Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.544
Filtrar
1.
PLoS One ; 19(5): e0304331, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820426

RESUMO

Quorum sensing can induce density-dependent gene expressions that cause various problems. For quorum-sensing inhibition, fundamental solutions such as gene manipulation are required, and acyl-homoserine lactone synthase (AHL synthase), which synthesizes the universal quorum-sensing signal of gram-negative bacteria, can be used as a target. In this study, researchers synthesized His-tagged AHL synthase and its deletion mutant that lacks the active site and compared their biochemical characteristics. His-YpeI, the 6x His-tagged AHL synthase of Serratia fonticola, and His-ΔYpeI, its deletion mutant, were designed, and their property conservation were examined using in silico projection tools. For in vitro synthesis of enzymes, the His-YpeI CFPS template was synthesized by in vitro gene synthesis, and the His-ΔYpeI CFPS template was obtained by deletion PCR. CFPS was performed and the products were purified with the 6x His-tag. The enzymes' properties were compared using an enzymatic assay. The bioinformatic analysis confirmed the conservation of biochemical properties between 6x His-tagged and untagged enzymes, including helix-turn-helix interactions, hydropathy profiles, and tertiary structure between His-YpeI and YpeI and between His-ΔYpeI and ΔYpeI. His-YpeI and His-ΔYpeI synthesized by CFPS were found to have the expected molecular weights and demonstrated distinct differences in enzyme activity. The analyzed enzymatic constants supported a significant decrease in substrate affinity and reaction rate as a result of YpeI's enzyme active site deletion. This result showed that CFPS could be used for in vitro protein synthesis, and quorum sensing could be inhibited at the enzymatic level due to the enzyme active site's deletion mutation.


Assuntos
Percepção de Quorum , Percepção de Quorum/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Aciltransferases/química , Deleção de Sequência , Serratia/enzimologia , Serratia/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Domínio Catalítico , Sequência de Aminoácidos , Ligases
2.
Antonie Van Leeuwenhoek ; 117(1): 76, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705910

RESUMO

Despite being one of the most abundant elements in soil, phosphorus (P) often becomes a limiting macronutrient for plants due to its low bioavailability, primarily locked away in insoluble organic and inorganic forms. Phosphate solubilizing and mineralizing bacteria, also called phosphobacteria, isolated from P-deficient soils have emerged as a promising biofertilizer alternative, capable of converting these recalcitrant P forms into plant-available phosphates. Three such phosphobacteria strains-Serratia sp. RJAL6, Klebsiella sp. RCJ4, and Enterobacter sp. 198-previously demonstrated their particular strength as plant growth promoters for wheat, ryegrass, or avocado under abiotic stresses and P deficiency. Comparative genomic analysis of their draft genomes revealed several genes encoding key functionalities, including alkaline phosphatases, isonitrile secondary metabolites, enterobactin biosynthesis and genes associated to the production of indole-3-acetic acid (IAA) and gluconic acid. Moreover, overall genome relatedness indexes (OGRIs) revealed substantial divergence between Serratia sp. RJAL6 and its closest phylogenetic neighbours, Serratia nematodiphila and Serratia bockelmanii. This compelling evidence suggests that RJAL6 merits classification as a novel species. This in silico genomic analysis provides vital insights into the plant growth-promoting capabilities and provenance of these promising PSRB strains. Notably, it paves the way for further characterization and potential application of the newly identified Serratia species as a powerful bioinoculant in future agricultural settings.


Assuntos
Enterobacter , Genoma Bacteriano , Genômica , Ácidos Indolacéticos , Filogenia , Serratia , Microbiologia do Solo , Ácidos Indolacéticos/metabolismo , Serratia/genética , Serratia/isolamento & purificação , Serratia/metabolismo , Serratia/classificação , Enterobacter/genética , Enterobacter/isolamento & purificação , Enterobacter/classificação , Enterobacter/metabolismo , Klebsiella/genética , Klebsiella/metabolismo , Klebsiella/isolamento & purificação , Klebsiella/classificação , Desenvolvimento Vegetal , Solo/química , Reguladores de Crescimento de Plantas/metabolismo
3.
Microb Ecol ; 87(1): 64, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691215

RESUMO

Mosquitoes are a complex nuisance around the world and tropical countries bear the brunt of the burden of mosquito-borne diseases. Rwanda has had success in reducing malaria and some arboviral diseases over the last few years, but still faces challenges to elimination. By building our understanding of in situ mosquito communities in Rwanda at a disturbed, human-occupied site and at a natural, preserved site, we can build our understanding of natural mosquito microbiomes toward the goal of implementing novel microbial control methods. Here, we examined the composition of collected mosquitoes and their microbiomes at two diverse sites using Cytochrome c Oxidase I sequencing and 16S V4 high-throughput sequencing. The majority (36 of 40 species) of mosquitoes captured and characterized in this study are the first-known record of their species for Rwanda but have been characterized in other nations in East Africa. We found significant differences among mosquito genera and among species, but not between mosquito sexes or catch method. Bacteria of interest for arbovirus control, Asaia, Serratia, and Wolbachia, were found in abundance at both sites and varied greatly by species.


Assuntos
Bactérias , Culicidae , Microbiota , Wolbachia , Ruanda , Animais , Culicidae/microbiologia , Wolbachia/genética , Wolbachia/isolamento & purificação , Wolbachia/classificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Mosquitos Vetores/microbiologia , Feminino , Masculino , RNA Ribossômico 16S/genética , Serratia/genética , Serratia/isolamento & purificação , Serratia/classificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Sequenciamento de Nucleotídeos em Larga Escala
4.
BMC Microbiol ; 24(1): 181, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38789935

RESUMO

BACKGROUND: Lignin is an intricate phenolic polymer found in plant cell walls that has tremendous potential for being converted into value-added products with the possibility of significantly increasing the economics of bio-refineries. Although lignin in nature is bio-degradable, its biocatalytic conversion is challenging due to its stable complex structure and recalcitrance. In this context, an understanding of strain's genomics, enzymes, and degradation pathways can provide a solution for breaking down lignin to unlock the full potential of lignin as a dominant valuable bioresource. A gammaproteobacterial strain AORB19 has been isolated previously from decomposed wood based on its high laccase production. This work then focused on the detailed genomic and functional characterization of this strain based on whole genome sequencing, the identification of lignin degradation products, and the strain's laccase production capabilities on various agro-industrial residues. RESULTS: Lignin degrading bacterial strain AORB19 was identified as Serratia quinivorans based on whole genome sequencing and core genome phylogeny. The strain comprised a total of 123 annotated CAZyme genes, including ten cellulases, four hemicellulases, five predicted carbohydrate esterase genes, and eight lignin-degrading enzyme genes. Strain AORB19 was also found to possess genes associated with metabolic pathways such as the ß-ketoadipate, gentisate, anthranilate, homogentisic, and phenylacetate CoA pathways. LC-UV analysis demonstrated the presence of p-hydroxybenzaldehyde and vanillin in the culture media which constitutes potent biosignatures indicating the strain's capability to degrade lignin. Finally, the study evaluated the laccase production of Serratia AORB19 grown with various industrial raw materials, with the highest activity detected on flax seed meal (257.71 U/L), followed by pea hull (230.11 U/L), canola meal (209.56 U/L), okara (187.67 U/L), and barley malt sprouts (169.27 U/L). CONCLUSIONS: The whole genome analysis of Serratia quinivorans AORB19, elucidated a repertoire of genes, pathways and enzymes vital for lignin degradation that widens the understanding of ligninolytic metabolism among bacterial lignin degraders. The LC-UV analysis of the lignin degradation products coupled with the ability of S. quinivorans AORB19 to produce laccase on diverse agro-industrial residues underscores its versatility and its potential to contribute to the economic viability of bio-refineries.


Assuntos
Genoma Bacteriano , Lacase , Lignina , Filogenia , Serratia , Lignina/metabolismo , Serratia/genética , Serratia/metabolismo , Serratia/classificação , Lacase/metabolismo , Lacase/genética , Sequenciamento Completo do Genoma , Genômica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
5.
Nat Commun ; 15(1): 4092, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750010

RESUMO

Nitrous oxide (N2O) is a climate-active gas with emissions predicted to increase due to agricultural intensification. Microbial reduction of N2O to dinitrogen (N2) is the major consumption process but microbial N2O reduction under acidic conditions is considered negligible, albeit strongly acidic soils harbor nosZ genes encoding N2O reductase. Here, we study a co-culture derived from acidic tropical forest soil that reduces N2O at pH 4.5. The co-culture exhibits bimodal growth with a Serratia sp. fermenting pyruvate followed by hydrogenotrophic N2O reduction by a Desulfosporosinus sp. Integrated omics and physiological characterization revealed interspecies nutritional interactions, with the pyruvate fermenting Serratia sp. supplying amino acids as essential growth factors to the N2O-reducing Desulfosporosinus sp. Thus, we demonstrate growth-linked N2O reduction between pH 4.5 and 6, highlighting microbial N2O reduction potential in acidic soils.


Assuntos
Óxido Nitroso , Serratia , Microbiologia do Solo , Óxido Nitroso/metabolismo , Concentração de Íons de Hidrogênio , Serratia/metabolismo , Serratia/genética , Oxirredução , Solo/química , Fermentação , Técnicas de Cocultura , Ácido Pirúvico/metabolismo , Oxirredutases/metabolismo , Oxirredutases/genética , Nitrogênio/metabolismo
6.
Curr Microbiol ; 81(7): 199, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822161

RESUMO

The present study evaluated the acaricidal activity of three Serratia strains isolated from Mimosa pudica nodules in the Lancandon zone Chiapas, Mexico. The analysis of the genomes based on the Average Nucleotide Identity, the phylogenetic relationships allows the isolates to be placed in the Serria ureilytica clade. The size of the genomes of the three strains is 5.4 Mb, with a GC content of 59%. The Serratia UTS2 strain presented the highest mortality with 61.41% against Tyrophagus putrescentiae followed by the Serratia UTS4 strain with 52.66% and Serratia UTS3 with 47.69% at 72 h at a concentration of 1X109 cell/mL. In the bioinformatic analysis of the genomes, genes related to the synthesis of chitinases, proteases and cellulases were identified, which have been reported for the biocontrol of mites. It is the first report of S. ureilytica with acaricidal activity, which may be an alternative for the biocontrol of stored products with high fat and protein content.


Assuntos
Acaricidas , Filogenia , Serratia , Animais , Serratia/genética , Acaricidas/farmacologia , Genoma Bacteriano , Controle Biológico de Vetores , Quitinases/genética , Quitinases/metabolismo , México
7.
Front Cell Infect Microbiol ; 14: 1323157, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808063

RESUMO

The genus Serratia harbors opportunistic pathogenic species, among which Serratia marcescens is pathogenic for honeybees although little studied. Recently, virulent strains of S. marcescens colonizing the Varroa destructor mite's mouth were found vectored into the honeybee body, leading to septicemia and death. Serratia also occurs as an opportunistic pathogen in the honeybee's gut with a low absolute abundance. The Serratia population seems controlled by the host immune system, but its presence may represent a hidden threat, ready to arise when honeybees are weakened by biotic and abiotic stressors. To shed light on the Serratia pathogen, this research aims at studying Serratia's development dynamics in the honeybee body and its interactions with the co-occurring fungal pathogen Vairimorpha ceranae. Firstly, the degree of pathogenicity and the ability to permeate the gut epithelial barrier of three Serratia strains, isolated from honeybees and belonging to different species (S. marcescens, Serratia liquefaciens, and Serratia nematodiphila), were assessed by artificial inoculation of newborn honeybees with different Serratia doses (104, 106, and 108 cells/mL). The absolute abundance of Serratia in the gut and in the hemocoel was assessed in qPCR with primers targeting the luxS gene. Moreover, the absolute abundance of Serratia was assessed in the gut of honeybees infected with V. ceranae at different development stages and supplied with beneficial microorganisms and fumagillin. Our results showed that all tested Serratia strains could pass through the gut epithelial barrier and proliferate in the hemocoel, with S. marcescens being the most pathogenic. Moreover, under cage conditions, Serratia better proliferates when a V. ceranae infection is co-occurring, with a positive and significant correlation. Finally, fumagillin and some of the tested beneficial microorganisms could control both Serratia and Vairimorpha development. Our findings suggest a correlation between the two pathogens under laboratory conditions, a co-occurring infection that should be taken into consideration by researches when testing antimicrobial compounds active against V. ceranae, and the related honeybees survival rate. Moreover, our findings suggest a positive control of Serratia by the environmental microorganism Apilactobacillus kunkeei in a in vivo model, confirming the potential of this specie as beneficial bacteria for honeybees.


Assuntos
Nosema , Serratia , Animais , Abelhas/microbiologia , Serratia/patogenicidade , Serratia/genética , Serratia/crescimento & desenvolvimento , Nosema/patogenicidade , Nosema/crescimento & desenvolvimento , Nosema/fisiologia , Nosema/genética , Serratia marcescens/patogenicidade , Serratia marcescens/crescimento & desenvolvimento , Serratia marcescens/genética , Trato Gastrointestinal/microbiologia , Infecções por Serratia/microbiologia , Cicloexanos/farmacologia , Serratia liquefaciens/crescimento & desenvolvimento , Serratia liquefaciens/genética , Ácidos Graxos Insaturados , Sesquiterpenos
8.
Physiol Plant ; 176(3): e14323, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38695188

RESUMO

Tomatoes are frequently challenged by various pathogens, among which Phytophthora capsici (P. capsici) is a destructive soil-borne pathogen that seriously threatens the safe production of tomatoes. Plant growth-promoting rhizobacteria (PGPR) positively induced plant resistance against multiple pathogens. However, little is known about the role and regulatory mechanism of PGPR in tomato resistance to P. capsici. Here, we identified a new strain Serratia plymuthica (S. plymuthica), HK9-3, which has a significant antibacterial effect on P. capsici infection. Meanwhile, stable colonization in roots by HK9-3, even under P. capsici infection, improved tomato growth parameters, root system architecture, photosynthetic capacity, and boosted biomass. Importantly, HK9-3 colonization significantly alleviated the damage caused by P. capsici infection through enhancing ROS scavenger ability and inducing antioxidant defense system and pathogenesis-related (PR) proteins in leaves, as evidenced by elevating the activities of peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), and chitinase, ß-1,3-glucanase, and increasing the transcripts of POD, SOD, CAT, APX1, PAL1, PAL2, PAL5, PPO2, CHI17 and ß-1,3-glucanase genes. Notably, HK9-3 colonization not only effectively improved soil microecology and soil fertility, but also significantly enhanced fruit yield by 44.6% and improved quality. Our study presents HK9-3 as a promising and effective solution for controlling P. capsici infection in tomato cultivation while simultaneously promoting plant growth and increasing yield, which may have implications for P. capsici control in vegetable production.


Assuntos
Resistência à Doença , Phytophthora , Doenças das Plantas , Rizosfera , Serratia , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/fisiologia , Solanum lycopersicum/genética , Phytophthora/fisiologia , Serratia/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Antioxidantes/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia
9.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612767

RESUMO

Diseases that occur in silkworms include soft rot, hardening disease, digestive diseases, and sepsis. However, research on the causes of bacterial diseases occurring in silkworms and the resulting changes in the microbial community is lacking. Therefore, we examined the morphological characteristics of sepsis and changes in the microbial community between silkworms that exhibit a unique odor and healthy silkworms; thus, we established a relationship between disease-causing microorganisms and sepsis. After producing a 16S rRNA amplicon library for samples showing sepsis, we obtained information on the microbial community present in silkworms using next-generation sequencing. Compared to that in healthy silkworms, in silkworms with sepsis, the abundance of the Firmicutes phylum was significantly reduced, while that of Proteobacteria was increased. Serratia sp. was dominant in silkworms with sepsis. After bacterial isolation, identification, and reinfection through the oral cavity, we confirmed this organism as the disease-causing agent; its mortality rate was 1.8 times higher than that caused by Serratia marcescens. In summary, we identified a new causative bacterium of silkworm sepsis through microbial community analysis and confirmed that the microbial community balance was disrupted by the aberrant proliferation of certain bacteria.


Assuntos
Bombyx , Microbiota , Sepse , Animais , Serratia/genética , RNA Ribossômico 16S/genética
10.
Mar Drugs ; 22(4)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38667759

RESUMO

The enormous potential attributed to prodigiosin regarding its applicability as a natural pigment and pharmaceutical agent justifies the development of sound bioprocesses for its production. Using a Serratia rubidaea strain isolated from a shallow-water hydrothermal vent, optimization of the growth medium composition was carried out. After medium development, the bacterium temperature, light and oxygen needs were studied, as was growth inhibition by product concentration. The implemented changes led to a 13-fold increase in prodigiosin production in a shake flask, reaching 19.7 mg/L. The conditions allowing the highest bacterial cell growth and prodigiosin production were also tested with another marine strain: S. marcescens isolated from a tide rock pool was able to produce 15.8 mg/L of prodigiosin. The bioprocess with S. rubidaea was scaled up from 0.1 L shake flasks to 2 L bioreactors using the maintenance of the oxygen mass transfer coefficient (kLa) as the scale-up criterion. The implemented parameters in the bioreactor led to an 8-fold increase in product per biomass yield and to a final concentration of 293.1 mg/L of prodigiosin in 24 h.


Assuntos
Reatores Biológicos , Meios de Cultura , Prodigiosina , Serratia , Prodigiosina/biossíntese , Serratia/metabolismo , Meios de Cultura/química , Biomassa , Oxigênio/metabolismo , Temperatura , Organismos Aquáticos/metabolismo
11.
J Nat Prod ; 87(5): 1330-1337, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38687892

RESUMO

Serratiomycin (1) is an antibacterial cyclic depsipeptide, first discovered from a Eubacterium culture in 1998. This compound was initially reported to contain l-Leu, l-Ser, l-allo-Thr, d-Phe, d-Ile, and hydroxydecanoic acid. In the present study, 1 and three new derivatives, serratiomycin D1-D3 (2-4), were isolated from a Serratia sp. strain isolated from the exoskeleton of a long-horned beetle. The planar structures of 1-4 were elucidated by using mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Comparison of the NMR chemical shifts and the physicochemical data of 1 to those of previously reported serratiomycin indeed identified 1 as serratiomycin. The absolute configurations of the amino units in compounds 1-4 were determined by the advanced Marfey's method, 2,3,4,6-tetra-O-acetyl-ß-d-glucopyranosyl isothiocyanate derivatization, and liquid chromatography-mass spectrometric (LC-MS) analysis. Additionally, methanolysis and the modified Mosher's method were used to determine the absolute configuration of (3R)-hydroxydecanoic acid in 1. Consequently, the revised structure of 1 was found to possess d-Leu, l-Ser, l-Thr, d-Phe, l-allo-Ile, and d-hydroxydecanoic acid. In comparison with the previously published structure of serratiomycin, l-Leu, l-allo-Thr, and d-Ile in serratiomycin were revised to d-Leu, l-Thr, and l-allo-Ile. The new members of the serratiomycin family, compounds 2 and 3, showed considerably higher antibacterial activities against Staphylococcus aureus and Salmonella enterica than compound 1.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Serratia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Serratia/química , Estrutura Molecular , Animais , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Besouros , Depsipeptídeos/farmacologia , Depsipeptídeos/química , Depsipeptídeos/isolamento & purificação , Staphylococcus aureus/efeitos dos fármacos
12.
J Invertebr Pathol ; 204: 108084, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38452853

RESUMO

Opportunistic bacterial infections are common in insect populations but there is little information on how they are acquired or transmitted. We tested the hypothesis that Macrocheles mites can transmit systemic bacterial infections between Drosophila hosts. We found that 24% of mites acquired detectable levels of bacteria after feeding on infected flies and 87% of infected mites passed bacteria to naïve recipient flies. The probability that a mite could pass Serratia from an infected donor fly to a naïve recipient fly was 27.1%. These data demonstrate that Macrocheles mites are capable of serving as vectors of bacterial infection between insects.


Assuntos
Ácaros , Animais , Ácaros/microbiologia , Ácaros/fisiologia , Drosophila/microbiologia , Drosophila/parasitologia , Serratia/fisiologia , Drosophila melanogaster/microbiologia
13.
Science ; 383(6689): 1312-1317, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38513027

RESUMO

Bacterial multimodular polyketide synthases (PKSs) are giant enzymes that generate a wide range of therapeutically important but synthetically challenging natural products. Diversification of polyketide structures can be achieved by engineering these enzymes. However, notwithstanding successes made with textbook cis-acyltransferase (cis-AT) PKSs, tailoring such large assembly lines remains challenging. Unlike textbook PKSs, trans-AT PKSs feature an extraordinary diversity of PKS modules and commonly evolve to form hybrid PKSs. In this study, we analyzed amino acid coevolution to identify a common module site that yields functional PKSs. We used this site to insert and delete diverse PKS parts and create 22 engineered trans-AT PKSs from various pathways and in two bacterial producers. The high success rates of our engineering approach highlight the broader applicability to generate complex designer polyketides.


Assuntos
Aciltransferases , Proteínas de Bactérias , Evolução Molecular Direcionada , Policetídeo Sintases , Policetídeos , Proteínas Recombinantes de Fusão , Aciltransferases/genética , Aciltransferases/química , Policetídeo Sintases/química , Policetídeo Sintases/genética , Policetídeos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Serratia , Motivos de Aminoácidos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
14.
J Hazard Mater ; 470: 134137, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38555671

RESUMO

Petroleum hydrocarbons pose a significant threat to human health and the environment. Biochar has increasingly been utilized for soil remediation. This study investigated the potential of biochar immobilization using Serratia sp. F4 OR414381 for the remediation of petroleum-contaminated soil through a pot experiment conducted over 90 days. The treatments in this study, denoted as IMs (maize straw biochar-immobilized Serratia sp. F4), degraded 82.5% of the total petroleum hydrocarbons (TPH), 59.23% of the aromatic, and 90.1% of the saturated hydrocarbon fractions in the loess soils. During remediation, the soil pH values decreased from 8.76 to 7.33, and the oxidation-reduction potential (ORP) increased from 156 to 229 mV. The treatment-maintained soil nutrients of the IMs were 138.94 mg/kg of NO3- -N and 92.47 mg/kg of available phosphorus (AP), as well as 11.29% of moisture content. The activities of soil dehydrogenase (SDHA) and catalase (CAT) respectively increased by 14% and 15 times compared to the CK treatment. Three key petroleum hydrocarbon degradation genes, including CYP450, AJ025, and xylX were upregulated following IMs treatment. Microbial community analysis revealed that a substantial microbial population of 1.01E+ 09 cells/g soil and oil-degrading bacteria such as Salinimicrobium, Saccharibacteria_genera_incertae_sedis, and Brevundimonas were the dominant genera in IMs treatment. This suggests that the biochar immobilized on Serratia sp. F4 OR414381 improves soil physicochemical properties and enhances interactions among microbial populations, presenting a promising and environmentally friendly approach for the stable and efficient remediation of petroleum-contaminated loess soil.


Assuntos
Biodegradação Ambiental , Carvão Vegetal , Hidrocarbonetos , Petróleo , Serratia , Microbiologia do Solo , Poluentes do Solo , Serratia/metabolismo , Serratia/genética , Poluentes do Solo/metabolismo , Carvão Vegetal/química , Petróleo/metabolismo , Hidrocarbonetos/metabolismo , Poluição por Petróleo , Solo/química
15.
Microb Pathog ; 189: 106576, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382626

RESUMO

Serratia marcescens is commonly noted to be an opportunistic pathogen and is often associated with nosocomial infections. In addition to its high antibiotic resistance, it exhibits a wide range of virulence factors that confer pathogenicity. Targeting quorum sensing (QS) presents a potential therapeutic strategy for treating bacterial infections caused by S. marcescens, as it regulates the expression of various virulence factors. Inhibiting QS can effectively neutralize S. marcescens' bacterial virulence without exerting stress on bacterial growth, facilitating bacterial eradication by the immune system. In this study, the antibacterial and anti-virulence properties of eugenol against Serratia sp. were investigated. Eugenol exhibited inhibitory effects on the growth of Serratia, with a minimal inhibitory concentration (MIC) value of 16.15 mM. At sub-inhibitory concentrations, eugenol also demonstrated antiadhesive and eradication activities by inhibiting biofilm formation. Furthermore, it reduced prodigiosin production and completely inhibited protease production. Additionally, eugenol effectively decreased swimming and swarming motilities in Serratia sp. This study demonstrated through molecular modeling, docking and molecular dynamic that eugenol inhibited biofilm formation and virulence factor production in Serratia by binding to the SmaR receptor and blocking the formation of the HSL-SmaR complex. The binding of eugenol to SmaR modulates biofilm formation and virulence factor production by Serratia sp. These findings highlight the potential of eugenol as a promising agent to combat S. marcescens infections by targeting its virulence factors through quorum sensing inhibition.


Assuntos
Percepção de Quorum , Serratia , Biofilmes , Eugenol/farmacologia , Serratia marcescens , Fatores de Virulência/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo
16.
Microbiol Spectr ; 12(3): e0358923, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38319115

RESUMO

Whole-genome sequence analysis of six Enterobacter hormaechei and two Serratia nevei strains, using a hybrid assembly of Illumina and Oxford Nanopore Technologies sequencing, revealed the presence of the epidemic blaOXA-181-carrying IncX3 plasmids co-harboring qnrS1 and ∆ere(A) genes, as well as multiple multidrug resistance (MDR) plasmids disseminating in all strains, originated from dogs and cats in Thailand. The subspecies and sequence types (ST) of the E. hormaechei strains recovered from canine and feline opportunistic infections included E. hormaechei subsp. xiangfangensis ST171 (n = 3), ST121 (n = 1), and ST182 (n = 1), as well as E. hormaechei subsp. steigerwaltii ST65 (n = 1). Five of the six E. hormaechei strains harbored an identical 51,479-bp blaOXA-181-carrying IncX3 plasmid. However, the blaOXA-181 plasmid (pCUVET22-969.1) of the E. hormaechei strain CUVET22-969 presented a variation due to the insertion of ISKpn74 and ISSbo1 into the virB region. Additionally, the blaOXA-181 plasmids of S. nevei strains were nearly identical to the others at the nucleotide level, with ISEcl1 inserted upstream of the qnrS1 gene. The E. hormaechei and S. nevei lineages from canine and feline origins might acquire the epidemic blaOXA-181-carrying IncX3 and MDR plasmids, which are shared among Enterobacterales, contributing to the development of resistance. These findings suggest the spillover of significant OXA-181-encoding plasmids to these bacteria, causing severe opportunistic infections in dogs and cats in Thailand. Surveillance and effective hygienic practice, especially in hospitalized animals and veterinary hospitals, should be urgently implemented to prevent the spread of these plasmids in healthcare settings and communities. IMPORTANCE: blaOXA-181 is a significant carbapenemase-encoding gene, usually associated with an epidemic IncX3 plasmid found in Enterobacterales worldwide. In this article, we revealed six carbapenemase-producing (CP) Enterobacter hormaechei and two CP Serratia nevei strains harboring blaOXA-181-carrying IncX3 and multidrug resistance plasmids recovered from dogs and cats in Thailand. The carriage of these plasmids can promote extensively drug-resistant properties, limiting antimicrobial treatment options in veterinary medicine. Since E. hormaechei and S. nevei harboring blaOXA-181-carrying IncX3 plasmids have not been previously reported in dogs and cats, our findings provide the first evidence of dissemination of the epidemic plasmids in these bacterial species isolated from animal origins. Pets in communities can serve as reservoirs of significant antimicrobial resistance determinants. This situation places a burden on antimicrobial treatment in small animal practice and poses a public health threat.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Doenças do Gato , Doenças do Cão , Enterobacter , Gatos , Animais , Cães , Serratia/genética , Antibacterianos , Doenças do Cão/microbiologia , Plasmídeos/genética , beta-Lactamases/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Testes de Sensibilidade Microbiana
17.
Microbiol Spectr ; 12(2): e0276223, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38230939

RESUMO

Serratia spp. is a well-recognized pathogen in neonates; however, limited data are available in adults. We studied microbiological and clinical characteristics of Serratia spp. causing bloodstream infections (BSI) in our institution (January 2005-July 2020). Overall, 141 BSI episodes affecting 139 patients were identified and medical records reviewed. Antimicrobial susceptibility was recovered from our informatics system and 118 isolates from 116 patients were available for further microbiological studies. Whole genome sequencing (WGS) was completed in 107 isolates. Incidence of Serratia BSI was 0.3/1000 overall admissions (range 0.12-0.60), with maximum prevalence (27 episodes, 19.1%) during 2017-2018. Relevant patients' clinical characteristics were 71.9% ≥60 years (n = 100), with high comorbidity rates (49%, ≥2), 23 (74.2%) of them died within 1 month of the BSI episode. WGS identified all isolates as Serratia marcescens when Kraken bioinformatics taxonomic tool was used despite some which were identified as Serratia nematodiphila (32/118) or Serratia ureilytica (5/118) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Nevertheless, when using MASH distance, Serratia nevei (63/107), S. ureilytica (38/107), and S. marcescens (6/107) were assigned. Carbapenemase (blaVIM-1) and extended-spectrum ß-lactases (ESBL) (blaSHV-12) genes were found in seven and three isolates, respectively, one of them expressing both genes. The worldwide-disseminated IncL/M scaffold plasmid was identified in six VIM producers. Four genotypes were established based on their virulence factors and resistome. Serratia spp. emerged as a relevant nosocomial pathogen causing BSI in elderly patients in our hospital, particularly in recent years with a remarkable increase in antibiotic resistance. ESBL and carbapenemases production related to plasmid dissemination are particularly noteworthy.IMPORTANCESerratia spp. is the third most frequent pathogen involved in outbreaks at neonatal facilities and is primarily associated with bacteremia episodes. In this study, we characterized all causing bloodstream infection (BSI) in patients admitted to our hospital during a 16-year period (2005-2020). Despite having no neonatal intensive care unit in our hospital, this study revealed that Serratia spp. is a relevant pathogen causing BSI in elderly patients with high comorbidity rates. A significant increase of antimicrobial resistance was detected over time, particularly in 2020 and coinciding with the coronavirus disease (COVID-19) pandemic and nosocomial spread of multidrug-resistant Serratia spp. isolates. extended-spectrum ß-lactases and carbapenemases genes associated with plasmid dissemination, typically detected in other Enterobacterales species, were also identified, reinforcing the role of Serratia spp. in the antimicrobial resistance landscape. Additionally, this work highlights the need to reclassify the species of Serratia, since discrepancies were observed in the identification when using different tools.


Assuntos
Infecção Hospitalar , Sepse , Recém-Nascido , Adulto , Humanos , Idoso , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Serratia , beta-Lactamases/genética , Sepse/microbiologia , Serratia marcescens , Infecção Hospitalar/microbiologia , Testes de Sensibilidade Microbiana , Lactase
18.
Plant Physiol Biochem ; 206: 108245, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38064903

RESUMO

Effective colonization on plant roots is a prerequisite for plant growth promoting rhizobacterias (PGPR) to exert beneficial activities. Light is essential for plant growth, development and stress response. However, how light modulates root colonization of PGPR remains unclear. Here, we found that high red/far red (R/FR) light promoted and low R/FR light inhibited the colonization and growth enhancement of Serratia plymuthica A21-4 (S. plymuthica A21-4) on tomato, respectively. Non-targeted metabolomic analysis of root exudates collected from different R/FR ratio treated tomato seedlings with or without S. plymuthica A21-4 inoculation by UPLC-MS/MS showed that 64 primary metabolites in high R/FR light-grown plants significantly increased compared with those determined for low R/FR light-grown plants. Among them, 7 amino acids, 1 organic acid and 1 sugar obviously induced the chemotaxis and biofilm formation of S. plymuthica A21-4 compared to the control. Furthermore, exogenous addition of five artificial root exudate compontents (leucine, methionine, glutamine, 6-aminocaproic acid and melezitose) regained and further increased the colonization ability and growth promoting ability of S. plymuthica A21-4 on tomato under low R/FR light and high R/FR light, respectively, indicating their involvement in high R/FR light-regulated the interaction of tomato root and S. plymuthica A21-4. Taken together, our results, for the first time, clearly demonstrate that high R/FR light-induced root exudates play a key role in chemotaxis, biofilm formation and root colonization of S. plymuthica A21-4. This study can help promote the combined application of light supplementation and PGPR to facilitate crop growth and health in green agricultural production.


Assuntos
Raízes de Plantas , Serratia , Solanum lycopersicum , Raízes de Plantas/metabolismo , Quimiotaxia/fisiologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Exsudatos e Transudatos , Biofilmes
19.
Nucleic Acids Res ; 52(2): 755-768, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38059344

RESUMO

Bacteria protect themselves from infection by bacteriophages (phages) using different defence systems, such as CRISPR-Cas. Although CRISPR-Cas provides phage resistance, fitness costs are incurred, such as through autoimmunity. CRISPR-Cas regulation can optimise defence and minimise these costs. We recently developed a genome-wide functional genomics approach (SorTn-seq) for high-throughput discovery of regulators of bacterial gene expression. Here, we applied SorTn-seq to identify loci influencing expression of the two type III-A Serratia CRISPR arrays. Multiple genes affected CRISPR expression, including those involved in outer membrane and lipopolysaccharide synthesis. By comparing loci affecting type III CRISPR arrays and cas operon expression, we identified PigU (LrhA) as a repressor that co-ordinately controls both arrays and cas genes. By repressing type III-A CRISPR-Cas expression, PigU shuts off CRISPR-Cas interference against plasmids and phages. PigU also represses interference and CRISPR adaptation by the type I-F system, which is also present in Serratia. RNA sequencing demonstrated that PigU is a global regulator that controls secondary metabolite production and motility, in addition to CRISPR-Cas immunity. Increased PigU also resulted in elevated expression of three Serratia prophages, indicating their likely induction upon sensing PigU-induced cellular changes. In summary, PigU is a major regulator of CRISPR-Cas immunity in Serratia.


Assuntos
Proteínas de Bactérias , Bacteriófagos , Sistemas CRISPR-Cas , Serratia , Bacteriófagos/genética , Genes Bacterianos , Prófagos/genética , Serratia/metabolismo , Serratia/virologia , Proteínas de Bactérias/metabolismo
20.
Environ Sci Pollut Res Int ; 31(4): 5319-5330, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38114705

RESUMO

Cadmium (Cd) presence and bioavailability in soils is a serious concern for cocoa producers. Cocoa plants can bioaccumulate Cd that can reach humans through the food chain, thus posing a threat to human health, as Cd is a highly toxic metal. Currently, microbiologically induced carbonate precipitation (MICP) by the ureolytic path has been proposed as an effective technique for Cd remediation. In this work, the Cd remediation potential and Cd resistance of two ureolytic bacteria, Serratia sp. strains 4.1a and 5b, were evaluated. The growth of both Serratia strains was inhibited at 4 mM Cd(II) in the culture medium, which is far higher than the Cd content that can be found in the soils targeted for remediation. Regarding removal efficiency, for an initial concentration of 0.15 mM Cd(II) in liquid medium, the maximum removal percentages for Serratia sp. 4.1.a and 5b were 99.3% and 99.57%, respectively. Their precipitates produced during Cd removal were identified as calcite by X-ray diffraction. Energy dispersive X-ray spectroscopy analysis showed that a portion of Cd was immobilized in this matrix. Finally, the presence of a partial gene from the czc operon, involved in Cd resistance, was observed in Serratia sp. 5b. The expression of this gene was found to be unaffected by the presence of Cd(II), and upregulated in the presence of urea. This work is one of the few to report the use of bacterial strains of the Serratia genus for Cd remediation by MICP, and apparently the first one to report differential expression of a Cd resistance gene due to the presence of urea.


Assuntos
Cádmio , Serratia , Humanos , Cádmio/metabolismo , Serratia/metabolismo , Carbonatos/química , Carbonato de Cálcio/química , Solo/química , Ureia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA