Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Biomolecules ; 14(8)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39199345

RESUMO

Foxtail millet is a drought-tolerant cereal and forage crop. The basic leucine zipper (bZIP) gene family plays important roles in regulating plant development and responding to stresses. However, the roles of bZIP genes in foxtail millet remain largely uninvestigated. In this study, 92 members of the bZIP transcription factors were identified in foxtail millet and clustered into ten clades. The expression levels of four SibZIP genes (SibZIP11, SibZIP12, SibZIP41, and SibZIP67) were significantly induced after PEG treatment, and SibZIP67 was chosen for further analysis. The studies showed that ectopic overexpression of SibZIP67 in Arabidopsis enhanced the plant drought tolerance. Detached leaves of SibZIP67 overexpressing plants had lower leaf water loss rates than those of wild-type plants. SibZIP67 overexpressing plants improved survival rates under drought conditions compared to wild-type plants. Additionally, overexpressing SibZIP67 in plants displayed reduced malondialdehyde (MDA) levels and enhanced activities of antioxidant enzymes, including catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) under drought stress. Furthermore, the drought-related genes, such as AtRD29A, AtRD22, AtNCED3, AtABF3, AtABI1, and AtABI5, were found to be regulated in SibZIP67 transgenic plants than in wild-type Arabidopsis under drought conditions. These data suggested that SibZIP67 conferred drought tolerance in transgenic Arabidopsis by regulating antioxidant enzyme activities and the expression of stress-related genes. The study reveals that SibZIP67 plays a beneficial role in drought response in plants, offering a valuable genetic resource for agricultural improvement in arid environments.


Assuntos
Arabidopsis , Fatores de Transcrição de Zíper de Leucina Básica , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Setaria (Planta) , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Setaria (Planta)/efeitos dos fármacos , Estresse Fisiológico/genética , Resistência à Seca
2.
J Hazard Mater ; 477: 135377, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39088960

RESUMO

The excessive accumulation of Cd and Zn in soil poisons crops and threatens food safety. In this study, KMnO4-hematite modified biochar (MnFeB) was developed and applied to remediate weakly alkaline Cd-Zn contaminated soil, and the heavy metal immobilization effect, plant growth, and metal ion uptake of foxtail millet were studied. MnFeB application reduced the phytotoxicity of soil heavy metals; bioavailable acid-soluble Cd and Zn were reduced by 57.79% and 35.64%, respectively, whereas stable, non-bioavailable, residual Cd and Zn increased by 96.44% and 32.08%, respectively. The chlorophyll and total protein contents and the superoxide dismutase (SOD)activity were enhanced, whereas proline, malondialdehyde, the H2O2 content, glutathione reductase (GR), ascorbate peroxidase (APX) and catalase (CAT) activities were reduced. Accordingly, the expressions of GR, APX, and CAT were downregulated, whereas the expression of MnSOD was upregulated. In addition, MnFeB promoted the net photosynthetic rate and growth of foxtail millet plants. Furthermore, MnFeB reduced the levels of Cd and Zn in the stems, leaves, and grains, decreased the bioconcentration factor of Cd and Zn in shoots, and weakened the translocation of Cd and Zn from roots to shoots. Precipitation, complexation, oxidation-reduction, ion exchange, and π-π stacking interaction were the main Cd and Zn immobilization mechanisms, and MnFeB reduced the soil bacterial community diversity and the relative abundance of Proteobacteria and Planctomycetota. This study provides a feasible and effective remediation material for Cd- and Zn-contaminated soils.


Assuntos
Cádmio , Carvão Vegetal , Compostos Férricos , Setaria (Planta) , Poluentes do Solo , Zinco , Carvão Vegetal/química , Cádmio/toxicidade , Cádmio/química , Zinco/química , Zinco/toxicidade , Poluentes do Solo/toxicidade , Setaria (Planta)/efeitos dos fármacos , Setaria (Planta)/crescimento & desenvolvimento , Setaria (Planta)/metabolismo , Compostos Férricos/química , Compostos Férricos/toxicidade , Fotossíntese/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Clorofila/metabolismo
3.
Sci Rep ; 14(1): 15897, 2024 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987627

RESUMO

This study aims to determine the effects of copper, copper oxide nanoparticles, aluminium, and aluminium oxide nanoparticles on the growth rate and expression of ACT-1, CDPK, LIP, NFC, P5CR, P5CS, GR, and SiZIP1 genes in five days old seedling of Setaria italica ssp. maxima, cultivated in hydroponic culture. Depending on their concentration (ranging from 0.1 to 1.8 mg L-1), all tested substances had both stimulating and inhibiting effects on the growth rate of the seedlings. Copper and copper oxide-NPs had generally a stimulating effect whereas aluminium and aluminium oxide-NPs at first had a positive effect but in higher concentrations they inhibited the growth. Treating the seedlings with 0.4 mg L-1 of each tested toxicant was mostly stimulating to the expression of the genes and reduced the differences between the transcript levels of the coleoptiles and roots. Increasing concentrations of the tested substances had both stimulating and inhibiting effects on the expression levels of the genes. The highest expression levels were usually noted at concentrations between 0.4 and 1.0 mg/L of each metal and metal nanoparticle, except for SiZIP1, which had the highest transcript amount at 1.6 mg L-1 of Cu2+ and at 0.1-0.8 mg L-1 of CuO-NPs, and LIP and GR from the seedling treated with Al2O3-NPs at concentrations of 0.1 and 1.6 mg L-1, respectively.


Assuntos
Alumínio , Cobre , Regulação da Expressão Gênica de Plantas , Nanopartículas Metálicas , Plântula , Setaria (Planta) , Cobre/farmacologia , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/genética , Plântula/metabolismo , Alumínio/toxicidade , Alumínio/farmacologia , Nanopartículas Metálicas/química , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Setaria (Planta)/genética , Setaria (Planta)/efeitos dos fármacos , Setaria (Planta)/crescimento & desenvolvimento , Setaria (Planta)/metabolismo , Óxido de Alumínio/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/genética
4.
BMC Genomics ; 25(1): 682, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982341

RESUMO

BACKGROUND: Green foxtail [Setaria viridis (L.)] is one of the most abundant and troublesome annual grass weeds in alfalfa fields in Northeast China. Synthetic auxin herbicide is widely used in agriculture, while how auxin herbicide affects tillering on perennial grass weeds is still unclear. A greenhouse experiment was conducted to examine the effects of auxin herbicide 2,4-D on green foxtail growth, especially on tillers. RESULTS: In the study, 2,4-D isooctyl ester was used. There was an inhibition of plant height and fresh weight on green foxtail after application. The photosynthetic rate of the leaves was dramatically reduced and there was an accumulation of malondialdehyde (MDA) content. Moreover, applying 2,4-D isooctyl ester significantly reduced the tillering buds at rates between 2100 and 8400 ga. i. /ha. Transcriptome results showed that applying 2,4-D isooctyl ester on leaves affected the phytohormone signal transduction pathways in plant tillers. Among them, there were significant effects on auxin, cytokinin, abscisic acid (ABA), gibberellin (GA), and brassinosteroid signaling. Indeed, external ABA and GA on leaves also limited tillering in green foxtail. CONCLUSIONS: These data will be helpful to further understand the responses of green foxtail to 2, 4-D isooctyl ester, which may provide a unique perspective for the development and identification of new target compounds that are effective against this weed species.


Assuntos
Ácido 2,4-Diclorofenoxiacético , Herbicidas , Reguladores de Crescimento de Plantas , Setaria (Planta) , Ácido 2,4-Diclorofenoxiacético/farmacologia , Setaria (Planta)/efeitos dos fármacos , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Setaria (Planta)/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Herbicidas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Giberelinas/farmacologia , Giberelinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Ésteres
5.
Planta ; 260(1): 22, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847958

RESUMO

MAIN CONCLUSION: The SiMBR genes in foxtail millet were identified and studied. Heterologous expression of SiMBR2 in Arabidopsis can improve plant tolerance to drought stress by decreasing the level of reactive oxygen species. Foxtail millet (Setaria italica L.), a C4 crop recognized for its exceptional resistance to drought stress, presents an opportunity to improve the genetic resilience of other crops by examining its unique stress response genes and understanding the underlying molecular mechanisms of drought tolerance. In our previous study, we identified several genes linked to drought stress by transcriptome analysis, including SiMBR2 (Seita.7G226600), a member of the MED25 BINDING RING-H2 PROTEIN (MBR) gene family, which is related to protein ubiquitination. Here, we have identified ten SiMBR genes in foxtail millet and conducted analyses of their structural characteristics, chromosomal locations, cis-acting regulatory elements within their promoters, and predicted transcription patterns specific to various tissues or developmental stages using bioinformatic approaches. Further investigation of the stress response of SiMBR2 revealed that its transcription is induced by treatments with salicylic acid and gibberellic acid, as well as by salt and osmotic stresses, while exposure to high or low temperatures led to a decrease in its transcription levels. Heterologous expression of SiMBR2 in Arabidopsis thaliana enhanced the plant's tolerance to water deficit by reducing the accumulation of reactive oxygen species under drought stress. In summary, this study provides support for exploring the molecular mechanisms associated with drought resistance of SiMBR genes in foxtail millet and contributing to genetic improvement and molecular breeding in other crops.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Setaria (Planta) , Estresse Fisiológico , Setaria (Planta)/genética , Setaria (Planta)/fisiologia , Setaria (Planta)/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/fisiologia , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secas , Plantas Geneticamente Modificadas , Família Multigênica , Regiões Promotoras Genéticas/genética , Espécies Reativas de Oxigênio/metabolismo
6.
J Agric Food Chem ; 72(19): 10814-10827, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710027

RESUMO

Foxtail millet is an important cereal crop that is relatively sensitive to salt stress, with its yield significantly affected by such stress. Alternative splicing (AS) widely affects plant growth, development, and adaptability to stressful environments. Through RNA-seq analysis of foxtail millet under different salt treatment periods, 2078 AS events were identified, and analyses were conducted on differential gene (DEG), differential alternative splicing gene (DASG), and overlapping gene. To investigate the regulatory mechanism of AS in response to salt stress in foxtail millet, the foxtail millet AS genes SiCYP19, with two AS variants (SiCYP19-a and SiCYP19-b), were identified and cloned. Yeast overexpression experiments indicated that SiCYP19 may be linked to the response to salt stress. Subsequently, we conducted overexpression experiments of both alternative splicing variants in foxtail millet roots to validate them experimentally. The results showed that, under salt stress, both SiCYP19-a and SiCYP19-b jointly regulated the salt tolerance of foxtail millet. Specifically, overexpression of SiCYP19-b significantly increased the proline content and reduced the accumulation of reactive oxygen species (ROS) in foxtail millet, compared to that in SiCYP19-a. This shows that SiCYP19-b plays an important role in increasing the content of proline and promoting the clearance of ROS, thus improving the salt tolerance of foxtail millet.


Assuntos
Processamento Alternativo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Tolerância ao Sal , Setaria (Planta) , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Setaria (Planta)/efeitos dos fármacos , Tolerância ao Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
J Integr Plant Biol ; 66(8): 1540-1543, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38695650

RESUMO

In foxtail millet (Setaria italica), knockout of the glutamate formiminotransferases SiGFT1 and 2 increased the accumulation of bioactive folates to approximately four times the level of wild-type plants and decreased levels of the bioinactive oxidation product MeFox by 95%, thus providing a promising route for folate biofortification in cereal crops.


Assuntos
Ácido Fólico , Setaria (Planta) , Setaria (Planta)/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/efeitos dos fármacos , Ácido Fólico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
8.
Sci Rep ; 14(1): 9508, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664476

RESUMO

Foxtail millet is a highly nutritious crop, which is widely cultivated in arid and semi-arid areas worldwide. Humic acid (HA), as a common plant growth regulator, is used as an organic fertilizer and feed additive in agricultural production. However, the impact of potassium humate KH on the photosynthetic rate and yield of foxtail millet has not yet been studied. We explored the effects of KH application on the morphology, photosynthetic ability, carbon and nitrogen metabolism, and yield of foxtail millet. A field experiment was performed using six concentrations of KH (0, 20, 40, 80, 160, and 320 kg ha-1) supplied foliarly at the booting stage in Zhangza 10 cultivar (a widely grown high-yield variety). The results showed that KH treatment increased growth, chlorophyll content (SPAD), photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (Gs). In addition, soluble protein content, sugar content, and nitrate reductase activity increased in KH-treated plants. With increased KH concentration, the effects became more evident and the peak values of each factor were achieved at 80 kg ha-1. Photosynthetic rate showed significant correlation with SPAD, Tr, Gs, and soluble protein content, but was negatively correlated with intercellular CO2 concentration. Compared to that of the control, the yield of foxtail millet under the T2, T3, T4, and T5 (40, 80, 160, and 320 kg ha-1 of KH) treatments significantly increased by 6.0%, 12.7%, 10.5%, and 8.6%, respectively. Yield exhibited a significant positive correlation with Tr, Pn, and Gs. Overall, KH enhances photosynthetic rate and yield of foxtail millet, therefore it may be conducive to stable millet production. These findings may provide a theoretical basis for the green and efficient production of millet fields.


Assuntos
Clorofila , Fertilizantes , Substâncias Húmicas , Fotossíntese , Setaria (Planta) , Fotossíntese/efeitos dos fármacos , Setaria (Planta)/metabolismo , Setaria (Planta)/efeitos dos fármacos , Setaria (Planta)/crescimento & desenvolvimento , Clorofila/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo
9.
Bioorg Chem ; 117: 105452, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34742026

RESUMO

Three pairs of undescribed enantiomeric α-pyrone derivatives (1a/1b-3a/3b) and six undescribed congeners (4-9), were obtained from the fungus Alternaria brassicicola that was isolated from the fresh leaves of Siegesbeckia pubescens Makino (Compositae). The structures of these new compounds were characterized by extensive NMR spectroscopic and HRESIMS data, and their absolute configurations were further elucidated by a modified Mosher's method, chemical conversion, single-crystal X-ray diffraction analysis, and ECD calculations. This is the first report of three pairs of enantiomeric α-pyrone derivatives from the fungus A. brassicicola, and these enantiomers were successfully acquired from scalemic mixtures via chiral HPLC. Compounds 1a/1b-3a/3b and 4-9 were evaluated for the herbicidal activity against Echinochloa crusgalli, Setaria viridis, Portulaca oleracea, and Taraxacum mongolicum. At a concentration of 100 µg/mL, compounds 1a and 1b could significantly inhibit the germination of monocotyledon weed seeds (E. crusgalli and S. viridis) with inhibitory ratios ranging from 68.6 ± 6.4% to 84.2 ± 5.1%, which was equivalent to that of the positive control (glyphosate). The potential structure-herbicidal activity relationship of these compounds was also discussed. To a certain extent, the results of this study will attract great interest for the potential practical application of promising fungal metabolites, α-pyrone derivatives, as ecofriendly herbicides.


Assuntos
Alternaria/química , Herbicidas/farmacologia , Pironas/farmacologia , Asteraceae/química , Relação Dose-Resposta a Droga , Echinochloa/efeitos dos fármacos , Herbicidas/química , Herbicidas/isolamento & purificação , Estrutura Molecular , Portulaca/efeitos dos fármacos , Pironas/química , Pironas/isolamento & purificação , Setaria (Planta)/efeitos dos fármacos , Relação Estrutura-Atividade , Taraxacum/efeitos dos fármacos
10.
Toxins (Basel) ; 13(10)2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34678999

RESUMO

Sophora alopecuroides is known to produce relatively large amounts of alkaloids; however, their ecological consequences remain unclear. In this study, we evaluated the allelopathic potential of the main alkaloids, including aloperine, matrine, oxymatrine, oxysophocarpine, sophocarpine, sophoridine, as well as their mixture both in distilled H2O and in the soil matrix. Our results revealed that all the alkaloids possessed inhibitory activity on four receiver species, i.e., Amaranthus retroflexus, Medicago sativa, Lolium perenne and Setaria viridis. The strength of the phytotoxicity of the alkaloids was in the following order: sophocarpine > aloperine > mixture > sophoridine > matrine > oxysophocarpine > oxymatrine (in Petri dish assays), and matrine > mixture > sophocarpine > oxymatrine > oxysophocarpine > sophoridine > aloperine (in pot experiments). In addition, the mixture of the alkaloids was found to significantly increase the IAA content, MDA content and POD activity of M. sativa seedlings, whereas CTK content, ABA content, SOD activity and CAT activity of M. sativa seedlings decreased markedly. Our results suggest S. alopecuroides might produce allelopathic alkaloids to improve its competitiveness and thus facilitate the establishment of its dominance; the potential value of these alkaloids as environmentally friendly herbicides is also discussed.


Assuntos
Alcaloides/farmacologia , Alelopatia , Amaranthus/efeitos dos fármacos , Lolium/efeitos dos fármacos , Medicago sativa/efeitos dos fármacos , Setaria (Planta)/efeitos dos fármacos , Sophora/química , Alcaloides/química
11.
Plant Physiol Biochem ; 160: 193-210, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33513466

RESUMO

Soil salinity has the potential to severely affect crop performance. To maintain cell functioning and improve salt tolerance, the maintenance of K+ homeostasis is crucial in several plant metabolism processes. Besides, potassium fertilization can efficiently alleviate the perilous effects of salinity. We characterized impacts in Setaria viridis exposed to NaCl and KCl to underlying photochemistry mechanisms, K+ and Na+ shoot contents, enzymatic activity, electrolytic leakage, and morphological responses focusing on non-stomatal limitation of photosynthesis. Plants were exposed to sodium chloride (NaCl; 0, 150 and 250 mM) and potassium chloride (KCl; 0, 5, 9 mM). The exposure to NaCl affected S. viridis leaves morphological and physiologically. Plants submitted to 150 mM showed reductions in performance indexes (PIabs and PItotal; JIP-test), and the presence of positive K- and L-bands. Plants exposed to 250 mM exhibited blockage in electron flow further than QA within 48h and permanent photoinhibition at 96 h. The presence of 9 and 5 mM of KCl counteracted the effects of NaCl on plants submitted to 150 mM, concomitant with increases in K+ accumulation and cell turgidity conservation, causing positive effects in plant growth and metabolism. Neither KCl concentrations were effective in reducing NaCl-induced effects on plants exposed to 250 mM of NaCl. Our results support the conclusion that greater availability of K+ alleviates the harmful effects of salinity in S. viridis under moderate stress and that application of KCl as means of lightning saline stress has a concentration and a salt level limit that must be experimentally determined.


Assuntos
Potássio , Salinidade , Setaria (Planta)/efeitos dos fármacos , Estresse Fisiológico , Clorofila , Folhas de Planta/química , Setaria (Planta)/química , Cloreto de Sódio/farmacologia
12.
Sci Rep ; 10(1): 21690, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303778

RESUMO

Certain synthetic herbicides can act synergistically with specific bioherbicides. In this study, a sethoxydim herbicide at 0.1× label rate improved biocontrol of herbicide-sensitive green foxtail (Setaria viridis, GFT) by Pyricularia setariae (a fungal bioherbicide agent), but did not change the efficacy on a herbicide-resistant GFT biotype. Reference transcriptomes were constructed for both GFT biotypes via de novo assembly of RNA-seq data. GFT plants treated with herbicide alone, fungus alone and herbicide + fungus were compared for weed-control efficacy and differences in transcriptomes. On herbicide-sensitive GFT, sethoxydim at the reduced rate induced ABA-activated signaling pathways and a bZIP transcription factor 60 (TF bZIP60), while improved the efficacy of biocontrol. The herbicide treatment did not increase these activities or improve biocontrol efficacy on herbicide-resistant plants. An exogenous application of ABA to herbicide-sensitive plants also enhanced bZIP60 expression and improved biocontrol efficacy, which supported the results of transcriptome analysis that identified the involvement of ABA and bZIP60 in impaired plant defense against P. setariae. It is novel to use transcriptome analysis to decipher the molecular basis for synergy between a synthetic herbicide and a bioherbicide agent. A better understanding of the mechanism underlining the synergy may facilitate the development of weed biocontrol.


Assuntos
Ascomicetos/fisiologia , Fatores Biológicos , Cicloexanonas/farmacologia , Sinergismo Farmacológico , Herbicidas/farmacologia , Setaria (Planta)/efeitos dos fármacos , Setaria (Planta)/genética , Transcriptoma/genética , Controle de Plantas Daninhas/métodos , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Resistência a Herbicidas , RNA de Plantas , Análise de Sequência de RNA , Setaria (Planta)/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
13.
Planta ; 252(6): 98, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33159589

RESUMO

MAIN CONCLUSION: This is a first comprehensive study to analyze the 12 PHT1 family phosphate transporter genes in 20 foxtail millet genotypes for the improvement of millets and other crops for phosphate use efficiency. Phosphorus (P), absorbed from soil solutions as inorganic phosphate (Pi), is a limiting nutrient for plant growth and yield. Twenty genotypes of foxtail millet (Setaria italica) with contrasting degree of growth and Pi uptake responses under low Pi (LP) and high Pi (HP) supply were chosen based on a previous study. To gain molecular insights, expression dynamics of 12 PHosphate Transporter 1 (PHT1) family (SiPHT1;1 to 1;12) genes were analyzed in these 20 genotypes and compared with their Pi and total P (TP) contents. SiPHT1;1, 1;2, 1;3 and 1;8 genes were expressed in shoot tissues of three (ISe 1209, ISe 1305 and Co-6) of the LP best performing genotypes (LPBG); however, they were expressed in only one of the LP worst performing genotype (LPWG) (ISe 748). More importantly, this is correlating with higher shoot Pi and TP contents of the LPBG compared to LPWG. Apart from this condition, expression of SiPHT1 genes and their Pi and TP contents do not correlate directly for many genotypes in other conditions; genotypes with low Pi and TP contents induced more SiPHT1 genes and vice versa. Promoter analysis revealed that genotype ISe 1888 with a high level of SiPHT1;8 expression possesses two additional root box motifs compared to other genotypes. The PHT1 family genes seem to play a key role for LP stress tolerance in foxtail millet and further studies will help to improve the P-use efficiency in foxtail millet and other cereals.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Transporte de Fosfato , Setaria (Planta) , Estresse Fisiológico , Genótipo , Proteínas de Transporte de Fosfato/genética , Fosfatos/toxicidade , Setaria (Planta)/efeitos dos fármacos , Setaria (Planta)/genética , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética
14.
ACS Appl Mater Interfaces ; 12(44): 50126-50134, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33090773

RESUMO

Despite small-molecule surfactants and polymers being widely used as pesticide adjuvants to inhibit droplet bouncing and splashing, they still have intrinsic drawbacks either in the easy wind drift and evaporation, the unfavorable wettability, or the usage of nonrenewable resources. In this paper, we found that upon droplet impacting, 1D nanofibers assembled from natural glycyrrhizic acid (GL) could pin on the rough hydrophobic surface and delay the retraction rate of droplets effectively. Using GL as a tank-mixed adjuvant, the efficiency of glyphosate to control the weed growth was improved significantly in the field experiment, which addressed the dilemmas of current adjuvants elegantly. Our work not only provides a constructive way to overcome droplet bouncing but also prompted us to verify in future if all 1D nanofibers assembled from different small molecules can display similar control efficiencies.


Assuntos
Glicina/análogos & derivados , Ácido Glicirrízico/farmacologia , Folhas de Planta/química , Setaria (Planta)/efeitos dos fármacos , Glicina/química , Glicina/farmacologia , Ácido Glicirrízico/química , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Nanofibras/química , Tamanho da Partícula , Setaria (Planta)/crescimento & desenvolvimento , Propriedades de Superfície , Glifosato
15.
Genomics ; 112(6): 4463-4473, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32763352

RESUMO

Long non-coding RNAs (lncRNAs) play an important function in plant growth and development as well as response to stresses. However, little information was known in foxtail millet; no study was reported on lncRNAs in plant response to herbicide treatment. In this study, by using deep sequencing and advanced bioinformatic analysis, a total of 2547 lncRNAs were identified, including 787 known and 1760 novel lncRNAs. These lncRNAs are distributed across all 9 chromosomes, and the majority were located in the intergenic region with 1-2 exons. These lncRNAs were differentially expressed between different genotypes under different herbicide treatments. lncRNAs regulate plant growth and development as well as response to herbicide treatments through targeting protein-coding genes that directly relate to chemical metabolism and defense system. Multiple potential target genes and lncRNA-mRNA-miRNA gene networks were discovered. These results elucidate the potential roles of lncRNAs in plant response to herbicides.


Assuntos
Regulação da Expressão Gênica de Plantas , Herbicidas/toxicidade , RNA Longo não Codificante/metabolismo , Setaria (Planta)/efeitos dos fármacos , Setaria (Planta)/genética , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/fisiologia , RNA-Seq , Setaria (Planta)/crescimento & desenvolvimento , Setaria (Planta)/metabolismo
16.
J Sci Food Agric ; 100(15): 5510-5517, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32562258

RESUMO

BACKGROUND: The common weeds Echinochloa crus-galli L. and Setaria glauca L. were studied for their sensitivity to aqueous extracts or dry biomass of the following cover crops (CCs): Brassicaceae (Sinapis alba, Raphanus sativus var. Oleiformis, Camellina sativa), Fagopyrum esculentum and Guizotia abyssinica. RESULTS: Treating E. crus-galli with aqueous extracts of mixed CCs or individual brassica CC significantly reduced germination. Treating S. glauca with aqueous extracts of C. sativa or G. abyssinicia reduced germination. Aqueous extracts of all CCs significantly reduced radicle length of E. crus-galli and S. glauca, with C. sativa and mixed CCs showing the greatest effect. Aqueous extracts of nearly all CCs delayed start and middle germination of E. crus-galli and S. glauca, with S. alba and R. sativus showing the strongest effects. Aqueous extracts of Brassicaceae leaf and flower significantly reduced germination, coleoptile length, radicle length and seedling biomass of E. crus-galli and S. glauca. Brassicaceae leaves and flowers contained higher phenolics than other tissues. Adding 4 or 8% S. alba and R. sativus dry powder to soil significantly reduced growth of E. crus-galli and S. glauca; even concentrations of 1% measurably slowed growth of E. crus-galli. CONCLUSIONS: Brassicaceae may be allelopathic to S. glauca and E. crus-galli. Aqueous extracts of leaves and flowers showed greater phytotoxic activity than other tissues and also contained more phenolics. Therefore Brassicaceae CCs may be most effective against S. glauca and E. crus-galli if incorporated into soil during their flowering stage. © 2020 Society of Chemical Industry.


Assuntos
Asteraceae/química , Brassicaceae/química , Echinochloa/efeitos dos fármacos , Fagopyrum/química , Herbicidas/farmacologia , Extratos Vegetais/farmacologia , Setaria (Planta)/efeitos dos fármacos , Alelopatia , Echinochloa/crescimento & desenvolvimento , Herbicidas/química , Extratos Vegetais/química , Plantas Daninhas/efeitos dos fármacos , Setaria (Planta)/crescimento & desenvolvimento
17.
PLoS One ; 15(6): e0234029, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32484836

RESUMO

The aim of this study was to determine the effects and underlying molecular mechanisms of humic acid (HA) on foxtail millet (Setaria italica Beauv.) under drought conditions. The rainless climate of the Shanxi Province (37°42'N, 112°58'E) in China provides a natural simulation of drought conditions. Two foxtail millet cultivars, Jingu21 and Zhangza10, were cultivated in Shanxi for two consecutive years (2017-2018) based on a split-plot design. Plant growth, grain quality, and mineral elements were analyzed in foxtail millet treated with HA (50, 100, 200, 300, and 400 mg L-1) and those treated with clear water. Transcriptome sequencing followed by bioinformatics analysis was performed on plants in the normal control (CK), drought treatment (D), and drought + HA treatment (DHA) groups. Results were verified using real-time quantitative PCR (RT-qPCR). HA at a concentration of 100-200 mg L-1 caused a significant increase in the yield of foxtail millet and had a positive effect on dry weight and root-shoot ratio. HA also significantly increased P, Fe, Cu, Zn, and Mg content in grains. Moreover, a total of 1098 and 409 differentially expressed genes (DEGs) were identified in group D vs. CK and D vs. DHA, respectively. A protein-protein interaction network and two modules were constructed based on DEGs (such as SETIT_016654mg) between groups D and DHA. These DEGs were mainly enriched in the metabolic pathway. In conclusion, HA (100 mg L-1) was found to promote the growth of foxtail millet under drought conditions. Furthermore, SETIT_016654mg may play a role in the effect of HA on foxtail millet via control of the metabolic pathway. This study lays the foundation for research into the molecular mechanisms that underlie the alleviating effects of HA on foxtail millet under drought conditions.


Assuntos
Substâncias Húmicas , Proteínas de Plantas/genética , Setaria (Planta)/crescimento & desenvolvimento , Transcriptoma/genética , China , Secas , Grão Comestível/efeitos dos fármacos , Grão Comestível/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Humanos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Setaria (Planta)/efeitos dos fármacos , Setaria (Planta)/genética , Estresse Fisiológico/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
18.
J Biotechnol ; 318: 57-67, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32433921

RESUMO

The study reports the identification and expression profiling of five major classes of C4 pathway-specific genes, namely, carbonic anhydrase (CaH), phosphoenolpyruvate carboxylase (PEPC), pyruvate orthophosphate dikinase (PPDK), NADP-dependent malate dehydrogenase (MDH) and NADP-dependent malic enzyme (NADP-ME), in the model species, Setaria italica and Setaria viridis. A total of 42 and 41 genes were identified in S. italica and S. viridis, respectively. Further analysis revealed that segmental and tandem duplications have contributed to the expansion of these gene families. RNA-Seq derived expression profiles of the gene family members showed their differential expression pattern in tissues and dehydration stress. Comparative genome mapping and Ks dating provided insights into their duplication and divergence in the course of evolution. Expression profiling of candidate genes in contrasting S. italica cultivars subjected to abiotic stresses and hormone treatments showed distinct stress-specific upregulation of SiαCaH1, SißCaH5, SiPEPC2, SiPPDK2, SiMDH8, and SiNADP-ME5 in the tolerant cultivar. Overexpression of SiNADP-ME5 in heterologous yeast system enabled the transgenic cells to survive and grow in dehydration stress conditions, which highlights the putative role of SiNADP-ME5 in conferring tolerance to dehydration stress. Altogether, the study highlights key genes that could be potential candidates for elucidating their functional roles in abiotic stress response.


Assuntos
Genoma de Planta/genética , Setaria (Planta)/genética , Estresse Fisiológico/genética , Mapeamento Cromossômico , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Família Multigênica , Fotossíntese/genética , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Setaria (Planta)/classificação , Setaria (Planta)/efeitos dos fármacos , Setaria (Planta)/metabolismo
19.
PLoS One ; 14(11): e0225091, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31714948

RESUMO

CBL-interacting protein kinases (CIPKs) have been shown to regulate a variety of environmental stress-related signalling pathways in plants. Foxtail millet (Setaria italica (L.) P. Beauv) is known worldwide as a relatively stress-tolerant C4 crop species. Although the foxtail millet genome sequence has been released, little is known about the functions of CIPKs in foxtail millet. Therefore, a systematic genome-wide analysis of CIPK genes in foxtail millet was performed. In total, 35 CIPK members were identified in foxtail millet and divided into four subgroups (I to IV) on the basis of their phylogenetic relationships. Phylogenetic and gene structure analyses clearly divided all SiCIPKs into intron-poor and intron-rich clades. Cis-element analysis subsequently indicated that these SiCIPKs may be involved in responses to abiotic stimuli, hormones, and light signalling during plant growth and development, and stress-induced expression profile analysis revealed that all the SiCIPKs are involved in various stress signalling pathways. These results suggest that the CIPK genes in foxtail millet exhibit the basic characteristics of CIPK family members and play important roles in response to abiotic stresses. The results of this study will contribute to future functional characterization of abiotic stress responses mediated by CIPKs in foxtail millet.


Assuntos
Ácido Abscísico/farmacologia , Proteínas Quinases/genética , Setaria (Planta)/enzimologia , Estresse Fisiológico , Motivos de Aminoácidos , Cromossomos de Plantas/genética , Sequência Conservada , Evolução Molecular , Éxons/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Íntrons/genética , Família Multigênica , Filogenia , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Setaria (Planta)/efeitos dos fármacos , Setaria (Planta)/genética , Setaria (Planta)/fisiologia , Regulação para Cima/efeitos dos fármacos
20.
Plant Sci ; 285: 239-247, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31203889

RESUMO

Foxtail millet (Setaria italica) is a nutrient-rich food source traditionally grown in arid and semi-arid areas, as it is well adapted to drought climate. Yet there is limited information as how the crop responses to the changing climate. In order to investigate the response of foxtail millet to elevated [CO2] and the underlying mechanism, the crop was grown at ambient [CO2] (400 µmol mol-1) and elevated [CO2] (600 µmol mol-1) in an open-top chamber (OTC) experimental facility in North China. The changes in leaf photosynthesis, chlorophyll fluorescence, biomass, yield and global gene expression in response to elevated [CO2] were determined. Despite foxtail millet being a C4 photosynthetic crop, photosynthetic rates (PN) and intrinsic water-use efficiency (WUEi), were increased under elevated [CO2]. Similarly, grain yield and above-ground biomass also significantly increased (P <  0.05) for the two years of experimentation under elevated [CO2]. Increases in seeds and tiller number, spike and stem weight were the main contributors to the increased grain yield and biomass. Using transcriptomic analyses, this study further identified some genes which play a role in cell wall reinforcement, shoot initiation, stomatal conductance, carbon fixation, glycolysis / gluconeogenesis responsive to elevated [CO2]. Changes in these genes reduced plant height, increased stem diameters, and promote CO2 fixation. Higher photosynthetic rates at elevated [CO2] demonstrated that foxtail millet was not photosynthetically saturated at elevated [CO2] and its photosynthesis response to elevated [CO2] were analogous to C3 plants.


Assuntos
Fotossíntese/efeitos dos fármacos , Setaria (Planta)/efeitos dos fármacos , Biomassa , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Produção Agrícola , Sequenciamento de Nucleotídeos em Larga Escala , Reação em Cadeia da Polimerase em Tempo Real , Setaria (Planta)/genética , Setaria (Planta)/crescimento & desenvolvimento , Setaria (Planta)/metabolismo , Transcriptoma/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA