Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 517
Filtrar
1.
Phys Chem Chem Phys ; 26(18): 13751-13761, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38683175

RESUMO

Understanding the dynamics of neurotransmitters is crucial for unraveling synaptic transmission mechanisms in neuroscience. In this study, we investigated the impact of terahertz (THz) waves on the aggregation of four common neurotransmitters through all-atom molecular dynamics (MD) simulations. The simulations revealed enhanced nicotine (NCT) aggregation under 11.05 and 21.44 THz, with a minimal effect at 42.55 THz. Structural analysis further indicated strengthened intermolecular interactions and weakened hydration effects under specific THz stimulation. In addition, enhanced aggregation was observed at stronger field strengths, particularly at 21.44 THz. Furthermore, similar investigations on epinephrine (EPI), 5-hydroxytryptamine (5-HT), and γ-aminobutyric acid (GABA) corroborated these findings. Notably, EPI showed increased aggregation at 19.05 THz, emphasizing the influence of vibrational modes on aggregation. However, 5-HT and GABA, with charged or hydrophilic functional groups, exhibited minimal aggregation under THz stimulation. The present study sheds some light on neurotransmitter responses to THz waves, offering implications for neuroscience and interdisciplinary applications.


Assuntos
Simulação de Dinâmica Molecular , Neurotransmissores , Serotonina , Radiação Terahertz , Ácido gama-Aminobutírico , Neurotransmissores/química , Ácido gama-Aminobutírico/química , Serotonina/química , Serotonina/metabolismo , Nicotina/química , Epinefrina/química
2.
Chem Commun (Camb) ; 60(37): 4926-4929, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38629227

RESUMO

A turn-on fluorescence aptasensing approach for the highly sensitive and selective determination of 5-HT was proposed via target-induced knot displacement. 5-HT can be determined in a range from 0.5 nM to 100 nM with a limit of detection as low as 0.1 nM and a low dissociation constant of 2.3 nM.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Corantes Fluorescentes , Serotonina , Espectrometria de Fluorescência , Aptâmeros de Nucleotídeos/química , Serotonina/análise , Serotonina/química , Técnicas Biossensoriais/métodos , Corantes Fluorescentes/química , Limite de Detecção , Humanos , Fluorescência
3.
Chembiochem ; 25(9): e202400069, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38504591

RESUMO

Arylalkylamine N-acetyltransferase (AANAT) serves as a key enzyme in the biosynthesis of melatonin by transforming 5-hydroxytryptamine (5-HT) to N-acetyl-5-hydroxytryptamine (NAS), while its low activity may hinder melatonin yield. In this study, a novel AANAT derived from Sus scrofa (SsAANAT) was identified through data mining using 5-HT as a model substrate, and a rational design of SsAANAT was conducted in the quest to improving its activity. After four rounds of mutagenesis procedures, a triple combinatorial dominant mutant M3 was successfully obtained. Compared to the parent enzyme, the conversion of the whole-cell reaction bearing the best variant M3 exhibted an increase from 50 % to 99 % in the transformation of 5-HT into NAS. Additionally, its catalytic efficiency (kcat/Km) was enhanced by 2-fold while retaining the thermostability (Tm>45 °C). In the up-scaled reaction with a substrate loading of 50 mM, the whole-cell system incorporating variant M3 achieved a 99 % conversion of 5-HT in 30 h with an 80 % yield. Molecular dynamics simulations were ultilized to shed light on the origin of improved activity. This study broadens the repertoire of AANAT for the efficient biosynthesis of melatonin.


Assuntos
Arilalquilamina N-Acetiltransferase , Serotonina , Arilalquilamina N-Acetiltransferase/metabolismo , Arilalquilamina N-Acetiltransferase/genética , Arilalquilamina N-Acetiltransferase/química , Serotonina/metabolismo , Serotonina/química , Serotonina/biossíntese , Animais , Acetilação , Engenharia de Proteínas , Suínos
4.
Nature ; 629(8010): 235-243, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499039

RESUMO

Biogenic monoamines-vital transmitters orchestrating neurological, endocrinal and immunological functions1-5-are stored in secretory vesicles by vesicular monoamine transporters (VMATs) for controlled quantal release6,7. Harnessing proton antiport, VMATs enrich monoamines around 10,000-fold and sequester neurotoxicants to protect neurons8-10. VMATs are targeted by an arsenal of therapeutic drugs and imaging agents to treat and monitor neurodegenerative disorders, hypertension and drug addiction1,8,11-16. However, the structural mechanisms underlying these actions remain unclear. Here we report eight cryo-electron microscopy structures of human VMAT1 in unbound form and in complex with four monoamines (dopamine, noradrenaline, serotonin and histamine), the Parkinsonism-inducing MPP+, the psychostimulant amphetamine and the antihypertensive drug reserpine. Reserpine binding captures a cytoplasmic-open conformation, whereas the other structures show a lumenal-open conformation stabilized by extensive gating interactions. The favoured transition to this lumenal-open state contributes to monoamine accumulation, while protonation facilitates the cytoplasmic-open transition and concurrently prevents monoamine binding to avoid unintended depletion. Monoamines and neurotoxicants share a binding pocket that possesses polar sites for specificity and a wrist-and-fist shape for versatility. Variations in this pocket explain substrate preferences across the SLC18 family. Overall, these structural insights and supporting functional studies elucidate the mechanism of vesicular monoamine transport and provide the basis to develop therapeutics for neurodegenerative diseases and substance abuse.


Assuntos
Monoaminas Biogênicas , Interações Medicamentosas , Proteínas Vesiculares de Transporte de Monoamina , Humanos , 1-Metil-4-fenilpiridínio/química , 1-Metil-4-fenilpiridínio/metabolismo , 1-Metil-4-fenilpiridínio/farmacologia , Anfetamina/química , Anfetamina/farmacologia , Anfetamina/metabolismo , Sítios de Ligação , Monoaminas Biogênicas/química , Monoaminas Biogênicas/metabolismo , Microscopia Crioeletrônica , Dopamina/química , Dopamina/metabolismo , Modelos Moleculares , Norepinefrina/química , Norepinefrina/metabolismo , Ligação Proteica , Prótons , Reserpina/farmacologia , Reserpina/química , Reserpina/metabolismo , Serotonina/química , Serotonina/metabolismo , Especificidade por Substrato , Proteínas Vesiculares de Transporte de Monoamina/química , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/ultraestrutura
5.
Nat Nanotechnol ; 19(5): 660-667, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38233588

RESUMO

Small molecules such as neurotransmitters are critical for biochemical functions in living systems. While conventional ultraviolet-visible spectroscopy and mass spectrometry lack portability and are unsuitable for time-resolved measurements in situ, techniques such as amperometry and traditional field-effect detection require a large ensemble of molecules to reach detectable signal levels. Here we demonstrate the potential of carbon-nanotube-based single-molecule field-effect transistors (smFETs), which can detect the charge on a single molecule, as a new platform for recognizing and assaying small molecules. smFETs are formed by the covalent attachment of a probe molecule, in our case a DNA aptamer, to a carbon nanotube. Conformation changes on binding are manifest as discrete changes in the nanotube electrical conductance. By monitoring the kinetics of conformational changes in a binding aptamer, we show that smFETs can detect and quantify serotonin at the single-molecule level, providing unique insights into the dynamics of the aptamer-ligand system. In particular, we show the involvement of G-quadruplex formation and the disruption of the native hairpin structure in the conformational changes of the serotonin-aptamer complex. The smFET is a label-free approach to analysing molecular interactions at the single-molecule level with high temporal resolution, providing additional insights into complex biological processes.


Assuntos
Aptâmeros de Nucleotídeos , Nanotubos de Carbono , Serotonina , Transistores Eletrônicos , Aptâmeros de Nucleotídeos/química , Nanotubos de Carbono/química , Cinética , Ligantes , Serotonina/química , Serotonina/metabolismo , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação
6.
J Biomol Struct Dyn ; 42(2): 993-1014, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37021485

RESUMO

The human serotonin transporters (hSERTs) are neurotransmitter sodium symporters of the aminergic G protein-coupled receptors, regulating the synaptic serotonin and neuropharmacological processes related to neuropsychiatric disorders, notably, depression. Selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine and (S)-citalopram are competitive inhibitors of hSERTs and are commonly the first-line medications for major depressive disorder (MDD). However, treatment-resistance and unpleasant aftereffects constitute their clinical drawbacks. Interestingly, vilazodone emerged with polypharmacological (competitive and allosteric) inhibitions on hSERTs, amenable to improved efficacy. However, its application usually warrants adjuvant/combination therapy, another subject of critical adverse events. Thus, the discovery of alternatives with polypharmacological potentials (one-drug-multiple-target) and improved safety remains essential. In this study, carbazole analogues from chemical libraries were explored using docking and molecular dynamics (MD) simulation. Selectively, two IBScreen ligands, STOCK3S-30866 and STOCK1N-37454 predictively bound to the active pockets and expanded boundaries (extracellular vestibules) of the hSERTs more potently than vilazodone and (S)-citalopram. For instance, the two ligands showed docking scores of -9.52 and -9.59 kcal/mol and MM-GBSA scores of -92.96 and -65.66 kcal/mol respectively compared to vilazodone's respective scores of -7.828 and -59.27 against the central active site of the hSERT (PDB 7LWD). Similarly, the two ligands also docked to the allosteric pocket (PDB 5I73) with scores of -8.15 and -8.40 kcal/mol and MM-GBSA of -96.14 and -68.46 kcal/mol whereas (S)-citalopram has -6.90 and -69.39 kcal/mol respectively. The ligands also conferred conformational stability on the receptors during 100 ns MD simulations and displayed interesting ADMET profiles, representing promising hSERT modulators for MDD upon experimental validation.Communicated by Ramaswamy H. Sarma.


Assuntos
Transtorno Depressivo Maior , Proteínas da Membrana Plasmática de Transporte de Serotonina , Humanos , Proteínas da Membrana Plasmática de Transporte de Serotonina/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Cloridrato de Vilazodona , Citalopram/farmacologia , Citalopram/metabolismo , Serotonina/química , Serotonina/metabolismo , Simulação de Dinâmica Molecular , Carbazóis/farmacologia , Simulação de Acoplamento Molecular
7.
Nature ; 626(7998): 427-434, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081299

RESUMO

Vesicular monoamine transporter 2 (VMAT2) accumulates monoamines in presynaptic vesicles for storage and exocytotic release, and has a vital role in monoaminergic neurotransmission1-3. Dysfunction of monoaminergic systems causes many neurological and psychiatric disorders, including Parkinson's disease, hyperkinetic movement disorders and depression4-6. Suppressing VMAT2 with reserpine and tetrabenazine alleviates symptoms of hypertension and Huntington's disease7,8, respectively. Here we describe cryo-electron microscopy structures of human VMAT2 complexed with serotonin and three clinical drugs at 3.5-2.8 Å, demonstrating the structural basis for transport and inhibition. Reserpine and ketanserin occupy the substrate-binding pocket and lock VMAT2 in cytoplasm-facing and lumen-facing states, respectively, whereas tetrabenazine binds in a VMAT2-specific pocket and traps VMAT2 in an occluded state. The structures in three distinct states also reveal the structural basis of the VMAT2 transport cycle. Our study establishes a structural foundation for the mechanistic understanding of substrate recognition, transport, drug inhibition and pharmacology of VMAT2 while shedding light on the rational design of potential therapeutic agents.


Assuntos
Microscopia Crioeletrônica , Proteínas Vesiculares de Transporte de Monoamina , Humanos , Sítios de Ligação , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Ketanserina/química , Ketanserina/metabolismo , Ketanserina/farmacologia , Reserpina/química , Reserpina/metabolismo , Reserpina/farmacologia , Serotonina/química , Serotonina/metabolismo , Especificidade por Substrato , Tetrabenazina/química , Tetrabenazina/metabolismo , Tetrabenazina/farmacologia , Proteínas Vesiculares de Transporte de Monoamina/antagonistas & inibidores , Proteínas Vesiculares de Transporte de Monoamina/química , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/ultraestrutura
8.
Sci Rep ; 13(1): 10239, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353529

RESUMO

In this work, CoNiWO4 nanocomposite was used as an electrochemical sensor for the simultaneous electrochemical detection of tramadol and serotonin. The nanocomposite was synthesized using a hydrothermal method and characterized via XRD, SEM, TGA, Zeta, UV, and FTIR. The sensor was developed by depositing CoNiWO4-NPs onto the glassy carbon electrode surface. Tramadol and serotonin were detected by employing cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and chronoamperometry. Analytes were detected at different pH, concentrations, and scan rates. The prepared sensor showed a 0-60 µM linear range, with a LOD of 0.71 µM and 4.29 µM and LOQ of 14.3 µM and 2.3 µM for serotonin and tramadol, respectively. Finally, the modified electrode (CoNiWO4-GCE) was applied to determine tramadol and serotonin in biological samples.


Assuntos
Tramadol , Serotonina/química , Níquel/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Analgésicos , Eletrodos , Neurotransmissores
9.
J Chem Inf Model ; 63(4): 1196-1207, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36757760

RESUMO

Pentameric ligand-gated ion channels play an important role in mediating fast neurotransmissions. As a member of this receptor family, cation-selective 5-HT3 receptors are a clinical target for treating nausea and vomiting associated with chemotherapy and radiation therapy (Thompson and Lummis, 2006). Multiple cryo-electron microscopy (cryo-EM) structures of 5-HT3 receptors have been determined in distinct functional states (e.g., open, closed, etc.) (Basak et al., 2018; Basak et al., 2018; Polovinkin et al., 2018; Zhang et al., 2015). However, recent work has shown that the transmembrane pores of the open 5-HT3 receptor structures rapidly collapse and become artificially asymmetric in molecular dynamics (MD) simulations. To avoid this hydrophobic collapse, Dämgen and Biggin developed an equilibration protocol that led to a stable open state structure of the glycine receptor in MD simulations (Dämgen and Biggin, 2020). However, the protocol failed to yield open-like structures of the 5-HT3 receptor in our simulations. Here, we present a refined equilibration protocol that involves the rearrangement of the transmembrane helices to achieve stable open state structures of the 5-HT3 receptor that allow both water and ion permeation through the channel. Notably, channel gating is mediated through collective movement of the transmembrane helices, involving not only pore lining M2 helices but also their cross-talk with the adjacent M1 and M3 helices. Thus, the successful application of our refined equilibration protocol underscores the importance of the conformational coupling between the transmembrane helices in stabilizing open-like structures of the 5-HT3 receptor.


Assuntos
Simulação de Dinâmica Molecular , Serotonina , Serotonina/química , Serotonina/metabolismo , Microscopia Crioeletrônica , Estrutura Secundária de Proteína , Transporte de Íons , Receptores 5-HT3 de Serotonina/química , Receptores 5-HT3 de Serotonina/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-36078233

RESUMO

The aim of this study was to evaluate the influence of ß-endorphins and serotonin on the course of treatment, disease-free time, and overall survival of patients with ovarian cancer. This study may contribute to the identification of modifiable factors that may influence the treatment of ovarian cancer. The research was carried out in a group of 162 patients of which 139 respondents were included in the research; ovarian cancer was diagnosed in 78 of these patients. The study consisted of three stages. In the first stage of diagnostics, a survey among the patients was carried out. In the second stage-5 mL of blood was collected from each patient (n = 139) in the preoperative period to determine the concentration of ß-endorphin and serotonin. In the third stage-blood samples were collected from those patients who had completed chemotherapy treatment or had surgery. Concentrations of ß-endorphin and serotonin were measured by the Luminex method, using the commercial Luminex Human Discovery Assay kit. The average age of the patients was 62.99 years. The level of ß-endorphin significantly differs among patients diagnosed with ovarian cancer and among patients in the control group (202.86; SD-15.78 vs. 302.00; SD-24.49). A lower level of ß-endorphins was found in the patients with a recurrence of the neoplastic process compared to those without recurrence (178.84; SD-12.98 vs. 205.66; SD-13.37). On the other hand, the level of serotonin before chemotherapy was higher in the group of people with disease recurrence compared to those without recurrence (141.53; SD-15.33 vs. 134.99; SD-10.08). Statistically significantly positive correlations were found between the level of ß-endorphin and both disease-free time (ß-endorphin levels before chemotherapy: rho Spearman 0.379, p < 0.027; ß-endorphin levels after chemotherapy: rho Spearman 0.734 p < 0.001) and survival time (ß-endorphin levels before chemotherapy: rho Spearman 0.267, p < 0.018; ß-endorphin levels after chemotherapy: rho Spearman 0.654 p < 0.001). 1. The levels of serotonin and ß-endorphin levels are significantly related to ovarian cancer and change during treatment. 2. High mean preoperative concentrations of ß-endorphins were significantly related to overall survival and disease-free time.


Assuntos
Endorfinas , Neoplasias Ovarianas , Serotonina , beta-Endorfina , Fatores Biológicos , Endorfinas/química , Endorfinas/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/tratamento farmacológico , Serotonina/química , Serotonina/metabolismo , beta-Endorfina/metabolismo
11.
Science ; 375(6579): 403-411, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35084960

RESUMO

Drugs that target the human serotonin 2A receptor (5-HT2AR) are used to treat neuropsychiatric diseases; however, many have hallucinogenic effects, hampering their use. Here, we present structures of 5-HT2AR complexed with the psychedelic drugs psilocin (the active metabolite of psilocybin) and d-lysergic acid diethylamide (LSD), as well as the endogenous neurotransmitter serotonin and the nonhallucinogenic psychedelic analog lisuride. Serotonin and psilocin display a second binding mode in addition to the canonical mode, which enabled the design of the psychedelic IHCH-7113 (a substructure of antipsychotic lumateperone) and several 5-HT2AR ß-arrestin-biased agonists that displayed antidepressant-like activity in mice but without hallucinogenic effects. The 5-HT2AR complex structures presented herein and the resulting insights provide a solid foundation for the structure-based design of safe and effective nonhallucinogenic psychedelic analogs with therapeutic effects.


Assuntos
Antidepressivos/farmacologia , Desenho de Fármacos , Alucinógenos/química , Alucinógenos/farmacologia , Receptor 5-HT2A de Serotonina/química , Animais , Antidepressivos/química , Antidepressivos/metabolismo , Arrestina/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Alucinações/induzido quimicamente , Alucinógenos/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/química , Humanos , Ligantes , Lisurida/química , Lisurida/metabolismo , Dietilamida do Ácido Lisérgico/química , Dietilamida do Ácido Lisérgico/metabolismo , Camundongos , Conformação Proteica , Psilocibina/análogos & derivados , Psilocibina/química , Psilocibina/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Serotonina/química , Serotonina/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade
12.
J Biol Chem ; 298(3): 101613, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065961

RESUMO

The human serotonin transporter (hSERT) terminates neurotransmission by removing serotonin (5HT) from the synaptic cleft, an essential process for proper functioning of serotonergic neurons. Structures of the hSERT have revealed its molecular architecture in four conformations, including the outward-open and occluded states, and show the transporter's engagement with co-transported ions and the binding mode of inhibitors. In this study, we investigated the molecular mechanism by which the hSERT occludes and sequesters the substrate 5HT. This first step of substrate uptake into cells is a structural change consisting of the transition from the outward-open to the occluded state. Inhibitors such as the antidepressants citalopram, fluoxetine, and sertraline inhibit this step of the transport cycle. Using molecular dynamics simulations, we reached a fully occluded state, in which the transporter-bound 5HT becomes fully shielded from both sides of the membrane by two closed hydrophobic gates. Analysis of 5HT-triggered occlusion showed that bound 5HT serves as an essential trigger for transporter occlusion. Moreover, simulations revealed a complex sequence of steps and showed that movements of bundle domain helices are only partially correlated. 5HT-triggered occlusion is initially dominated by movements of transmembrane helix 1b, while in the final step, only transmembrane helix 6a moves and relaxes an intermediate change in its secondary structure.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Serotonina , Serotonina , Citalopram/química , Citalopram/farmacologia , Humanos , Simulação de Dinâmica Molecular , Domínios Proteicos , Estrutura Secundária de Proteína , Serotonina/química , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/química , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Relação Estrutura-Atividade
13.
Mediators Inflamm ; 2021: 6652791, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557056

RESUMO

Thymus and Activation-Regulated Chemokine (TARC/CCL17) and Macrophage-Derived Chemokine (MDC/CCL22) are two key chemokines exerting their biological effect via binding and activating a common receptor CCR4, expressed at the surface of type 2 helper T (Th2) cells. By recruiting Th2 cells in the dermis, CCL17 and CCL22 promote the development of inflammation in atopic skin. The aim of this research was to develop a plant extract whose biological properties, when applied topically, could be beneficial for people with atopic-prone skin. The strategy which was followed consisted in identifying ligands able to neutralize the biological activity of CCL17 and CCL22. Thus, an in silico molecular modeling and a generic screening assay were developed to screen natural molecules binding and blocking these two chemokines. N-Feruloylserotonin was identified as a neutraligand of CCL22 in these experiments. A cornflower extract containing N-feruloylserotonin was selected for further in vitro tests: the gene expression modulation of inflammation biomarkers induced by CCL17 or CCL22 in the presence or absence of this extract was assessed in the HaCaT keratinocyte cell line. Additionally, the same cornflower extract in another vehicle was evaluated in parallel with N-feruloylserotonin for cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) enzymatic cellular inhibition. The cornflower extract was shown to neutralize the two chemokines in vitro, inhibited COX-2 and 5-LOX, and demonstrated anti-inflammatory activities due mainly to the presence of N-feruloylserotonin. Although these findings would need to be confirmed in an in vivo study, the in vitro studies lay the foundation to explain the benefits of the cornflower extract when applied topically to individuals with atopic-prone skin.


Assuntos
Anti-Inflamatórios/farmacologia , Quimiocina CCL17/antagonistas & inibidores , Quimiocina CCL22/antagonistas & inibidores , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Lipoxigenase/farmacologia , Extratos Vegetais/farmacologia , Serotonina/análogos & derivados , Pele/efeitos dos fármacos , Zea mays/química , Células Cultivadas , Quimiocina CCL17/química , Quimiocina CCL22/química , Humanos , Simulação de Acoplamento Molecular , Extratos Vegetais/análise , Serotonina/química , Serotonina/farmacologia
14.
Angew Chem Int Ed Engl ; 60(44): 23552-23556, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34363735

RESUMO

Electrochemical methods were used to explore the exocytotic nature of serotonin (5-HT) release in human carcinoid BON cells, an in vitro human enterochromaffin cell model, to understand the mechanisms operating the release of gut-derived 5-HT in the intestinal mucosal epithelium. We show that the fractional vesicular 5-HT release in BON cells is 80 % compared to previous work in pancreatic beta cells (34 %). The fractional release increased from 80 % in control BON cells to 87 % with 5-HT preincubation and nearly 100 % with the combination of 5-HT and the 5-HT4 autoreceptor agonist, cisapride. Thus, partial release is the primary mechanism of exocytosis in BON cells, resulting in a variable amount of the vesicular content being released. Factors that control secretion of 5-HT from enterochromaffin cells or BON cells are important as partial release provides a mechanism for development of effective therapeutic strategies to treat gastrointestinal diseases.


Assuntos
Técnicas Eletroquímicas , Células Enterocromafins/efeitos dos fármacos , Nanotecnologia , Serotonina/farmacologia , Liberação Controlada de Fármacos , Exocitose/efeitos dos fármacos , Gastroenteropatias/tratamento farmacológico , Humanos , Serotonina/química
15.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1866(12): 159044, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34450265

RESUMO

During analysis of components of baobab (Adansonia digitata) seed oil, several new fluorescent compounds were detected in HPLC chromatograms that were not found previously in any seed oils investigated so far. After preparative isolation of these compounds, structural analysis by NMR spectroscopy, UHPLC-HR-MS, GC-FID and spectroscopic methods were applied and allowed identification of these substances as series of N-acylserotonins containing saturated C22 to C26 fatty acids with minor contribution of C27 to C30 homologues. The main component was N-lignocerylserotonin and the content of odd carbon-atom-number fatty acids was unusually high among the homologues. The suggested structure of the investigated compounds was additionally confirmed by their chemical synthesis. Synthetic N-acylserotonins showed pronounced inhibition of membrane lipid peroxidation of liposomes prepared from chloroplast lipids, especially when the peroxidation was initiated by a water-soluble azo-initiator, AIPH. Comparative studies of the reaction rate constants of the N-acylserotonins and tocopherols with a stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) in solvents of different polarity revealed that N-acylserotonins showed similar activity to δ-tocopherol in this respect. The described compounds have been not reported before either in plants or in animals. This indicates that we have identified a new class of plant lipids with antioxidant properties that could have promising pharmacological activities.


Assuntos
Adansonia/química , Antioxidantes/química , Lipídeos/química , Serotonina/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Cromatografia Líquida de Alta Pressão , Peroxidação de Lipídeos/efeitos dos fármacos , Lipídeos/isolamento & purificação , Lipídeos/farmacologia , Lipólise , Espectroscopia de Ressonância Magnética , Óleos de Plantas/química , Sementes/química , Serotonina/análogos & derivados , Serotonina/isolamento & purificação , Serotonina/farmacologia , Água/química
17.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072751

RESUMO

Prevention of amyloid ß peptide (Aß) deposition via facilitation of Aß binding to its natural depot, human serum albumin (HSA), is a promising approach to preclude Alzheimer's disease (AD) onset and progression. Previously, we demonstrated the ability of natural HSA ligands, fatty acids, to improve the affinity of this protein to monomeric Aß by a factor of 3 (BBRC, 510(2), 248-253). Using plasmon resonance spectroscopy, we show here that another HSA ligand related to AD pathogenesis, serotonin (SRO), increases the affinity of the Aß monomer to HSA by a factor of 7/17 for Aß40/Aß42, respectively. Meanwhile, the structurally homologous SRO precursor, tryptophan (TRP), does not affect HSA's affinity to monomeric Aß, despite slowdown of the association and dissociation processes. Crosslinking with glutaraldehyde and dynamic light scattering experiments reveal that, compared with the TRP-induced effects, SRO binding causes more marked changes in the quaternary structure of HSA. Furthermore, molecular docking reveals distinct structural differences between SRO/TRP complexes with HSA. The disintegration of the serotonergic system during AD pathogenesis may contribute to Aß release from HSA in the central nervous system due to impairment of the SRO-mediated Aß trapping by HSA.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Serotonina/metabolismo , Albumina Sérica Humana/metabolismo , Doença de Alzheimer , Peptídeos beta-Amiloides/química , Sítios de Ligação , Humanos , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Multimerização Proteica , Serotonina/química , Albumina Sérica Humana/química , Relação Estrutura-Atividade , Temperatura
19.
J Biol Chem ; 297(1): 100863, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34118233

RESUMO

The serotonin transporter (SERT) shapes serotonergic neurotransmission by retrieving its eponymous substrate from the synaptic cleft. Ligands that discriminate between SERT and its close relative, the dopamine transporter DAT, differ in their association rate constant rather than their dissociation rate. The structural basis for this phenomenon is not known. Here we examined the hypothesis that the extracellular loops 2 (EL2) and 4 (EL4) limit access to the ligand-binding site of SERT. We employed an antibody directed against EL4 (residues 388-400) and the antibody fragments 8B6 scFv (directed against EL2 and EL4) and 15B8 Fab (directed against EL2) and analyzed their effects on the transport cycle of and inhibitor binding to SERT. Electrophysiological recordings showed that the EL4 antibody and 8B6 scFv impeded the initial substrate-induced transition from the outward to the inward-facing conformation but not the forward cycling mode of SERT. In contrast, binding of radiolabeled inhibitors to SERT was enhanced by either EL4- or EL2-directed antibodies. We confirmed this observation by determining the association and dissociation rate of the DAT-selective inhibitor methylphenidate via electrophysiological recordings; occupancy of EL2 with 15B8 Fab enhanced the affinity of SERT for methylphenidate by accelerating its binding. Based on these observations, we conclude that (i) EL4 undergoes a major movement during the transition from the outward to the inward-facing state, and (ii) EL2 and EL4 limit access of inhibitors to the binding of SERT, thus acting as a selectivity filter. This insight has repercussions for drug development.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas de Membrana Transportadoras/genética , Conformação Proteica/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Sequência de Aminoácidos/genética , Animais , Sítios de Ligação/efeitos dos fármacos , Células COS , Chlorocebus aethiops , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Dopamina/ultraestrutura , Células HEK293 , Humanos , Ligantes , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/ultraestrutura , Técnicas de Patch-Clamp , Domínios Proteicos/genética , Serotonina/química , Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Serotonina/ultraestrutura , Inibidores Seletivos de Recaptação de Serotonina/química
20.
Mikrochim Acta ; 188(4): 146, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33792757

RESUMO

A sensitive and selective voltammetric biosensor composed of layer-by-layer (LbL) self-assembly of positively charged poly(diallyldimethylammonium)-wrapped oxidized single-walled carbon nanotubes (PDDA-oSWCNTs), negatively charged serotonin (5-hydroxytryptamine, 5-HT)-specific aptamer, and tyrosinase on Au nanoparticles deposited screen printed carbon electrode was developed for measurement of 5-HT. Surface characteristics of 5-HT biosensor were explored using scanning electron microscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. The respective effects of 5-HT-specific aptamer and oSWCNTs on the detection of 5-HT were investigated by differential pulse voltammetry (DPV). The peak current at the potential of 0.29 V (vs. Ag/AgCl) increased with respect to 5-HT concentration resulting in two dynamic ranges from 0.05 to 0.5 and 1 to 20 µM with a limit of detection of 2 nM from the LbL biosensor in buffer solution, which were better than those without the LbL of aptamer and oSWCNTs. The developed biosensor was applied to the direct determination of 5-HT concentrations in undiluted healthy control and Internet gaming disorder serum samples. The results were verified by comparison with those from liquid chromatography-mass spectrometric analyses.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , DNA/química , Técnicas Eletroquímicas/métodos , Nanocompostos/química , Serotonina/sangue , Agaricales/enzimologia , Enzimas Imobilizadas/química , Ouro/química , Humanos , Transtorno de Adição à Internet/sangue , Transtorno de Adição à Internet/diagnóstico , Limite de Detecção , Nanopartículas Metálicas/química , Monofenol Mono-Oxigenase/química , Nanotubos de Carbono/química , Polietilenos/química , Compostos de Amônio Quaternário/química , Serotonina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA