in the promoter, coordinately modulate ICE excision and extracellular copy number by binding to sequences in the origin-of-transfer (oriT) and the attL sites, respectively. Furthermore, AbiEi negatively regulates the transcription of SezAT by binding directly to its promoter, optimizing the coordinate network of SezAT and AbiE in maintaining ICESsuHN105 stability. Importantly, SezAT and AbiE are widespread and conserved in ICEs harbouring diverse drug-resistance genes, and their coordinated effects in promoting ICE stability and mediating drug resistance may be broadly applicable to other ICEs. Altogether, our study uncovers the TA system's role in maintaining the genetic stability of ICE and offers potential targets for overcoming the dissemination and evolution of drug resistance.


Assuntos
Proteínas de Bactérias , Streptococcus suis , Sistemas Toxina-Antitoxina , Streptococcus suis/genética , Streptococcus suis/efeitos dos fármacos , Sistemas Toxina-Antitoxina/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/genética , Antibacterianos/farmacologia , Conjugação Genética , Animais , Sequências Repetitivas Dispersas
9.
Appl Environ Microbiol ; 90(4): e0009524, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38497640

RESUMO

Horizontal gene transfer, facilitated by mobile genetic elements (MGEs), is an adaptive evolutionary process that contributes to the evolution of bacterial populations and infectious diseases. A variety of MGEs not only can integrate into the bacterial genome but also can survive or even replicate like plasmids in the cytoplasm, thus requiring precise and complete removal for studying their strategies in benefiting host cells. Existing methods for MGE removal, such as homologous recombination-based deletion and excisionase-based methods, have limitations in effectively eliminating certain MGEs. To overcome these limitations, we developed the Cas9-NE method, which combines the CRISPR/Cas9 system with the natural excision of MGEs. In this approach, a specialized single guide RNA (sgRNA) element is designed with a 20-nucleotide region that pairs with the MGE sequence. This sgRNA is expressed from a plasmid that also carries the Cas9 gene. By utilizing the Cas9-NE method, both the integrative and circular forms of MGEs can be precisely and completely eliminated through Cas9 cleavage, generating MGE-removed cells. We have successfully applied the Cas9-NE method to remove four representative MGEs, including plasmids, prophages, and genomic islands, from Vibrio strains. This new approach not only enables various investigations on MGEs but also has significant implications for the rapid generation of strains for commercial purposes.IMPORTANCEMobile genetic elements (MGEs) are of utmost importance for bacterial adaptation and pathogenicity, existing in various forms and multiple copies within bacterial cells. Integrated MGEs play dual roles in bacterial hosts, enhancing the fitness of the host by delivering cargo genes and potentially modifying the bacterial genome through the integration/excision process. This process can lead to alterations in promoters or coding sequences or even gene disruptions at integration sites, influencing the physiological functions of host bacteria. Here, we developed a new approach called Cas9-NE, allowing them to maintain the natural sequence changes associated with MGE excision. Cas9-NE allows the one-step removal of integrated and circular MGEs, addressing the challenge of eliminating various MGE forms efficiently. This approach simplifies MGE elimination in bacteria, expediting research on MGEs.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Bactérias/genética , Ilhas Genômicas , Transferência Genética Horizontal , Plasmídeos/genética , Sequências Repetitivas Dispersas
10.
Sci Total Environ ; 926: 171766, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38513871

RESUMO

Hospital wastewater (HWW) is known to host taxonomically diverse microbial communities, yet limited information is available on the phages infecting these microorganisms. To fill this knowledge gap, we conducted an in-depth analysis using 377 publicly available HWW metagenomic datasets from 16 countries across 4 continents in the NCBI SRA database to elucidate phage-host dynamics and phage contributions to resistance gene transmission. We first assembled a metagenomic HWW phage catalog comprising 13,812 phage operational taxonomic units (pOTUs). The majority of these pOTUs belonged to the Caudoviricetes order, representing 75.29 % of this catalog. Based on the lifestyle of phages, we found that potentially virulent phages predominated in HWW. Specifically, 583 pOTUs have been predicted to have the capability to lyse 81 potentially pathogenic bacteria, suggesting the promising role of HWW phages as a viable alternative to antibiotics. Among all pOTUs, 1.56 % of pOTUs carry 108 subtypes of antibiotic resistance genes (ARGs), 0.96 % of pOTUs carry 76 subtypes of metal resistance genes (MRGs), and 0.96 % of pOTUs carry 22 subtypes of non-phage mobile genetic elements (MGEs). Predictions indicate that certain phages carrying ARGs, MRGs, and non-phage MGEs could infect bacteria hosts, even potential pathogens. This suggests that phages in HWW may contribute to the dissemination of resistance-associated genes in the environment. This meta-analysis provides the first global catalog of HWW phages, revealing their correlations with microbial hosts and pahge-associated ARGs, MRG, and non-phage MGEs. The insights gained from this research hold promise for advancing the applications of phages in medical and industrial contexts.


Assuntos
Antibacterianos , Bacteriófagos , Antibacterianos/farmacologia , Águas Residuárias , Genes Bacterianos , Bacteriófagos/genética , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Metais , Sequências Repetitivas Dispersas
11.
Biotechnol Adv ; 72: 108343, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38521283

RESUMO

Genome engineering has revolutionized several scientific fields, ranging from biochemistry and fundamental research to therapeutic uses and crop development. Diverse engineering toolkits have been developed and used to effectively modify the genome sequences of organisms. However, there is a lack of extensive reviews on genome engineering technologies based on mobile genetic elements (MGEs), which induce genetic diversity within host cells by changing their locations in the genome. This review provides a comprehensive update on the versatility of MGEs as powerful genome engineering tools that offers efficient solutions to challenges associated with genome engineering. MGEs, including DNA transposons, retrotransposons, retrons, and CRISPR-associated transposons, offer various advantages, such as a broad host range, genome-wide mutagenesis, efficient large-size DNA integration, multiplexing capabilities, and in situ single-stranded DNA generation. We focused on the components, mechanisms, and features of each MGE-based tool to highlight their cellular applications. Finally, we discussed the current challenges of MGE-based genome engineering and provided insights into the evolving landscape of this transformative technology. In conclusion, the combination of genome engineering with MGE demonstrates remarkable potential for addressing various challenges and advancing the field of genetic manipulation, and promises to revolutionize our ability to engineer and understand the genomes of diverse organisms.


Assuntos
Edição de Genes , Engenharia Genética , Mutagênese , Sequências Repetitivas Dispersas , Sistemas CRISPR-Cas/genética
12.
Sci Total Environ ; 919: 170788, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38342453

RESUMO

Rivers as a critical sink for antibiotic resistance genes (ARGs), and the distribution and spread of ARGs are related to environmental factors, human activities, and biotic factors (e.g. mobile genetic elements (MGEs)). However, the potential link among ARGs, microbial community, and MGEs in rivers under different antibiotic concentration and human activities remains unclear. In this study, 2 urban rivers (URs), 1 rural-urban river (RUR), and 2 rural rivers (RRs) were investigated to identify the spatial-temporal variation and driving force of ARGs. The total concentration of quinolones (QNs) was 160.1-2151 ng·g-1 in URs, 23.34-1188 ng·g-1 in RUR, and 16.39-85.98 ng·g-1 in RRs. Total population (TP), gross domestic production (GDP), sewage, industrial enterprise (IE), and IEGDP appeared significantly spatial difference in URs, RUR, and RRs. In terms of ARGs, 145-161 subtypes were detected in URs, 59-61 subtypes in RURs, and 46-79 subtypes in RRs. For MGEs, 55-60 MGEs subtypes were detected in URs, 29-30 subtypes in RUR, and 29-35 subtypes in RRs. Significantly positive correlation between MGEs and ARGs were found in these rivers. More ARGs subtypes were related to MGEs in URs than those in RUR and RRs. Overall, MGEs and QNs showed significantly direct positive impact on the abundance of ARGs in all rivers, while microbial community was significantly positive impact on the ARGs abundance in URs and RUR. The ARGs abundance in URs/RUR were directly positive influenced by microbial community/MGEs/socioeconomic elements (SEs)/QNs, while those in RRs were directly positive influenced by QNs/MGEs and indirectly positive impacted by SEs. Most QNs resistance risk showed significantly positive correlation with the abundance of ARGs types. Therefore, not only need to consider the concentration of antibiotics, but also should pay more attention to SEs and MGEs in antibiotics risk management and control.


Assuntos
Microbiota , Quinolonas , Humanos , Antibacterianos/farmacologia , Genes Bacterianos , Rios , Resistência Microbiana a Medicamentos/genética , Atividades Humanas , Sequências Repetitivas Dispersas
13.
Microbiol Spectr ; 12(3): e0291823, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38289113

RESUMO

Wastewater is considered a reservoir of antimicrobial resistance genes (ARGs), where the abundant antimicrobial-resistant bacteria and mobile genetic elements facilitate horizontal gene transfer. However, the prevalence and extent of these phenomena in different taxonomic groups that inhabit wastewater are still not fully understood. Here, we determined the presence of ARGs in metagenome-assembled genomes (MAGs) and evaluated the risks of MAG-carrying ARGs in potential human pathogens. The potential of these ARGs to be transmitted horizontally or vertically was also determined. A total of 5,916 MAGs (completeness >50%, contamination <10%) were recovered, covering 68 phyla and 279 genera. MAGs were dereplicated into 1,204 genome operational taxonomic units (gOTUs) as a proxy for species ( average nucleotide identity >0.95). The dominant ARG classes detected were bacitracin, multi-drug, macrolide-lincosamide-streptogramin (MLS), glycopeptide, and aminoglycoside, and 10.26% of them were located on plasmids. The main hosts of ARGs belonged to Escherichia, Klebsiella, Acinetobacter, Gresbergeria, Mycobacterium, and Thauera. Our data showed that 253 MAGs carried virulence factor genes (VFGs) divided into 44 gOTUs, of which 45 MAGs were carriers of ARGs, indicating that potential human pathogens carried ARGs. Alarmingly, the MAG assigned as Escherichia coli contained 159 VFGs, of which 95 were located on chromosomes and 10 on plasmids. In addition to shedding light on the prevalence of ARGs in individual genomes recovered from activated sludge and wastewater, our study demonstrates a workflow that can identify antimicrobial-resistant pathogens in complex microbial communities. IMPORTANCE: Antimicrobial resistance (AMR) threatens the health of humans, animals, and natural ecosystems. In our study, an analysis of 165 metagenomes from wastewater revealed antibiotic-targeted alteration, efflux, and inactivation as the most prevalent AMR mechanisms. We identified several genera correlated with multiple ARGs, including Klebsiella, Escherichia, Acinetobacter, Nitrospira, Ottowia, Pseudomonas, and Thauera, which could have significant implications for AMR transmission. The abundance of bacA, mexL, and aph(3")-I in the genomes calls for their urgent management in wastewater. Our approach could be applied to different ecosystems to assess the risk of potential pathogens containing ARGs. Our findings highlight the importance of managing AMR in wastewater and can help design measures to reduce the transmission and evolution of AMR in these systems.


Assuntos
Microbiota , Águas Residuárias , Animais , Humanos , Esgotos/microbiologia , Antibacterianos/farmacologia , Metagenoma , Genes Bacterianos/genética , Farmacorresistência Bacteriana/genética , Bactérias , Sequências Repetitivas Dispersas
14.
Microb Biotechnol ; 17(1): e14408, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38226780

RESUMO

Mobile genetic elements (MGEs) are crucial for horizontal gene transfer (HGT) in bacteria and facilitate their rapid evolution and adaptation. MGEs include plasmids, integrative and conjugative elements, transposons, insertion sequences and bacteriophages. Notably, the spread of antimicrobial resistance genes (ARGs), which poses a serious threat to public health, is primarily attributable to HGT through MGEs. This mini-review aims to provide an overview of the mechanisms by which MGEs mediate HGT in microbes. Specifically, the behaviour of conjugative plasmids in different environments and conditions was discussed, and recent methodologies for tracing the dynamics of MGEs were summarised. A comprehensive understanding of the mechanisms underlying HGT and the role of MGEs in bacterial evolution and adaptation is important to develop strategies to combat the spread of ARGs.


Assuntos
Bacteriófagos , Sequências Repetitivas Dispersas , Transferência Genética Horizontal , Plasmídeos/genética , Bactérias/genética , Bacteriófagos/genética , Antibacterianos
15.
Environ Pollut ; 341: 122609, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37742856

RESUMO

Antibiotics and heavy metals added to livestock and poultry feed are excreted in manure, which is added to agricultural soil and causes severe pollution. However, the effects of oxytetracycline (OTC) and zinc (Zn), which are present at relatively high levels in feed additives, on antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and microbial communities have not been comprehensively studied. This study evaluated the effects of OTC and Zn on environmental factors, microorganisms, MGEs, and ARGs. The expression of MGEs in soil was stimulated by adding Zn at concentrations of 500 and 1000 mg/kg or OTC at concentrations of 30 and 100 mg/kg; however, the addition of their combination hindered the expression of MGEs in soil. The abundance of total MGEs and ARGs tended to decrease with increasing concentrations of Zn and OTC and the number of incubation days. Low and high OTC concentrations strongly inhibited sul and tet resistance genes, respectively. Network analysis showed that changes in the population of Firmicutes and Proteobacteria had the greatest impact on ARG abundance. Redundancy analysis revealed that MGEs, particularly intI2, facilitated the transfer and spread of ARGs and had the greatest impact on changes in ARG abundance. These findings provide reference values for the prevention and resolution of ecological and environmental risks posed by the presence of Zn and OTC in organic manure soil.


Assuntos
Microbiota , Oxitetraciclina , Antibacterianos/toxicidade , Antibacterianos/análise , Oxitetraciclina/toxicidade , Zinco/toxicidade , Zinco/análise , Solo , Esterco/microbiologia , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Sequências Repetitivas Dispersas , Microbiologia do Solo
16.
Nucleic Acids Res ; 52(D1): D784-D790, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37897352

RESUMO

TADB 3.0 (https://bioinfo-mml.sjtu.edu.cn/TADB3/) is an updated database that provides comprehensive information on bacterial types I to VIII toxin-antitoxin (TA) loci. Compared with the previous version, three major improvements are introduced: First, with the aid of text mining and manual curation, it records the details of 536 TA loci with experimental support, including 102, 403, 8, 14, 1, 1, 3 and 4 TA loci of types I to VIII, respectively; Second, by leveraging the upgraded TA prediction tool TAfinder 2.0 with a stringent strategy, TADB 3.0 collects 211 697 putative types I to VIII TA loci predicted in 34 789 completely sequenced prokaryotic genomes, providing researchers with a large-scale dataset for further follow-up analysis and characterization; Third, based on their genomic locations, relationships of 69 019 TA loci and 60 898 mobile genetic elements (MGEs) are visualized by interactive networks accessible through the user-friendly web page. With the recent updates, TADB 3.0 may provide improved in silico support for comprehending the biological roles of TA pairs in prokaryotes and their functional associations with MGEs.


Assuntos
Proteínas de Bactérias , Bases de Dados Genéticas , Sequências Repetitivas Dispersas , Sistemas Toxina-Antitoxina , Proteínas de Bactérias/genética , Genoma Bacteriano , Sistemas Toxina-Antitoxina/genética , Loci Gênicos
17.
Environ Res ; 243: 117801, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38043895

RESUMO

The prevalence of antibiotic resistance genes (ARGs) in the environment is a quintessential One Health issue that threats both human and ecosystem health; however, the source and transmission of ARGs, especially clinically important ARGs (CLIARGs), in the environment have not yet been well studied. In the present study, shotgun metagenomic approaches were used to characterize the microbiome, resistome, and mobilome composition in human feces and six different environment sample types in South China. Overall, the resistome harbored 157 CLIARGs, with specific ARG hotspots (e.g., human feces, wastewater treatment plants, livestock manure and wastewater) excreting significantly higher abundance of CLIARGs compared with the natural environment. A redundancy analysis (RDA) was performed and revealed that the bacterial community compositions and mobile genetic elements (MGEs) explained 55.08% and 34.68% of the variations in ARG abundance, respectively, indicating that both bacterial community and MGEs are key contributors to the maintenance and dissemination of CLIARGs in the environment. The network analysis revealed non-random co-occurrence patterns between 200 bacterial genera and 147 CLIARGs, as well as between 135 MGEs and 123 CLIARGs. In addition to numerous co-shared CLIARGs among different sample types, the source tracking program based on the FEAST probabilistic model was used to estimate the relative contributions of the CLIARGs from potential sources to the natural environment. The source tracking analysis results delineated that mobilome, more than microbiome, contributed CLIARG transmission from those ARG hotspots into natural environment, and the MGEs in WWTPs seem to play the most significant role in the spread of CLIARGs to the natural environment (average contribution 32.9%-46.4%). Overall, this study demonstrated the distribution and dissemination of CLIARGs in the environment, and aimed to better inform strategies to control the spread of CLIARGs into the natural environment.


Assuntos
Antibacterianos , Microbiota , Humanos , Antibacterianos/farmacologia , Relevância Clínica , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Microbiota/genética , Sequências Repetitivas Dispersas
18.
Nature ; 624(7992): 602-610, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38093003

RESUMO

Indigenous Australians harbour rich and unique genomic diversity. However, Aboriginal and Torres Strait Islander ancestries are historically under-represented in genomics research and almost completely missing from reference datasets1-3. Addressing this representation gap is critical, both to advance our understanding of global human genomic diversity and as a prerequisite for ensuring equitable outcomes in genomic medicine. Here we apply population-scale whole-genome long-read sequencing4 to profile genomic structural variation across four remote Indigenous communities. We uncover an abundance of large insertion-deletion variants (20-49 bp; n = 136,797), structural variants (50 b-50 kb; n = 159,912) and regions of variable copy number (>50 kb; n = 156). The majority of variants are composed of tandem repeat or interspersed mobile element sequences (up to 90%) and have not been previously annotated (up to 62%). A large fraction of structural variants appear to be exclusive to Indigenous Australians (12% lower-bound estimate) and most of these are found in only a single community, underscoring the need for broad and deep sampling to achieve a comprehensive catalogue of genomic structural variation across the Australian continent. Finally, we explore short tandem repeats throughout the genome to characterize allelic diversity at 50 known disease loci5, uncover hundreds of novel repeat expansion sites within protein-coding genes, and identify unique patterns of diversity and constraint among short tandem repeat sequences. Our study sheds new light on the dimensions and dynamics of genomic structural variation within and beyond Australia.


Assuntos
Povos Aborígenes Australianos e Ilhéus do Estreito de Torres , Genoma Humano , Variação Estrutural do Genoma , Humanos , Alelos , Austrália/etnologia , Povos Aborígenes Australianos e Ilhéus do Estreito de Torres/genética , Conjuntos de Dados como Assunto , Variações do Número de Cópias de DNA/genética , Loci Gênicos/genética , Genética Médica , Variação Estrutural do Genoma/genética , Genômica , Mutação INDEL/genética , Sequências Repetitivas Dispersas/genética , Repetições de Microssatélites/genética , Genoma Humano/genética
19.
J Evol Biol ; 36(11): 1582-1586, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37975503

RESUMO

Illustration of life-histories of phages and plasmids through horizontal and vertical transmission (see Figure 1 for more information).


Assuntos
Cebolas , Vírus , Cebolas/genética , Transferência Genética Horizontal , Plasmídeos , Vírus/genética , Sequências Repetitivas Dispersas
20.
Microb Genom ; 9(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37930748

RESUMO

Mobile genetic elements can innovate bacteria with new traits. In plant pathogenic Streptomyces, frequent and recent acquisition of integrative and conjugative or mobilizable genetic elements is predicted to lead to the emergence of new lineages that gained the capacity to synthesize Thaxtomin, a phytotoxin neccesary for induction of common scab disease on tuber and root crops. Here, we identified components of the Streptomyces-potato pathosystem implicated in virulence and investigated them as a nested and interacting system to reevaluate evolutionary models. We sequenced and analysed genomes of 166 strains isolated from over six decades of sampling primarily from field-grown potatoes. Virulence genes were associated to multiple subtypes of genetic elements differing in mechanisms of transmission and evolutionary histories. Evidence is consistent with few ancient acquisition events followed by recurrent loss or swaps of elements carrying Thaxtomin A-associated genes. Subtypes of another genetic element implicated in virulence are more distributed across Streptomyces. However, neither the subtype classification of genetic elements containing virulence genes nor taxonomic identity was predictive of pathogenicity on potato. Last, findings suggested that phytopathogenic strains are generally endemic to potato fields and some lineages were established by historical spread and further dispersed by few recent transmission events. Results from a hierarchical and system-wide characterization refine our understanding by revealing multiple mechanisms that gene and bacterial dispersion have had on shaping the evolution of a Gram-positive pathogen in agricultural settings.


Assuntos
Produtos Agrícolas , Streptomyces , Virulência/genética , Fenótipo , Streptomyces/genética , Sequências Repetitivas Dispersas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA