Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Biomed Pharmacother ; 166: 115288, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37579694

RESUMO

In a previous study, we investigated the effects of high-temperature requirement factor A4 (HtrA4) deficiency on trophoblasts using the BeWo KO cell line. However, the effects of this deficiency on angiogenesis remain unclear. To explore the role of HtrA4 in angiogenesis, HUVECs were co-cultured with wild-type BeWo cells (BeWo WT), BeWo KO, and HtrA4-rescued BeWo KO (BeWo KO-HtrA4 rescue) cells. Dil staining and dextran analysis revealed that HUVECs co-cultured with BeWo KO formed tubes, but they were often disjointed compared to those co-cultured with BeWo WT, BeWo KO-HtrA4 rescue, and HUVECs controls. RT-PCR, ELISA, and western blot analysis were performed to assess angiogenesis-related factors at the mRNA and protein levels. HtrA4 deficiency inhibited IL-6 expression in trophoblasts, and the reduced secretion of IL-6 decreases VEGFA expression in HUVECs by modulating the JAK2/STAT3 signaling pathway to prevent tube formation. Moreover, rescuing HtrA4 expression restored the HUVEC tube formation ability. Interestingly, IL-6 expression was lower in supernatants with only cultured HUVECs than in co-cultured HUVECs with BeWo WT cells, but the HUVEC tube formation ability was similar. These findings suggest that the promoting angiogenesis-related signaling pathway differs between only HUVECs and co-cultured HUVECs, and that the deficiency of HtrA4 weakens the activation of the IL-6/JAK/STAT3/VEGFA signaling pathway, reducing the ability of tube formation in HUVECs. HtrA4 deficiency in trophoblasts hinders angiogenesis and may contribute to placental dysfunction.


Assuntos
Neovascularização Fisiológica , Placenta , Serina Proteases , Trofoblastos , Feminino , Humanos , Gravidez , Linhagem Celular , Células Endoteliais da Veia Umbilical Humana , Interleucina-6/metabolismo , Placenta/irrigação sanguínea , Placenta/metabolismo , Serina Proteases/deficiência , Serina Proteases/genética , Serina Proteases/metabolismo , Transdução de Sinais/fisiologia , Fator de Transcrição STAT3/metabolismo , Trofoblastos/metabolismo , Neovascularização Fisiológica/genética
2.
Reprod Sci ; 30(1): 145-168, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35471551

RESUMO

Our previous studies have reported that a putative trypsin-like serine protease, PRSS37, is exclusively expressed in testicular germ cells during late spermatogenesis and essential for sperm migration from the uterus into the oviduct and sperm-egg recognition via mediating the interaction between PDILT and ADAM3. In the present study, the global proteome profiles of wild-type (wt) and Prss37-/- mice in testis and sperm were compared employing data independent acquisition (DIA) technology. Overall, 2506 and 459 differentially expressed proteins (DEPs) were identified in Prss37-null testis and sperm, respectively, when compared to control groups. Bioinformatic analyses revealed that most of DEPs were related to energy metabolism. Of note, the DEPs associated with pathways for the catabolism such as glucose via glycolysis, fatty acids via ß-oxidation, and amino acids via oxidative deamination were significantly down-regulated. Meanwhile, the DEPs involved in the tricarboxylic acid cycle (TCA cycle) and oxidative phosphorylation (OXPHOS) were remarkably decreased. The DIA data were further confirmed by a markedly reduction of intermediate metabolites (citrate and fumarate) in TCA cycle and terminal metabolite (ATP) in OXPHOS system after disruption of PRSS37. These outcomes not only provide a more comprehensive understanding of the male fertility of energy metabolism modulated by PRSS37 but also furnish a dynamic proteomic resource for further reproductive biology studies.


Assuntos
Proteômica , Serina Proteases , Testículo , Animais , Feminino , Masculino , Camundongos , Metabolismo Energético , Isomerases de Dissulfetos de Proteínas/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo , Serina Proteases/deficiência , Serina Proteases/genética , Camundongos Knockout
3.
Development ; 148(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33913480

RESUMO

Multiple morphological abnormalities of the sperm flagella (MMAF) are a major cause of asthenoteratozoospermia. We have identified protease serine 50 (PRSS50) as having a crucial role in sperm development, because Prss50-null mice presented with impaired fertility and sperm tail abnormalities. PRSS50 could also be involved in centrosome function because these mice showed a threefold increase in acephalic sperm (head-tail junction defect), sperm with multiple heads (spermatid division defect) and sperm with multiple tails, including novel two conjoined sperm (complete or partial parts of several flagellum on the same plasma membrane). Our data support that, in the testis, as in tumorigenesis, PRSS50 activates NFκB target genes, such as the centromere protein leucine-rich repeats and WD repeat domain-containing protein 1 (LRWD1), which is required for heterochromatin maintenance. Prss50-null testes have increased IκκB, and reduced LRWD1 and histone expression. Low levels of de-repressed histone markers, such as H3K9me3, in the Prss50-null mouse testis may cause increases in post-meiosis proteins, such as AKAP4, affecting sperm formation. We provide important insights into the complex mechanisms of sperm development, the importance of testis proteases in fertility and a novel mechanism for MMAF.


Assuntos
Fertilidade , Serina Proteases/metabolismo , Cauda do Espermatozoide/enzimologia , Testículo/enzimologia , Animais , Astenozoospermia/enzimologia , Astenozoospermia/genética , Heterocromatina/enzimologia , Heterocromatina/genética , Histonas/biossíntese , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Masculino , Camundongos , Camundongos Mutantes , Proteínas dos Microtúbulos/genética , Proteínas dos Microtúbulos/metabolismo , Serina Proteases/deficiência , Cabeça do Espermatozoide/enzimologia
4.
Pediatr Neurol ; 110: 64-70, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32684372

RESUMO

BACKGROUND: Neuronal ceroid lipofuscinosis type 2 or CLN2 disease is a rare, autosomal recessive, neurodegenerative lysosomal storage disorder caused by tripeptidyl peptidase 1 deficiency. Cerliponase alfa, a recombinant human tripeptidyl peptidase 1 enzyme, is the first and only approved treatment for CLN2 disease and the first approved enzyme replacement therapy administered via intracerebroventricular infusion. METHODS: A meeting of health care professionals from US institutions with experience in cerliponase alfa treatment of children with CLN2 disease was held in November 2018. Key common practices were identified, and later refined during the drafting of this article, that facilitate safe chronic administration of cerliponase alfa. RESULTS: Key practices include developing a multidisciplinary team of clinicians, pharmacists, and coordinators, and institution-specific processes. Infection risk may be reduced through strict aseptic techniques and minimizing connections and disconnections during infusion. The impact of intracerebroventricular device design on port needle stability during extended intracerebroventricular infusion is a critical consideration in device selection. Monitoring for central nervous system infection is performed at each patient contact, but with flexibility in the degree of monitoring. Although few institutions had experienced positive cerebrospinal fluid test results, the response to a positive cerebrospinal fluid culture should be determined on a case-by-case basis, and the intracerebroventricular device should be removed if cerebrospinal fluid infection is confirmed. CONCLUSIONS: The key common practices and flexible practices used by institutions with cerliponase alfa experience may assist other institutions in process development. Continued sharing of experiences will be essential for developing standards and patient care guidelines.


Assuntos
Aminopeptidases/deficiência , Dipeptidil Peptidases e Tripeptidil Peptidases/administração & dosagem , Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Bombas de Infusão/normas , Infusões Intraventriculares , Lipofuscinoses Ceroides Neuronais/tratamento farmacológico , Procedimentos Neurocirúrgicos/normas , Equipe de Assistência ao Paciente , Guias de Prática Clínica como Assunto , Proteínas Recombinantes/administração & dosagem , Serina Proteases/deficiência , Criança , Humanos , Bombas de Infusão/efeitos adversos , Comunicação Interdisciplinar , Equipe de Assistência ao Paciente/normas , Tripeptidil-Peptidase 1 , Estados Unidos
5.
ACS Synth Biol ; 9(7): 1833-1842, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32551553

RESUMO

Efficient bacterial cell factories are important for the screening and characterization of potent antimicrobial peptides such as lantibiotics. Although lantibiotic production systems have been established in Lactococcus lactis and Escherichia coli, the industrial workhorse Bacillus subtilis has been left relatively unexplored as a lantibiotic production host. Therefore, we tested different B. subtilis strains for their ability to produce lantibiotic peptides by using the subtilin modification and transport enzymes derived from the natural subtilin producer B. subtilis ATCC 6633. Our study shows that although B. subtilis ATCC 6633 and 168 are able to produce various processed lantibiotic peptides, an evident advantage of using either the 8-fold protease-deficient strain WB800 or the genome-minimized B. subtilis 168 strain PG10 is the lack of extracellular serine protease activity. Consequently, leader processing of lantibiotic precursor peptides is circumvented and thus potential toxicity toward the production host is prevented. Furthermore, PG10 provides a clean secondary metabolic background and therefore appears to be the most promising B. subtilis lantibiotic production host. We demonstrate the production of various lantibiotic precursor peptides by PG10 and show different options for their in vitro activation. Our study thus provides a convenient B. subtilis-based lantibiotic production system, which facilitates the search for novel antimicrobial peptides.


Assuntos
Antibacterianos/biossíntese , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Bacteriocinas/biossíntese , Engenharia Metabólica/métodos , Nisina/biossíntese , Serina Proteases/deficiência , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Bacteriocinas/genética , Bacteriocinas/farmacologia , Reatores Biológicos , Expressão Gênica , Genes Bacterianos , Genoma Bacteriano , Testes de Sensibilidade Microbiana , Nisina/genética , Nisina/farmacologia , Biossíntese Peptídica/genética , Plasmídeos/genética , Serina Proteases/genética
6.
PLoS One ; 15(6): e0234780, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32579589

RESUMO

Obesity epidemic continues to spread and obesity rates are increasing in the world. In addition to public health effort to reduce obesity, there is a need to better understand the underlying biology to enable more effective treatment and the discovery of new pharmacological agents. Abhydrolase domain-containing protein 11 (ABHD11) is a serine hydrolase enzyme, localized in mitochondria, that can synthesize the endocannabinoid 2-arachidonoyl glycerol (2AG) in vitro. In vivo preclinical studies demonstrated that knock-out ABHD11 mice have a similar 2AG level as WT mice and exhibit a lean metabolic phenotype. Such mice resist to weight gain in Diet Induced Obesity studies (DIO) and display normal biochemical plasma parameters. Metabolic and transcriptomic analyses on serum and tissues of ABHD11 KO mice from DIO studies show a modulation in bile salts associated with reduced fat intestinal absorption. These data suggest that modulating ABHD11 signaling pathway could be of therapeutic value for the treatment of metabolic disorders.


Assuntos
Serina Proteases/metabolismo , Aumento de Peso , Animais , Fezes/enzimologia , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Células MCF-7 , Camundongos , Mitocôndrias/metabolismo , Serina Proteases/deficiência , Serina Proteases/genética , Transdução de Sinais
7.
Cells ; 9(5)2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443895

RESUMO

CLN2 Batten disease (BD) is one of a broad class of lysosomal storage disorders that is characterized by the deficiency of lysosomal enzyme, TPP1, resulting in a build-up of toxic intracellular storage material in all organs and subsequent damage. A major challenge for BD therapeutics is delivery of enzymatically active TPP1 to the brain to attenuate progressive loss of neurological functions. To accomplish this daunting task, we propose the harnessing of naturally occurring nanoparticles, extracellular vesicles (EVs). Herein, we incorporated TPP1 into EVs released by immune cells, macrophages, and examined biodistribution and therapeutic efficacy of EV-TPP1 in BD mouse model, using various routes of administration. Administration through intrathecal and intranasal routes resulted in high TPP1 accumulation in the brain, decreased neurodegeneration and neuroinflammation, and reduced aggregation of lysosomal storage material in BD mouse model, CLN2 knock-out mice. Parenteral intravenous and intraperitoneal administrations led to TPP1 delivery to peripheral organs: liver, kidney, spleen, and lungs. A combination of intrathecal and intraperitoneal EV-TPP1 injections significantly prolonged lifespan in BD mice. Overall, the optimization of treatment strategies is crucial for successful applications of EVs-based therapeutics for BD.


Assuntos
Portadores de Fármacos/química , Terapia de Reposição de Enzimas , Vesículas Extracelulares/química , Lipofuscinoses Ceroides Neuronais/terapia , Aminopeptidases/deficiência , Aminopeptidases/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Vias de Administração de Medicamentos , Humanos , Medições Luminescentes , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Serina Proteases/deficiência , Serina Proteases/metabolismo , Distribuição Tecidual , Resultado do Tratamento , Tripeptidil-Peptidase 1
8.
Dis Model Mech ; 13(5)2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32152063

RESUMO

Glaucoma is a leading cause of blindness, affecting up to 70 million people worldwide. High intraocular pressure (IOP) is a major risk factor for glaucoma. It is well established that inefficient aqueous humor (AqH) outflow resulting from structural or functional alterations in ocular drainage tissues causes high IOP, but the genes and pathways involved are poorly understood. We previously demonstrated that mutations in the gene encoding the serine protease PRSS56 induces ocular angle closure and high IOP in mice and identified reduced ocular axial length as a potential contributing factor. Here, we show that Prss56-/- mice also exhibit an abnormal iridocorneal angle configuration characterized by a posterior shift of ocular drainage structures relative to the ciliary body and iris. Notably, we show that retina-derived PRSS56 is required between postnatal days 13 and 18 for proper iridocorneal configuration and that abnormal positioning of the ocular drainage tissues is not dependent on ocular size reduction in Prss56-/- mice. Furthermore, we demonstrate that the genetic context modulates the severity of IOP elevation in Prss56 mutant mice and describe a progressive degeneration of ocular drainage tissues that likely contributes to the exacerbation of the high IOP phenotype observed on the C3H/HeJ genetic background. Finally, we identify five rare PRSS56 variants associated with human primary congenital glaucoma, a condition characterized by abnormal development of the ocular drainage structures. Collectively, our findings point to a role for PRSS56 in the development and maintenance of ocular drainage tissues and IOP homeostasis, and provide new insights into glaucoma pathogenesis.


Assuntos
Suscetibilidade a Doenças , Olho/patologia , Olho/fisiopatologia , Pressão Intraocular , Serina Proteases/deficiência , Sequência de Aminoácidos , Animais , Córnea/patologia , Feminino , Glaucoma/genética , Glaucoma/patologia , Iris/patologia , Masculino , Camundongos Knockout , Camundongos Mutantes , Tamanho do Órgão , Serina Proteases/química , Serina Proteases/genética , Serina Proteases/metabolismo
9.
Cell Rep ; 29(11): 3708-3725.e5, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31825846

RESUMO

Telomeres use shelterin to protect chromosome ends from activating the DNA damage sensor MRE11-RAD50-NBS1 (MRN), repressing ataxia-telangiectasia, mutated (ATM) and ATM and Rad3-related (ATR) dependent DNA damage checkpoint responses. The MRE11 nuclease is thought to be essential for the resection of the 5' C-strand to generate the microhomologies necessary for alternative non-homologous end joining (A-NHEJ) repair. In the present study, we uncover DNA damage signaling and repair pathways engaged by components of the replisome complex to repair dysfunctional telomeres. In cells lacking MRN, single-stranded telomeric overhangs devoid of POT1-TPP1 do not recruit replication protein A (RPA), ATR-interacting protein (ATRIP), and RAD 51. Rather, components of the replisome complex, including Claspin, Proliferating cell nuclear antigen (PCNA), and Downstream neighbor of SON (DONSON), initiate DNA-PKcs-mediated p-CHK1 activation and A-NHEJ repair. In addition, Claspin directly interacts with TRF2 and recruits EXO1 to newly replicated telomeres to promote 5' end resection. Our data indicate that MRN is dispensable for the repair of dysfunctional telomeres lacking POT1-TPP1 and highlight the contributions of the replisome in telomere repair.


Assuntos
Reparo do DNA por Junção de Extremidades , DNA Polimerase Dirigida por DNA/metabolismo , Complexos Multienzimáticos/metabolismo , Telômero/metabolismo , Hidrolases Anidrido Ácido/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aminopeptidases/deficiência , Aminopeptidases/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Quinase 1 do Ponto de Checagem/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Exodesoxirribonucleases/metabolismo , Células HEK293 , Humanos , Proteína Homóloga a MRE11/metabolismo , Camundongos , Complexos Multienzimáticos/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Serina Proteases/deficiência , Serina Proteases/metabolismo , Complexo Shelterina , Telômero/genética , Proteínas de Ligação a Telômeros/deficiência , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
10.
J Leukoc Biol ; 103(4): 739-748, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29345365

RESUMO

Dendritic cells (DCs) play a key role in the generation of CD4 T cell responses to pathogens. Mycobacterium tuberculosis (Mtb) harbors immune evasion mechanisms that impair DC responses and prevent optimal CD4 T cell immunity. The vaccine strain Mycobacterium bovis Bacille Calmette-Guérin (BCG) shares many of the immune evasion proteins utilized by Mtb, but the role of these proteins in DC and T cell responses elicited by BCG is poorly understood. We previously reported that the Mtb serine protease, Hip1, promotes sub-optimal DC responses during infection. Here, we tested the hypothesis that BCG Hip1 modulates DC functions and prevents optimal antigen-specific CD4 T cell responses that limit the immunogenicity of BCG. We generated a strain of BCG lacking hip1 (BCGΔhip1) and show that it has superior capacity to induce DC maturation and cytokine production compared with the parental BCG. Furthermore, BCGΔhip1-infected DCs were more effective at driving the production of IFN-γ and IL-17 from antigen-specific CD4 T cells in vitro. Mucosal transfer of BCGΔhip1-infected DCs into mouse lungs induced robust CD4 T cell activation in vivo and generated antigen-specific polyfunctional CD4 T cell responses in the lungs. Importantly, BCGΔhip1-infected DCs enhanced control of pulmonary bacterial burden following Mtb aerosol challenge compared with the transfer of BCG-infected DCs. These results reveal that BCG employs Hip1 to impair DC activation, leading to attenuated lung CD4 T cell responses with limited capacity to control Mtb burden after challenge.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Deleção de Genes , Macrófagos/imunologia , Mycobacterium bovis/imunologia , Serina Proteases/deficiência , Tuberculose/imunologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linfócitos T CD4-Positivos/microbiologia , Células Cultivadas , Células Dendríticas/microbiologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Serina Proteases/genética , Serina Proteases/metabolismo , Tuberculose/metabolismo , Tuberculose/microbiologia
11.
Acta Neuropathol Commun ; 5(1): 74, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29041969

RESUMO

The neuronal ceroid lipofuscinoses (NCLs or Batten disease) are a group of inherited, fatal neurodegenerative disorders of childhood. In these disorders, glial (microglial and astrocyte) activation typically occurs early in disease progression and predicts where neuron loss subsequently occurs. We have found that in the most common juvenile form of NCL (CLN3 disease or JNCL) this glial response is less pronounced in both mouse models and human autopsy material, with the morphological transformation of both astrocytes and microglia severely attenuated or delayed. To investigate their properties, we isolated glia and neurons from Cln3-deficient mice and studied their basic biology in culture. Upon stimulation, both Cln3-deficient astrocytes and microglia also showed an attenuated ability to transform morphologically, and an altered protein secretion profile. These defects were more pronounced in astrocytes, including the reduced secretion of a range of neuroprotective factors, mitogens, chemokines and cytokines, in addition to impaired calcium signalling and glutamate clearance. Cln3-deficient neurons also displayed an abnormal organization of their neurites. Most importantly, using a co-culture system, Cln3-deficient astrocytes and microglia had a negative impact on the survival and morphology of both Cln3-deficient and wildtype neurons, but these effects were largely reversed by growing mutant neurons with healthy glia. These data provide evidence that CLN3 disease astrocytes are functionally compromised. Together with microglia, they may play an active role in neuron loss in this disorder and can be considered as potential targets for therapeutic interventions.


Assuntos
Encéfalo/fisiopatologia , Neuroglia/fisiologia , Lipofuscinoses Ceroides Neuronais/fisiopatologia , Neurônios/fisiologia , Adulto , Aminopeptidases/deficiência , Aminopeptidases/genética , Animais , Encéfalo/patologia , Movimento Celular/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Criança , Técnicas de Cocultura , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Feminino , Glutationa/metabolismo , Humanos , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Chaperonas Moleculares/genética , Neuroglia/patologia , Lipofuscinoses Ceroides Neuronais/patologia , Neurônios/patologia , Serina Proteases/deficiência , Serina Proteases/genética , Tripeptidil-Peptidase 1 , Adulto Jovem
12.
J Proteome Res ; 16(10): 3787-3804, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28792770

RESUMO

Clinical trials have been conducted for the neuronal ceroid lipofuscinoses (NCLs), a group of neurodegenerative lysosomal diseases that primarily affect children. Whereas clinical rating systems will evaluate long-term efficacy, biomarkers to measure short-term response to treatment would be extremely valuable. To identify candidate biomarkers, we analyzed autopsy brain and matching CSF samples from controls and three genetically distinct NCLs due to deficiencies in palmitoyl protein thioesterase 1 (CLN1 disease), tripeptidyl peptidase 1 (CLN2 disease), and CLN3 protein (CLN3 disease). Proteomic and biochemical methods were used to analyze lysosomal proteins, and, in general, we find that changes in protein expression compared with control were most similar between CLN2 disease and CLN3 disease. This is consistent with previous observations of biochemical similarities between these diseases. We also conducted unbiased proteomic analyses of CSF and brain using isobaric labeling/quantitative mass spectrometry. Significant alterations in protein expression were identified in each NCL, including reduced STXBP1 in CLN1 disease brain. Given the confounding variable of post-mortem changes, additional validation is required, but this study provides a useful starting set of candidate NCL biomarkers for further evaluation.


Assuntos
Encéfalo/metabolismo , Proteínas Munc18/genética , Lipofuscinoses Ceroides Neuronais/genética , Proteômica , Aminopeptidases/deficiência , Aminopeptidases/genética , Autopsia , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/química , Biomarcadores/metabolismo , Encéfalo/patologia , Líquido Cefalorraquidiano/química , Líquido Cefalorraquidiano/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Humanos , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Chaperonas Moleculares/genética , Proteínas Munc18/deficiência , Mutação , Lipofuscinoses Ceroides Neuronais/líquido cefalorraquidiano , Lipofuscinoses Ceroides Neuronais/metabolismo , Lipofuscinoses Ceroides Neuronais/patologia , Serina Proteases/deficiência , Serina Proteases/genética , Tioléster Hidrolases/deficiência , Tioléster Hidrolases/genética , Tripeptidil-Peptidase 1
13.
Mol Ther ; 25(7): 1531-1543, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28456380

RESUMO

We have investigated delivery of protein therapeutics from the bloodstream into the brain using a mouse model of late-infantile neuronal ceroid lipofuscinosis (LINCL), a lysosomal disease due to deficiencies in tripeptidyl peptidase 1 (TPP1). Supraphysiological levels of TPP1 are delivered to the mouse brain by acute intravenous injection when co-administered with K16ApoE, a peptide that in trans mediates passage across the blood-brain barrier (BBB). Chronic treatment of LINCL mice with TPP1 and K16ApoE extended the lifespan from 126 to >294 days, diminished pathology, and slowed locomotor dysfunction. K16ApoE enhanced uptake of a fixable biotin tracer by brain endothelial cells in a dose-dependent manner, suggesting that its mechanism involves stimulation of endocytosis. Pharmacokinetic experiments indicated that K16ApoE functions without disrupting the BBB, with minimal effects on overall clearance or uptake by the liver and kidney. K16ApoE has a narrow therapeutic index, with toxicity manifested as lethargy and/or death in mice. To address this, we evaluated variant peptides but found that efficacy and toxicity are associated, suggesting that desired and adverse effects are mechanistically related. Toxicity currently precludes direct clinical application of peptide-mediated delivery in its present form but it remains a useful approach to proof-of-principle studies for biologic therapies to the brain in animal models.


Assuntos
Aminopeptidases/genética , Apolipoproteínas E/farmacocinética , Barreira Hematoencefálica/efeitos dos fármacos , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Portadores de Fármacos , Lipofuscinoses Ceroides Neuronais/terapia , Peptídeos/farmacocinética , Serina Proteases/genética , Sequência de Aminoácidos , Aminopeptidases/deficiência , Animais , Apolipoproteínas E/química , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/patologia , Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Modelos Animais de Doenças , Endocitose , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Terapia de Reposição de Enzimas/métodos , Regulação da Expressão Gênica , Humanos , Lactente , Injeções Intravenosas , Camundongos , Lipofuscinoses Ceroides Neuronais/enzimologia , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/patologia , Peptídeos/química , Serina Proteases/deficiência , Análise de Sobrevida , Resultado do Tratamento , Tripeptidil-Peptidase 1
14.
Sci Transl Med ; 7(313): 313ra180, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26560358

RESUMO

The most common form of the childhood neurodegenerative disease late infantile neuronal ceroid lipofuscinosis (also called Batten disease) is caused by deficiency of the soluble lysosomal enzyme tripeptidyl peptidase 1 (TPP1) resulting from mutations in the TPP1 gene. We tested whether TPP1 gene transfer to the ependyma, the epithelial lining of the brain ventricular system, in TPP1-deficient dogs would be therapeutically beneficial. A one-time administration of recombinant adeno-associated virus (rAAV) expressing canine TPP1 (rAAV.caTPP1) resulted in high expression of TPP1 predominantly in ependymal cells and secretion of the enzyme into the cerebrospinal fluid leading to clinical benefit. Diseased dogs treated with rAAV.caTPP1 showed delays in onset of clinical signs and disease progression, protection from cognitive decline, and extension of life span. By immunostaining and enzyme assay, recombinant protein was evident throughout the brain and spinal cord, with correction of the neuropathology characteristic of the disease. This study in a naturally occurring canine model of TPP1 deficiency highlights the utility of AAV transduction of ventricular lining cells to accomplish stable secretion of recombinant protein for broad distribution in the central nervous system and therapeutic benefit.


Assuntos
Aminopeptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Terapia de Reposição de Enzimas , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/terapia , Serina Proteases/genética , Transdução Genética , Aminopeptidases/líquido cefalorraquidiano , Aminopeptidases/deficiência , Animais , Ventrículos Cerebrais/metabolismo , Dependovirus/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/líquido cefalorraquidiano , Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Modelos Animais de Doenças , Cães , Vetores Genéticos/administração & dosagem , Serina Proteases/líquido cefalorraquidiano , Serina Proteases/deficiência , Tripeptidil-Peptidase 1
15.
PLoS One ; 10(3): e0121073, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25803442

RESUMO

Melanization mediated by the prophenoloxidase (proPO) activating system is a rapid immune response used by invertebrates against intruding pathogens. Several masquerade-like and serine proteinase homologues (SPHs) have been demonstrated to play an essential role in proPO activation in insects and crustaceans. In a previous study, we characterized the masquerade-like SPH, PmMasSPH1, in the black tiger shrimp Penaeus monodon as a multifunctional immune protein based on its recognition and antimicrobial activity against the Gram-negative bacteria Vibrio harveyi. In the present study, we identify a novel SPH, known as PmMasSPH2, composed of an N-terminal clip domain and a C-terminal SP-like domain that share high similarity to those of other insect and crustacean SPHs. We demonstrate that gene silencing of PmMasSPH1 and PmMasSPH2 significantly reduces PO activity, resulting in a high number of V. harveyi in the hemolymph. Interestingly, knockdown of PmMasSPH1 suppressed not only its gene transcript but also other immune-related genes in the proPO system (e.g., PmPPAE2) and antimicrobial peptides (e.g., PenmonPEN3, PenmonPEN5, crustinPm1 and Crus-likePm). The PmMasSPH1 and PmMasSPH2 also show binding activity to peptidoglycan (PGN) of Gram-positive bacteria. Using a yeast two-hybrid analysis and co-immunoprecipitation, we demonstrate that PmMasSPH1 specifically interacted with the final proteinase of the proPO cascade, PmPPAE2. Furthermore, the presence of both PmMasSPH1 and PmPPAE2 enhances PGN-induced PO activity in vitro. Taken together, these results suggest the importance of PmMasSPHs in the activation of the shrimp proPO system.


Assuntos
Catecol Oxidase/metabolismo , Precursores Enzimáticos/metabolismo , Penaeidae/enzimologia , Homologia de Sequência de Aminoácidos , Serina Proteases/química , Serina Proteases/metabolismo , Sequência de Aminoácidos , Animais , Parede Celular/metabolismo , Ativação Enzimática , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Bactérias Gram-Positivas/citologia , Bactérias Gram-Positivas/metabolismo , Bactérias Gram-Positivas/fisiologia , Hemolinfa/enzimologia , Hemolinfa/microbiologia , Larva/crescimento & desenvolvimento , Dados de Sequência Molecular , Penaeidae/genética , Penaeidae/crescimento & desenvolvimento , Penaeidae/microbiologia , Peptidoglicano/metabolismo , Interferência de RNA , Análise de Sequência , Serina Proteases/deficiência , Serina Proteases/genética
16.
Exp Eye Res ; 125: 164-72, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24954537

RESUMO

Late-infantile neuronal ceroid lipofuscinosis (CLN2 disease) is a hereditary neurological disorder characterized by progressive retinal degeneration and vision loss, cognitive and motor decline, seizures, and pronounced brain atrophy. This fatal pediatric disease is caused by mutations in the CLN2 gene which encodes the lysosomal enzyme tripeptidyl peptidase-1 (TPP1). Utilizing a TPP1-/- Dachshund model of CLN2 disease, studies were conducted to assess the effects of TPP1 enzyme replacement administered directly to the CNS on disease progression. Recombinant human TPP1 (rhTPP1) or artificial cerebrospinal fluid vehicle was administered to CLN2-affected dogs via infusion into the CSF. Untreated and vehicle treated affected dogs exhibited progressive declines in pupillary light reflexes (PLRs) and electroretinographic (ERG) responses to light stimuli. Studies were undertaken to determine whether CSF administration of rhTPP1 alters progression of the PLR and ERG deficits in the canine model. rhTPP1 administration did not inhibit the decline in ERG responses, as rhTPP1 treated, vehicle treated, and untreated dogs all exhibited similar progressive and profound declines in ERG amplitudes. However, in some of the dogs treated with rhTPP1 there were substantial delays in the appearance and progression of PLR deficits compared with untreated or vehicle treated affected dogs. These findings indicate that CSF administration of TPP1 can attenuate functional impairment of neural pathways involved in mediating the PLR but does not prevent loss of retinal responses detectable with ERG.


Assuntos
Aminopeptidases/uso terapêutico , Dipeptidil Peptidases e Tripeptidil Peptidases/uso terapêutico , Terapia de Reposição de Enzimas , Lipofuscinoses Ceroides Neuronais/tratamento farmacológico , Reflexo Pupilar/efeitos dos fármacos , Serina Proteases/uso terapêutico , Aminopeptidases/deficiência , Análise de Variância , Animais , Axônios , Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Modelos Animais de Doenças , Progressão da Doença , Cães , Eletrorretinografia/efeitos dos fármacos , Lipofuscinoses Ceroides Neuronais/fisiopatologia , Nervo Óptico/citologia , Proteínas Recombinantes/uso terapêutico , Serina Proteases/deficiência , Tripeptidil-Peptidase 1
17.
PLoS One ; 8(11): e80062, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244609

RESUMO

Streptococcus (S.) pneumoniae is a common causative pathogen in pneumonia. Serine protease orthologs expressed by a variety of bacteria have been found of importance for virulence. Previous studies have identified two serine proteases in S. pneumoniae, HtrA (high-temperature requirement A) and PrtA (cell wall-associated serine protease A), that contributed to virulence in models of pneumonia and intraperitoneal infection respectively. We here sought to identify additional S. pneumoniae serine proteases and determine their role in virulence. The S. pneumoniae D39 genome contains five putative serine proteases, of which HtrA, Subtilase Family Protein (SFP) and PrtA were selected for insertional mutagenesis because they are predicted to be secreted and surface exposed. Mutant D39 strains lacking serine proteases were constructed by in-frame insertion deletion mutagenesis. Pneumonia was induced by intranasal infection of mice with wild-type or mutant D39. After high dose infection, only D39ΔhtrA showed reduced virulence, as reflected by strongly reduced bacterial loads, diminished dissemination and decreased lung inflammation. D39ΔprtA induced significantly less lung inflammation together with smaller infiltrated lung surface, but without influencing bacterial loads. After low dose infection, D39ΔhtrA again showed strongly reduced bacterial loads; notably, pneumococcal burdens were also modestly lower in lungs after infection with D39Δsfp. These data confirm the important role for HtrA in S. pneumoniae virulence. PrtA contributes to lung damage in high dose pneumonia; it does not however contribute to bacterial outgrowth in pneumococcal pneumonia. SFP may facilitate S. pneumoniae growth after low dose infection.


Assuntos
Proteínas de Bactérias/genética , Genoma Bacteriano , Serina Proteases/genética , Streptococcus pneumoniae/patogenicidade , Fatores de Virulência/genética , Animais , Proteínas de Bactérias/metabolismo , Contagem de Colônia Microbiana , Feminino , Técnicas de Inativação de Genes , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos , Mutagênese Insercional , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/patologia , Serina Proteases/deficiência , Streptococcus pneumoniae/genética , Fatores de Virulência/deficiência
19.
Brain ; 136(Pt 5): 1488-507, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23587805

RESUMO

Tripeptidyl peptidase 1 (TPP1) deficiency causes CLN2 disease, late infantile (or classic late infantile neuronal ceroid lipofuscinosis), a paediatric neurodegenerative disease of autosomal recessive inheritance. Patients suffer from blindness, ataxia, epilepsy and cognitive defects, with MRI indicating widespread brain atrophy, and profound neuron loss is evident within the retina and brain. Currently there are no effective therapies for this disease, which causes premature death in adolescence. Zebrafish have been successfully used to model a range of neurological and behavioural abnormalities. The aim of this study was to characterize the pathological and functional consequences of Tpp1 deficiency in zebrafish and to correlate these with human CLN2 disease, thereby providing a platform for drug discovery. Our data show that homozygous tpp1(sa0011) mutant (tpp1(sa0011)(-/-)) zebrafish display a severe, progressive, early onset neurodegenerative phenotype, characterized by a significantly small retina, a small head and curved body. The mutant zebrafish have significantly reduced median survival with death occurring 5 days post-fertilization. As in human patients with CLN2 disease, mutant zebrafish display storage of subunit c of mitochondrial ATP-synthase, hypertrophic lysosomes as well as localized apoptotic cell death in the retina, optic tectum and cerebellum. Further neuropathological phenotypes of these mutants provide novel insights into mechanisms of pathogenesis in CLN2 disease. Secondary neurogenesis in the retina, optic tectum and cerebellum is impaired and axon tracts within the spinal cord, optic nerve and the posterior commissure are disorganized, with the optic nerve failing to reach its target. This severe neurodegenerative phenotype eventually results in functional motor impairment, but this is preceded by a phase of hyperactivity that is consistent with seizures. Importantly, both of these locomotion phenotypes can be assayed in an automated manner suitable for high-throughput studies. Our study provides proof-of-principle that tpp1(sa0011)(-/-) mutants can utilize the advantages of zebrafish for understanding pathogenesis and drug discovery in CLN2 disease and other epilepsies.


Assuntos
Aminopeptidases/deficiência , Proliferação de Células , Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Progressão da Doença , Lipofuscinoses Ceroides Neuronais/enzimologia , Lipofuscinoses Ceroides Neuronais/patologia , Serina Proteases/deficiência , Aminopeptidases/genética , Aminopeptidases/fisiologia , Animais , Animais Geneticamente Modificados , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/fisiologia , Modelos Animais de Doenças , Inibidores do Crescimento/deficiência , Inibidores do Crescimento/genética , Inibidores do Crescimento/fisiologia , Humanos , Atividade Motora/fisiologia , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Lipofuscinoses Ceroides Neuronais/genética , Serina Proteases/genética , Serina Proteases/fisiologia , Tripeptidil-Peptidase 1 , Peixe-Zebra
20.
Cardiovasc Res ; 97(3): 443-53, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23213106

RESUMO

AIMS: Cardiac valve disease is a common cause of congenital heart failure. Cardiac valve development requires a complex regulation of assorted protease activities. Nevertheless, the regulation of these proteases during atrioventricular (AV) valve formation is poorly understood. Previously, PRSS23, a novel vascular protease, is shown to be highly expressed at the AV canal during murine heart development; however, its function remains unknown. In this study, we sought to characterize the functional role of PRSS23 during cardiac valve formation. METHODS AND RESULTS: We used a transgenic zebrafish line with fluorescently labelled vasculature as a tool to study the function of PRSS23. We first cloned the zebrafish prss23 and confirmed its sequence conservation with other vertebrate orthologues. Expression of prss23 was detected in the ventricle, atrium, and AV canal during zebrafish embryonic development. We found that morpholino knockdown of Prss23 inhibited the endothelial-to-mesenchymal transition (EndoMT) at the AV canal. Moreover, in human aortic endothelial cell-based assays, PRSS23 knockdown by short-hairpin RNA not only repressed the transforming growth factor-ß-induced EndoMT, but also reduced Snail transcription, suggesting that Snail signalling is downstream of PRSS23 during EndoMT. We further demonstrated that human PRSS23 and SNAIL could rescue the prss23 morpholino-induced AV canal defect in zebrafish embryos, indicating that the function of PRSS23 in valvulogenesis is evolutionarily conserved. CONCLUSION: We demonstrated for the first time that the initiation of EndoMT in valvulogenesis depends on PRSS23-Snail signalling and that the functional role of PRSS23 during AV valve formation is evolutionarily conserved.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Valvas Cardíacas/embriologia , Serina Proteases/fisiologia , Fatores de Transcrição/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Valvas Cardíacas/fisiologia , Humanos , Modelos Animais , Morfolinos/farmacologia , RNA Interferente Pequeno/farmacologia , Serina Endopeptidases , Serina Proteases/deficiência , Serina Proteases/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição da Família Snail , Fator de Crescimento Transformador beta2/farmacologia , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA