Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.660
Filtrar
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 516-522, jul. 2024. graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1538029

RESUMO

This article aimed to discuss the protection of trans - nerolidol on vascular endothelial cells (ECs) injured by lipopolysac charides. ECs were divided into four groups: normal, model, low and high dose trans - nerolidol treatment groups. The cell survival rate and the contents of NO in the cell culture supernatant were determined. The protein expression and transcript level of pe roxisome proliferator - activated receptor - γ (PPARγ), endothelial nitric oxide synthase (eNOS), and inducible nitric oxide synthase (iNOS) were determined by western blotting and RT - PCR respectively. Compared with the normal group, cell livability, protein e xpression and mRNA transcript level of PPARγ and eNOS decreased, NO contents, protein expression and mRNA transcript tlevel of iNOS increased in model group significantly. Compared with model group, all the changes recovered in different degree in treatmen t groups. Hence, it was concluded that trans - nerolidol can alleviate the ECs injuryby the regulation of iNOS/eNOS through activating PPARγ in a dose - dependent manner


Este artículo tiene como objetivo discutir la protección del trans - nerolidol en las células endoteliales vasculares (CE) dañadas por lipopolisacáridos. Las CE se di vidieron en cuatro grupos: normal, modelo, grupos de tratamiento con trans - nerolidol de baja y alta dosis. Se determinó la tasa de supervivencia de las células y los contenidos de óxido nítrico (NO) en el sobrenadante del cultivo celular. La expresión de p roteínas y el nivel de transcripción del receptor activado por proliferadores de peroxisomas - γ (PPARγ), el óxido nítrico sint et asa endotelial (eNOS) y el óxido nítrico sint et asa inducible (iNOS) se determinaron mediante western blot y RT - PCR, respectivamen te. En comparación con el grupo normal, la viabilidad celular, la expresión de proteínas y el nivel de transcripción de PPARγ y eNOS disminuyeron, los contenidos de NO, la expresión de proteínas y el nivel de transcripción de iNOS aumentaron significativam ente en el grupo modelo. En comparación con el grupo modelo, todos los cambios se recuperaron en diferentes grados en los grupos de tratamiento. Por lo tanto, se concluyó que el trans - nerolidol puede aliviar el daño en las CE regulando iNOS/eNOS a través d e la activación de PPARγ de manera dependiente de la dosis.


Assuntos
Sesquiterpenos/farmacologia , Lipopolissacarídeos/farmacologia , Células Endoteliais/efeitos dos fármacos
2.
Cell Death Dis ; 15(5): 325, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724499

RESUMO

Cholesterol metabolism reprogramming is one of the significant characteristics of hepatocellular carcinoma (HCC). Cholesterol increases the risk of epithelial-mesenchymal transition (EMT) in cancer. Sterol O-acyltransferases 1 (SOAT1) maintains the cholesterol homeostasis. However, the exact mechanistic contribution of SOAT1 to EMT in HCC remains unclear. Here we demonstrated that SOAT1 positively related to poor prognosis of HCC, EMT markers and promoted cell migration and invasion in vitro, which was mediated by the increased cholesterol in plasmalemma and cholesterol esters accumulation. Furthermore, we reported that SOAT1 disrupted cholesterol metabolism homeostasis to accelerate tumorigenesis and development in HCC xenograft and NAFLD-HCC. Also, we detected that nootkatone, a sesquiterpene ketone, inhibited EMT by targeting SOAT1 in vitro and in vivo. Collectively, our finding indicated that SOAT1 promotes EMT and contributes to hepatocarcinogenesis by increasing cholesterol esterification, which is suppressed efficiently by nootkatone. This study demonstrated that SOAT1 is a potential biomarker and therapeutic target in NAFLD-HCC and SOAT1-targeting inhibitors are expected to be the potential new therapeutic treatment for HCC.


Assuntos
Carcinoma Hepatocelular , Colesterol , Transição Epitelial-Mesenquimal , Neoplasias Hepáticas , Esterol O-Aciltransferase , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Humanos , Colesterol/metabolismo , Esterol O-Aciltransferase/metabolismo , Esterol O-Aciltransferase/genética , Animais , Camundongos , Masculino , Camundongos Nus , Linhagem Celular Tumoral , Movimento Celular , Feminino , Camundongos Endogâmicos BALB C , Sesquiterpenos/farmacologia , Regulação Neoplásica da Expressão Gênica
3.
J Oleo Sci ; 73(5): 787-799, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38692900

RESUMO

Launaea sarmentosa, also known as Sa Sam Nam, is a widely used remedy in Vietnamese traditional medicine and cuisine. However, the chemical composition and bioactivity of its essential oil have not been elucidated yet. In this study, we identified 40 compounds (98.6% of total peak area) in the essential oil via GC-MS analysis at the first time. Among them, five main compounds including Thymohydroquinone dimethyl ether (52.4%), (E)-α-Atlantone (9.0%), Neryl isovalerate (6.6%), Davanol D2 (isomer 2) (3.9%), and trans-Sesquisabinene hydrate (3.9%) have accounted for 75.8% of total peak area. The anti-bacterial activity of the essential oil against 4 microorganisms including Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa has also investigated via agar well diffusion assay. The results showed that the essential oil exhibited a strong antibacterial activity against Bacillus subtilis with the inhibition zones ranging from 8.2 to 18.7 mm. To elucidate the anti-bacterial effect mechanism of the essential oil, docking study of five main compounds of the essential oil (Thymohydroquinone dimethyl ether, (E)-α-Atlantone, Neryl isovalerate, Davanol D2 (isomer 2), and trans-Sesquisabinene hydrate) against some key proteins for bacterial growth such as DNA gyrase B, penicillin binding protein 2A, tyrosyl-tRNA synthetase, and dihydrofolate reductase were performed. The results showed that the main constituents of essential oil were highly bound with penicillin binding protein 2A with the free energies ranging -27.7 to -44.8 kcal/mol, which suggests the relationship between the antibacterial effect of essential oil and the affinity of main compounds with penicillin binding protein. In addition, the free energies of main compounds of the essential oil with human cyclooxygenase 1, cyclooxygenase 2, and phospholipase A2, the crucial proteins related with inflammatory response were less than diclofenac, a non-steroidal antiinflammatory drug. These findings propose the essential oil as a novel and promising anti-bacterial and anti-inflammatory medicine or cosmetic products.


Assuntos
Antibacterianos , Bacillus subtilis , Hemiterpenos , Simulação de Acoplamento Molecular , Óleos Voláteis , Ácidos Pentanoicos , Antibacterianos/farmacologia , Antibacterianos/isolamento & purificação , Antibacterianos/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Bacillus subtilis/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Tetra-Hidrofolato Desidrogenase/metabolismo , DNA Girase/metabolismo , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacologia , Testes de Sensibilidade Microbiana , Cromatografia Gasosa-Espectrometria de Massas
4.
Nat Prod Res ; 38(11): 1918-1923, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38739564

RESUMO

Blumea eriantha D.C is a weed from Asteraceae family and is reported to have anticancer activity. The essential oil from the aerial parts was extracted by steam distillation method with the yield of 0.36%. Through GC-MS analysis of the oil, seventeen compounds could be identified by comparing with linear retention indices with the library. Out of the seventeen compounds ß-Caryophylline oxide was isolated by column chromatography with gradient elution and the structure was determined through FT-IR, MS, 1HNMR, 13 C NMR and DEPT. The oil was evaluated for its effect on angiogenesis using Chorioallantoic Membrane Assay (CAM Assay). The concentration dependent antiangiogenic effect was observed with IC 50 value of 19.28 ppm.


Assuntos
Inibidores da Angiogênese , Asteraceae , Cromatografia Gasosa-Espectrometria de Massas , Óleos Voláteis , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/química , Asteraceae/química , Animais , Membrana Corioalantoide/efeitos dos fármacos , Membrana Corioalantoide/irrigação sanguínea , Componentes Aéreos da Planta/química , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Sesquiterpenos Policíclicos
5.
Molecules ; 29(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675685

RESUMO

Alantolactone is a eudesmane-type sesquiterpene lactone containing an α-methylene-γ-lactone moiety. Previous studies showed that alantolactone inhibits the nuclear factor κB (NF-κB) signaling pathway by targeting the inhibitor of NF-κB (IκB) kinase. However, in the present study, we demonstrated that alantolactone selectively down-regulated the expression of tumor necrosis factor (TNF) receptor 1 (TNF-R1) in human lung adenocarcinoma A549 cells. Alantolactone did not affect the expression of three adaptor proteins recruited to TNF-R1. The down-regulation of TNF-R1 expression by alantolactone was suppressed by an inhibitor of TNF-α-converting enzyme. Alantolactone increased the soluble forms of TNF-R1 that were released into the culture medium as an ectodomain. The structure-activity relationship of eight eudesmane derivatives revealed that an α-methylene-γ-lactone moiety was needed to promote TNF-R1 ectodomain shedding. In addition, parthenolide and costunolide, two sesquiterpene lactones with an α-methylene-γ-lactone moiety, increased the amount of soluble TNF-R1. Therefore, the present results demonstrate that sesquiterpene lactones with an α-methylene-γ-lactone moiety can down-regulate the expression of TNF-R1 by promoting its ectodomain shedding in A549 cells.


Assuntos
Regulação para Baixo , Lactonas , Receptores Tipo I de Fatores de Necrose Tumoral , Sesquiterpenos , Humanos , Células A549 , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Lactonas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , NF-kappa B/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Sesquiterpenos de Eudesmano/farmacologia , Sesquiterpenos de Eudesmano/química , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
6.
Nat Commun ; 15(1): 3437, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653755

RESUMO

Phytoalexin sakuranetin functions in resistance against rice blast. However, the mechanisms underlying the effects of sakuranetin remains elusive. Here, we report that rice lines expressing resistance (R) genes were found to contain high levels of sakuranetin, which correlates with attenuated endocytic trafficking of plasma membrane (PM) proteins. Exogenous and endogenous sakuranetin attenuates the endocytosis of various PM proteins and the fungal effector PWL2. Moreover, accumulation of the avirulence protein AvrCO39, resulting from uptake into rice cells by Magnaporthe oryzae, was reduced following treatment with sakuranetin. Pharmacological manipulation of clathrin-mediated endocytic (CME) suggests that this pathway is targeted by sakuranetin. Indeed, attenuation of CME by sakuranetin is sufficient to convey resistance against rice blast. Our data reveals a mechanism of rice against M. oryzae by increasing sakuranetin levels and repressing the CME of pathogen effectors, which is distinct from the action of many R genes that mainly function by modulating transcription.


Assuntos
Ascomicetos , Resistência à Doença , Endocitose , Flavonoides , Oryza , Fitoalexinas , Doenças das Plantas , Proteínas de Plantas , Oryza/microbiologia , Oryza/metabolismo , Oryza/efeitos dos fármacos , Oryza/genética , Doenças das Plantas/microbiologia , Endocitose/efeitos dos fármacos , Resistência à Doença/genética , Resistência à Doença/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Sesquiterpenos/farmacologia , Sesquiterpenos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Plantas Geneticamente Modificadas , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
7.
Zhongguo Zhong Yao Za Zhi ; 49(4): 961-967, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621903

RESUMO

The chemical composition of the aqueous part of the extract from Lindera aggregata was studied, which was separated and purified by the macroporous resin column chromatography, MCI medium pressure column chromatography, semi-preparative high-performance liquid phase and other methods. The structures of the compounds were identified according to physical and chemical properties and spectroscopic data. Thirteen compounds were isolated and identified from the aqueous extracts, which were identified as(1S,3R,5R,6R,8S,10S)-epi-lindenanolide H(1), tachioside(2), lindenanolide H(3), leonuriside A(4), 3,4-dihydroxyphenyl ethyl ß-D-glucopyranoside(5), 3,4,5-trimethoxyphenol-1-O-6-α-L-rhamnose-(1→6)-O-ß-D-glucoside(6), 5-hydroxymethylfurfural(7),(+)-lyoniresin-4-yl-ß-D-glucopyranoside(8), lyoniside(9), norboldine(10), norisopordine(11), boldine(12), reticuline(13). Among them, compound 1 was a new one, and compounds 2, 5, 6, 8, 9 were obtained from L. aggregata for the first time. The inflammatory model was induced by lipopolysaccharide(LPS) in the RAW264.7 cells. The results showed that compounds 1, 8, 10 and 12 had significant anti-inflammatory activity.


Assuntos
Lindera , Sesquiterpenos , Lindera/química , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Glucosídeos
8.
Phytochemistry ; 222: 114100, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636688

RESUMO

Artemyriantholides A-K (1-11) as well as 14 known compounds (12-25) were isolated from Artemisia myriantha var. pleiocephala (Asteraceae). The structures and absolute configuration of compounds 2 and 8-9 were confirmed by the single crystal X-ray diffraction analyses, and the others were elucidated by MS, NMR spectral data and electronic circular dichroism calculations. All compounds were chemically characterized as guaiane-type sesquiterpenoid dimers (GSDs). Compound 1 was the first example of the GSD fused via C-3/C-11' and C-5/C-13' linkages, and compounds 2 and 5 were rare GSDs containing chlorine atoms. Eleven compounds showed obvious inhibitory activity in HepG2, Huh7 and SK-Hep-1 cell lines by antihepatoma assay to provide the IC50 values ranging from 7.9 to 67.1 µM. Importantly, compounds 5 and 8 exhibited the best inhibitory activity with IC50 values of 14.2 and 18.8 (HepG2), 9.0 and 11.5 (Huh7), and 8.8 and 11.3 µM (SK-Hep-1), respectively. The target of compound 5 was predicted to be MAP2K2 by a computational prediction model. The interaction between compound 5 and MAP2K2 was conducted to give docking score of -9.0 kcal/mol by molecular docking and provide KD value of 43.7 µM by Surface Plasmon Resonance assay.


Assuntos
Artemisia , Artemisia/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Sesquiterpenos de Guaiano/química , Sesquiterpenos de Guaiano/farmacologia , Sesquiterpenos de Guaiano/isolamento & purificação , Animais , Dimerização , Simulação de Acoplamento Molecular , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Sesquiterpenos/isolamento & purificação , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral
9.
Food Chem Toxicol ; 188: 114652, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583502

RESUMO

The estrogen-like effect of bisphenol A (BPA) disrupting the maintenance of functional male germ cells is associated with male sub-fertility. This study investigated toxicity of male germ cells induced by four bisphenol analogs: BPA, BPAF, BPF, and BPS. The investigation of bisphenol analogs' impact on male germ cells included assessing proliferation, apoptosis induction, and the capacity to generate reactive oxygen species (ROS) in GC-1 spermatogonia (spg) cells, specifically type B spermatogonia. Additionally, the therapeutic potential and protective effects of N-Acetyl Cysteine (NAC) and NF-κB inhibitor parthenolide was evaluated. In comparison to BPA, BPF and BPS, BPAF exhibited the most pronounced adverse effect in GC-1 spg cell proliferation. This effect was characterized by pronounced inhibition of phosphorylation of PI3K, AKT, and mTOR, along with increased release of cytochrome c and subsequent cleavages of caspase 3, caspase 7, and poly (ADP-ribose) polymerase. Both NAC and parthenolide were effective reducing cellular ROS induced by BPAF. However, only NAC demonstrated a substantial recovery in proliferation, accompanied by a significant reduction in cytochrome c release and cleaved PARP. These results suggest that NAC supplementation may play an effective therapeutic role in countering germ cell toxicity induced by environmental pollutants with robust oxidative stress-generating capacity.


Assuntos
Acetilcisteína , Apoptose , Compostos Benzidrílicos , Proliferação de Células , Fenóis , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Masculino , Fenóis/toxicidade , Animais , Compostos Benzidrílicos/toxicidade , Acetilcisteína/farmacologia , Camundongos , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Sesquiterpenos/farmacologia , Linhagem Celular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Espermatogônias/efeitos dos fármacos , Espermatogônias/metabolismo , Serina-Treonina Quinases TOR/metabolismo , NF-kappa B/metabolismo
10.
Med Oncol ; 41(5): 125, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652207

RESUMO

Plant-derived immunomodulators and antitumor factors have appealed lots of attention from natural product scientists for their efficiency and safety and their important contribution to well-designed targeted drug action and delivery mechanisms. Zerumbone (ZER), the chief component of Zingiber zerumbet rhizomes, has been examined for its wide-spectrum in the treatment of multi-targeted diseases. The rhizomes have been used as food flavoring agents in numerous cuisines and in flora medication. Numerous in vivo and in vitro experiments have prepared confirmation of ZER as a potent immunomodulator as well as a potential anti-tumor agent. This review is an interesting compilation of all the important results of the research carried out to date to investigate the immunomodulatory and anticancer properties of ZER. The ultimate goal of this comprehensive review is to supply updated information and a crucial evaluation on ZER, including its chemistry and immunomodulating and antitumour properties, which may be of principal importance to supply a novel pathway for subsequent investigation to discover new agents to treat cancers and immune-related sickness. In addition, updated information on the toxicology of ZER has been summarized to support its safety profile.


Assuntos
Glioma , Neoplasias , Sesquiterpenos , Animais , Humanos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Antineoplásicos Fitogênicos/farmacologia , Glioma/tratamento farmacológico , Neoplasias/tratamento farmacológico , Sesquiterpenos/uso terapêutico , Sesquiterpenos/farmacologia , Zingiberaceae/química
11.
Molecules ; 29(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38611927

RESUMO

Artabotrys, a pivotal genus within the Annonaceae family, is renowned for its extensive biological significance and medicinal potential. The genus's sesquiterpene compounds have attracted considerable interest from the scientific community due to their structural complexity and diverse biological activities. These compounds exhibit a range of biological activities, including antimalarial, antibacterial, anti-inflammatory analgesic, and anti-tumor properties, positioning them as promising candidates for medical applications. This review aims to summarize the current knowledge on the variety, species, and structural characteristics of sesquiterpene compounds isolated from Artabotrys plants. Furthermore, it delves into their pharmacological activities and underlying mechanisms, offering a comprehensive foundation for future research.


Assuntos
Annonaceae , Antimaláricos , Sesquiterpenos , Antibacterianos , Anti-Inflamatórios não Esteroides , Antimaláricos/farmacologia , Sesquiterpenos/farmacologia
12.
J Nat Prod ; 87(4): 1092-1102, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38557062

RESUMO

As an important bioactive molecular backbone, drimane meroterpenoids have drawn a great deal of attention from both pharmacologists and chemists. Inspired by the prevalidated success of conformational restriction in the discovery of novel pharmaceutical leads, two distinct tetracyclic drimane meroterpenoids, (-)-pelorol and (+)-aureol, were synthesized from the inexpensive starting material (-)-sclareol through 10 and 8 steps with 5.6% and 5.4% overall yield, respectively. The mild conditions, operational facility, and scalability enabled the expedient synthesis and biological exploration of not only natural products themselves but also their mimics. The first agrochemical exploration showed (-)-pelorol and (+)-aureol possessed good antifungal activity against Rhizoctonia solani, with EC50 values of 7.7 and 6.9 µM, respectively. This revealed that tetracyclic drimane meroterpenoids are valuable models for antifungal lead discovery.


Assuntos
Antifúngicos , Rhizoctonia , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Estrutura Molecular , Rhizoctonia/efeitos dos fármacos , Terpenos/farmacologia , Terpenos/síntese química , Terpenos/química , Estereoisomerismo , Sesquiterpenos/farmacologia , Sesquiterpenos/síntese química , Sesquiterpenos/química , Sesquiterpenos Policíclicos/farmacologia , Testes de Sensibilidade Microbiana
13.
J Nat Prod ; 87(4): 1059-1066, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38561238

RESUMO

Seven new sugar alcohol-conjugated acyclic sesquiterpenes, acremosides A-G (1-7), were isolated from the cultures of the sponge-associated fungus Acremonium sp. IMB18-086 cultivated with heat-killed Pseudomonas aeruginosa. The structures were determined by comprehensive analyses of 1D and 2D NMR spectroscopic data. The relative configurations were established by J-based configuration analysis and acetonide derivatization. The absolute configurations were elucidated by the Mosher ester method and ECD calculations. The structures of acremosides E-G (5-7) featured the linear sesquiterpene skeleton with a tetrahydrofuran moiety attached to a sugar alcohol. Acremosides A (1) and C-E (3-5) showed significant inhibitory activities against hepatitis C virus (EC50 values of 4.8-8.8 µM) with no cytotoxicity (CC50 of >200 µM).


Assuntos
Acremonium , Sesquiterpenos , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Animais , Estrutura Molecular , Acremonium/química , Antivirais/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , Poríferos/química , Hepacivirus/efeitos dos fármacos , Humanos , Pseudomonas aeruginosa/efeitos dos fármacos
14.
Mar Drugs ; 22(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38667762

RESUMO

Four undescribed sesquiterpenoids, lemneolemnanes A-D (1-4), have been isolated from the marine soft coral Lemnalia sp. The absolute configurations of the stereogenic carbons of 1-4 were determined by single-crystal X-ray crystallographic analysis. Compounds 1 and 2 are epimers at C-3 and have an unusual skeleton with a formyl group on C-6. Compound 3 possesses an uncommonly rearranged carbon skeleton, while 4 has a 6/5/5 tricyclic system. Compound 1 showed significant anti-Alzheimer's disease (AD) activity in a humanized Caenorhabditis elegans AD pathological model.


Assuntos
Antozoários , Caenorhabditis elegans , Sesquiterpenos , Animais , Antozoários/química , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Caenorhabditis elegans/efeitos dos fármacos , Cristalografia por Raios X , Doença de Alzheimer/tratamento farmacológico , Modelos Animais de Doenças , Humanos , Estrutura Molecular
15.
PLoS One ; 19(4): e0296989, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625901

RESUMO

Natural anmindenol A isolated from the marine-derived bacteria Streptomyces sp. caused potent inhibition of inducible nitric oxide synthase without any significant cytotoxicity. This compound consists of a structurally unique 3,10-dialkylbenzofulvene skeleton. We previously synthesized and screened the novel derivatives of anmindenol A and identified AM-18002, an anmindenol A derivative, as a promising anticancer agent. The combination of AM-18002 and ionizing radiation (IR) improved anticancer effects, which were exerted by promoting apoptosis and inhibiting the proliferation of FM3A mouse breast cancer cells. AM-18002 increased the production of reactive oxygen species (ROS) and was more effective in inducing DNA damage. AM-18002 treatment was found to inhibit the expansion of myeloid-derived suppressor cells (MDSC), cancer cell migration and invasion, and STAT3 phosphorylation. The AM-18002 and IR combination synergistically induced cancer cell death, and AM-18002 acted as a potent anticancer agent by increasing ROS generation and blocking MDSC-mediated STAT3 activation in breast cancer cells.


Assuntos
Antineoplásicos , Indenos , Neoplasias , Sesquiterpenos , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/farmacologia , Antineoplásicos/farmacologia , Apoptose , Tolerância a Radiação , Proliferação de Células , Linhagem Celular Tumoral
16.
Clin Exp Pharmacol Physiol ; 51(6): e13867, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38684457

RESUMO

Cardiovascular diseases, particularly those involving arterial stenosis and smooth muscle cell proliferation, pose significant health risks. This study aimed to investigate the therapeutic potential of curcumol in inhibiting platelet-derived growth factor-BB (PDGF-BB)-induced human aortic smooth muscle cell (HASMC) proliferation, migration and autophagy. Using cell viability assays, 5-ethynyl-2'-deoxyuridine (EdU) incorporation assays and Western Blot analyses, we observed that curcumol effectively attenuated PDGF-BB-induced HASMC proliferation and migration in a concentration-dependent manner. Furthermore, curcumol mitigated PDGF-BB-induced autophagy, as evidenced by the downregulation of LC3-II/LC3-I ratio and upregulation of P62. In vivo experiments using an arteriosclerosis obliterans model demonstrated that curcumol treatment significantly ameliorated arterial morphology and reduced stenosis. Additionally, curcumol inhibited the activity of the KLF5/COX2 axis, a key pathway in vascular diseases. These findings suggest that curcumol has the potential to serve as a multi-target therapeutic agent for vascular diseases.


Assuntos
Arteriosclerose , Proliferação de Células , Músculo Liso Vascular , Miócitos de Músculo Liso , Sesquiterpenos , Animais , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Humanos , Ratos , Arteriosclerose/tratamento farmacológico , Arteriosclerose/patologia , Arteriosclerose/metabolismo , Proliferação de Células/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/citologia , Masculino , Movimento Celular/efeitos dos fármacos , Extremidade Inferior/irrigação sanguínea , Autofagia/efeitos dos fármacos , Ratos Sprague-Dawley , Becaplermina/farmacologia
17.
Pestic Biochem Physiol ; 201: 105841, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685257

RESUMO

This work evaluated the insecticidal, antifeedant and AChE inhibitory activity of compounds with eudesmane skeleton. The insecticidal activity was tested against larvae of Drosophila melanogaster and Cydia pomonella, the compounds 3 and 4 were the most active (LC50 of 104.2 and 106.7 µM; 82.0 and 84.4 µM, respectively). Likewise, the mentioned compounds were those that showed the highest acetylcholinesterase inhibitory activity, with IC50 of 0.26 ± 0.016 and 0.77 ± 0.016 µM, respectively. Enzyme kinetic studies, as well as molecular docking, show that the compounds would be non-competitive inhibitors of the enzyme. The antifeedant activity on Plodia interpunctella larvae showed an antifeedant index (AI) of 99% at 72 h for compounds 16, 27 and 20. The QSAR studies show that the properties associated with the polarity of the compounds would be responsible for the biological activities found.


Assuntos
Acetilcolinesterase , Inibidores da Colinesterase , Drosophila melanogaster , Inseticidas , Larva , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade , Sesquiterpenos de Eudesmano , Animais , Inseticidas/farmacologia , Inseticidas/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Larva/efeitos dos fármacos , Drosophila melanogaster/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Sesquiterpenos de Eudesmano/farmacologia , Sesquiterpenos de Eudesmano/química , Mariposas/efeitos dos fármacos , Sesquiterpenos/farmacologia , Sesquiterpenos/química
18.
Molecules ; 29(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38675548

RESUMO

The fungus Xylaria sp. Z184, harvested from the leaves of Fallopia convolvulus (L.) Á. Löve, has been isolated for the first time. Chemical investigation on the methanol extract of the culture broth of the titles strain led to the discovery of three new pyranone derivatives, called fallopiaxylaresters A-C (1-3), and a new bisabolane-type sesquiterpenoid, named fallopiaxylarol A (4), along with the first complete set of spectroscopic data for the previously reported pestalotiopyrone M (5). Known pyranone derivatives (6-11), sesquiterpenoids (12-14), isocoumarin derivatives (15-17), and an aromatic allenic ether (18) were also co-isolated in this study. All new structures were elucidated by the interpretation of HRESIMS, 1D, 2D NMR spectroscopy, and quantum chemical computation approach. The in vitro antimicrobial, anti-inflammatory, and α-glucosidase-inhibitory activities of the selected compounds and the crude extract were evaluated. The extract was shown to inhibit nitric oxide (NO) production induced by lipopolysaccharide (LPS) in murine RAW264.7 macrophage cells, with an inhibition rate of 77.28 ± 0.82% at a concentration of 50 µg/mL. The compounds 5, 7, and 8 displayed weak antibacterial activity against Staphylococcus areus subsp. aureus at a concentration of 100 µM.


Assuntos
Sesquiterpenos , Xylariales , Camundongos , Animais , Células RAW 264.7 , Xylariales/química , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Sesquiterpenos/isolamento & purificação , Óxido Nítrico/biossíntese , Óxido Nítrico/metabolismo , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Estrutura Molecular , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Lipopolissacarídeos , Testes de Sensibilidade Microbiana , Macrófagos/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação
19.
Molecules ; 29(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38675665

RESUMO

In the search for new bioactive agents against the infectious pathogen responsible for the neglected tropical disease (NTD) mycetoma, we tested a collection of 27 essential oils (EOs) in vitro against Madurella mycetomatis, the primary pathogen responsible for the fungal form of mycetoma, termed eumycetoma. Among this series, the EO of Santalum album (Santalaceae), i.e., East Indian sandalwood oil, stood out prominently with the most potent inhibition in vitro. We, therefore, directed our research toward 15 EOs of Santalum species of different geographical origins, along with two samples of EOs from other plant species often commercialized as "sandalwood oils". Most of these EOs displayed similar strong activity against M. mycetomatis in vitro. All tested oils were thoroughly analyzed by GC-QTOF MS and most of their constituents were identified. Separation of the sandalwood oil into the fractions of sesquiterpene hydrocarbons and alcohols showed that its activity is associated with the sesquiterpene alcohols. The major constituents, the sesquiterpene alcohols (Z)-α- and (Z)-ß-santalol were isolated from the S. album oil by column chromatography on AgNO3-coated silica. They were tested as isolated compounds against the fungus, and (Z)-α-santalol was about two times more active than the ß-isomer.


Assuntos
Madurella , Micetoma , Óleos Voláteis , Óleos de Plantas , Santalum , Sesquiterpenos , Madurella/efeitos dos fármacos , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Micetoma/microbiologia , Micetoma/tratamento farmacológico , Santalum/química , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Antifúngicos/farmacologia , Antifúngicos/química , Testes de Sensibilidade Microbiana
20.
Phytomedicine ; 128: 155403, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38564920

RESUMO

BACKGROUND: Cardiovascular disease is one of the main causes of global mortality, and there is an urgent need for effective treatment strategies. Gut microbiota-dependent metabolite trimethylamine-N-oxide (TMAO) promotes the development of cardiovascular diseases, and shizukaol C, a natural sesquiterpene isolated from Chloranthus multistachys with various biological activities, might exhibit beneficial role in preventing TMAO-induced vascular inflammation. PURPOSE: The purpose of this study was to investigate the anti-inflammatory effects and the underlying mechanisms of shizukaol C on TMAO-induced vascular inflammation. METHODS: The effect and underlying mechanism of shizukaol C on TMAO-induced adhesion molecules expression, bone marrow-derived macrophages (BMDM) adhesion to VSMC were evaluated by western blot, cell adhesion assay, co-immunoprecipitation, immunofluorescence assay, and quantitative Real-Time PCR, respectively. To verify the role of shizukaol C in vivo, TMAO-induced vascular inflammation model were established using guidewire-induced injury on mice carotid artery. Changes in the intima area and the expression of GSTpi, VCAM-1, CD68 were examined using haematoxylin-eosin staining, and immunofluorescence assay. RESULTS: Our data demonstrated that shizukaol C significantly suppressed TMAO-induced adhesion molecule expression and the bone marrow-derived macrophages (BMDM) adhesion in vascular smooth muscle cells (VSMC). Mechanically, shizukaol C inhibited TMAO-induced c-Jun N-terminal kinase (JNK)-nuclear factor-kappa B (NF-κB)/p65 activation, and the JNK inhibition was dependent on the shizukaol C-mediated glutathione-S-transferase pi (GSTpi) expression. By further molecular docking and protein-binding analysis, we demonstrated that shizukaol C directly binds to Keap1 to induce Nrf2 nuclear translocation and upregulated GSTpi expression. Consistently, our in vivo experiment showed that shizukaol C elevated the expression level of GSTpi in carotid arteries and alleviates TMAO-induced vascular inflammation. CONCLUSION: Shizukaol C exerts anti-inflammatory effects in TMAO-treated VSMC by targeting Keap1 and activating Nrf2-GSTpi signaling and resultantly inhibits the downstream JNK-NF-κB/p65 activation and VSMC adhesion, and alleviates TMAO-induced vascular inflammation in vivo, suggesting that shizukaol C may be a potential drug for treating TMAO-induced vascular diseases.


Assuntos
Inflamação , Músculo Liso Vascular , Sesquiterpenos , Animais , Masculino , Camundongos , Anti-Inflamatórios/farmacologia , Adesão Celular/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Proteína 1 Associada a ECH Semelhante a Kelch/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Metilaminas/farmacologia , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Sesquiterpenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Glutationa S-Transferase pi/efeitos dos fármacos , Glutationa S-Transferase pi/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA