Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Tree Physiol ; 35(5): 453-69, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25787330

RESUMO

We compared the physiology and growth of seedlings originating from different Sequoia sempervirens (D. Don.) Endl. (coast redwood) and Sequoiadendron giganteum (Lindl.) Buchh. (giant sequoia) populations subjected to progressive drought followed by a recovery period in a controlled greenhouse experiment. Our objective was to examine how multiple plant traits interact to influence the response of seedlings of each species and seed population to a single drought and recovery cycle. We measured soil and plant water status, leaf gas exchange, stem embolism and growth of control (well-watered) and drought-stressed (water withheld) seedlings from each population at the beginning, middle and end of a 6-week drought period and again 2 weeks after re-watering. The drought had a significant effect on many aspects of seedling performance, but water-stressed seedlings regained most physiological functioning by the end of the recovery period. Sequoiadendron seedlings exhibited a greater degree of isohydry (water status regulation), lower levels of stem embolism, higher biomass allocation to roots and lower sensitivity of growth to drought compared with Sequoia. Only minor intra-specific differences were observed among populations. Our results show that seedlings of the two redwood species exhibit contrasting drought-response strategies that align with the environmental conditions these trees experience in their native habitats, and demonstrate trade-offs and coordination among traits affecting plant water use, carbon gain and growth under drought.


Assuntos
Secas , Sequoia/fisiologia , Sequoiadendron/fisiologia , Estresse Fisiológico , California , Clima , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Sequoia/genética , Sequoia/crescimento & desenvolvimento , Sequoiadendron/genética , Sequoiadendron/crescimento & desenvolvimento , Especificidade da Espécie
2.
Mycologia ; 104(5): 988-97, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22492401

RESUMO

Interactions with soil microbiota determine the success of restoring plants to their native habitats. The goal of our study was to understand the effects of restoration practices on interactions of giant sequoia Sequoiadendron giganteum with arbuscular mycorrhizal (AM) fungi (Glomeromycota). Natural regeneration of Sequoiadendron is threatened by the absence of severe fires that create forest canopy gaps. Generating artificial canopy gaps offers an alternative tool for giant sequoia restoration. We investigated the effect of regeneration practices, including (i) sapling location within gaps, (ii) gap size and (iii) soil substrate, on AM fungal colonization of giant sequoia sapling roots in a native giant sequoia grove of the Sierra Nevada, California. We found that the extent of AM fungal root colonization was positively correlated with sapling height and light availability, which were related to the location of the sapling within the gap and the gap size. While colonization frequency by arbuscules in saplings on ash substrate was higher relative to saplings in mineral soil, the total AM fungal root colonization was similar between the substrates. A negative correlation between root colonization by Glomeromycota and non-AM fungal species indicated antagonistic interactions between different classes of root-associated fungi. Using DNA genotyping, we identified six AM fungal taxa representing genera Glomus and Ambispora present in Sequoiadendron roots. Overall, we found that AM fungal colonization of giant sequoia roots was associated with availability of plant-assimilated carbon to the fungus rather than with the AM fungal supply of mineral nutrients to the roots. We conclude that restoration practices affecting light availability and carbon assimilation alter feedbacks between sapling growth and activity of AM fungi in the roots.


Assuntos
Glomeromycota/fisiologia , Micorrizas/crescimento & desenvolvimento , Sequoiadendron/crescimento & desenvolvimento , Sequoiadendron/microbiologia , California , Carbono/metabolismo , Ecossistema , Glomeromycota/genética , Glomeromycota/crescimento & desenvolvimento , Glomeromycota/metabolismo , Minerais/metabolismo , Micorrizas/efeitos dos fármacos , Micorrizas/metabolismo , Sequoiadendron/metabolismo , Solo , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA