Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 868
Filtrar
1.
PeerJ ; 12: e17472, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827280

RESUMO

Excessive aluminum (Al) in acidic soils is a primary factor that hinders plant growth. The objective of the present study was to investigate the effect and physiological mechanism of exogenous silicon (Si) in alleviating aluminum toxicity. Under hydroponic conditions, 4 mM Al significantly impeded the growth of white clover; however, pretreatments with 1 mM Si mitigated this inhibition, as evidenced by notable changes in growth indicators and physiological parameters. Exogenous silicon notably increased both shoot and root length of white clover and significantly decreased electrolyte leakage (EL) and malondialdehyde (MDA) content compared to aluminum treatments. This positive effect was particularly evident in the roots. Further analysis involving hematoxylin staining, scanning electron microscopy (SEM), and examination of organic acids (OAs) demonstrated that silicon relieved the accumulation of bioactive aluminum and ameliorated damage to root tissues in aluminum-stressed plants. Additionally, energy-dispersive X-ray (EDX) analysis revealed that additional silicon was primarily distributed in the root epidermal and cortical layers, effectively reducing the transport of aluminum and maintaining the balance of exchangeable cations absorption. These findings suggest that gradual silicon deposition in root tissues effectively prevents the absorption of biologically active aluminum, thereby reducing the risk of mineral nutrient deficiencies induced by aluminum stress, promoting organic acids exudation, and compartmentalizing aluminum in the outer layer of root tissues. This mechanism helps white clover alleviate the damage caused by aluminum toxicity.


Assuntos
Alumínio , Raízes de Plantas , Silício , Trifolium , Trifolium/metabolismo , Trifolium/efeitos dos fármacos , Silício/farmacologia , Alumínio/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Microscopia Eletrônica de Varredura , Malondialdeído/metabolismo
2.
BMC Plant Biol ; 24(1): 550, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38872083

RESUMO

BACKGROUND: Boron (B) is a micronutrient, but excessive levels can cause phytotoxicity, impaired growth, and reduced photosynthesis. B toxicity arises from over-fertilization, high soil B levels, or irrigation with B-rich water. Conversely, silicon (Si) is recognized as an element that mitigates stress and alleviates the toxic effects of certain nutrients. In this study, to evaluate the effect of different concentrations of Si on maize under boron stress conditions, a factorial experiment based on a randomized complete block design was conducted with three replications in a hydroponic system. The experiment utilized a nutrient solution for maize var. Merit that contained three different boron (B) concentrations (0.5, 2, and 4 mg L-1) and three Si concentrations (0, 28, and 56 mg L-1). RESULTS: Our findings unveiled that exogenous application of B resulted in a substantial escalation of B concentration in maize leaves. Furthermore, B exposure elicited a significant diminution in fresh and dry plant biomass, chlorophyll index, chlorophyll a (Chl a), chlorophyll b (Chl b), carotenoids, and membrane stability index (MSI). As the B concentration augmented, malondialdehyde (MDA) content and catalase (CAT) enzyme activity exhibited a concomitant increment. Conversely, the supplementation of Si facilitated an amelioration in plant fresh and dry weight, total carbohydrate, and total soluble protein. Moreover, the elevated activity of antioxidant enzymes culminated in a decrement in hydrogen peroxide (H2O2) and MDA content. In addition, the combined influence of Si and B had a statistically significant impact on the leaf chlorophyll index, total chlorophyll (a + b) content, Si and B accumulation levels, as well as the enzymatic activities of guaiacol peroxidase (GPX), ascorbate peroxidase (APX), and H2O2 levels. These unique findings indicated the detrimental impact of B toxicity on various physiological and biochemical attributes of maize, while highlighting the potential of Si supplementation in mitigating the deleterious effects through modulation of antioxidant machinery and biomolecule synthesis. CONCLUSIONS: This study highlights the potential of Si supplementation in alleviating the deleterious effects of B toxicity in maize. Increased Si consumption mitigated chlorophyll degradation under B toxicity, but it also caused a significant reduction in the concentrations of essential micronutrients iron (Fe), copper (Cu), and zinc (Zn). While Si supplementation shows promise in counteracting B toxicity, the observed decrease in Fe, Cu, and Zn concentrations warrants further investigation to optimize this approach and maintain overall plant nutritional status.


Assuntos
Boro , Clorofila , Hidroponia , Silício , Zea mays , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Zea mays/fisiologia , Zea mays/metabolismo , Boro/toxicidade , Boro/metabolismo , Silício/farmacologia , Clorofila/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Malondialdeído/metabolismo , Carotenoides/metabolismo , Antioxidantes/metabolismo , Catalase/metabolismo
3.
Plant Cell Rep ; 43(7): 169, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864921

RESUMO

KEY MESSAGE: The study unveils Si's regulatory influence by regulating DEGs, TFs, and TRs. Further bHLH subfamily and auxin transporter pathway elucidates the mechanisms enhancing root development and nodulation. Soybean is a globally important crop serving as a primary source of vegetable protein for millions of individuals. The roots of these plants harbour essential nitrogen fixing structures called nodules. This study investigates the multifaceted impact of silicon (Si) application on soybean, with a focus on root development, and nodulation employing comprehensive transcriptomic analyses and gene regulatory network. RNA sequence analysis was utilised to examine the change in gene expression and identify the noteworthy differentially expressed genes (DEGs) linked to the enhancement of soybean root nodulation and root development. A set of 316 genes involved in diverse biological and molecular pathways are identified, with emphasis on transcription factors (TFs) and transcriptional regulators (TRs). The study uncovers TF and TR genes, categorized into 68 distinct families, highlighting the intricate regulatory landscape influenced by Si in soybeans. Upregulated most important bHLH subfamily and the involvement of the auxin transporter pathway underscore the molecular mechanisms contributing to enhanced root development and nodulation. The study bridges insights from other research, reinforcing Si's impact on stress-response pathways and phenylpropanoid biosynthesis crucial for nodulation. The study reveals significant alterations in gene expression patterns associated with cellular component functions, root development, and nodulation in response to Si.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Glycine max , Nodulação , Raízes de Plantas , Silício , Fatores de Transcrição , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Nodulação/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Silício/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma/genética
4.
Environ Res ; 252(Pt 4): 119064, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710427

RESUMO

Soil cadmium (Cd) pollution has emerged as a pressing concern due to its deleterious impacts on both plant physiology and human well-being. Silicon (Si) is renowned for its ability to mitigate excessive Cd accumulation within plant cells and reduce the mobility of Cd in soil, whereas Selenium (Se) augments plant antioxidant capabilities and promotes rhizosphere microbial activity. However, research focusing on the simultaneous utilization of Si and Se to ameliorate plant Cd toxicity through multiple mechanisms within the plant-rhizosphere remains comparatively limited. This study combined hydroponic and pot experiments to investigate the effects of the combined application of Si and Se on Cd absorption and accumulation, as well as the growth and rhizosphere of A. selengensis Turcz under Cd stress. The results revealed that a strong synergistic effect was observed between both Si and Se. The combination of Si and Se significantly increased the activity and content of enzymes and non-enzyme antioxidants within A. selengensis Turcz, reduced Cd accumulation and inhibiting its translocation from roots to shoots. Moreover, Si and Se application improved the levels of reducing sugar, soluble protein, and vitamin C, while reducing nitrite content and Cd bioavailability. Furthermore, the experimental results showed that the combination of Si and Se not only increased the abundance of core rhizosphere microorganisms, but also stimulated the activity of soil enzymes, which effectively limited the migration of Cd in the soil. These findings provided valuable insights into the effective mitigation of soil Cd toxicity to plants and also the potential applications in improving plant quality and safety.


Assuntos
Artemisia , Cádmio , Rizosfera , Selênio , Silício , Poluentes do Solo , Cádmio/toxicidade , Selênio/farmacologia , Silício/farmacologia , Poluentes do Solo/toxicidade , Artemisia/química , Antioxidantes/metabolismo
5.
J Agric Food Chem ; 72(19): 10781-10793, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709780

RESUMO

In this study, 20-day-old soybean plants were watered with 100 mL of 100 mM NaCl solution and sprayed with silica nanoparticles (SiO2 NPs) or potassium silicate every 3 days over 15 days, with a final dosage of 12 mg of SiO2 per plant. We assessed the alterations in the plant's growth and physiological traits, and the responses of bacterial microbiome within the leaf endosphere, rhizosphere, and root endosphere. The result showed that the type of silicon did not significantly impact most of the plant parameters. However, the bacterial communities within the leaf and root endospheres had a stronger response to SiO2 NPs treatment, showing enrichment of 24 and 13 microbial taxa, respectively, compared with the silicate treatment, which led to the enrichment of 9 and 8 taxonomic taxa, respectively. The rhizosphere bacterial communities were less sensitive to SiO2 NPs, enriching only 2 microbial clades, compared to the 8 clades enriched by silicate treatment. Furthermore, SiO2 NPs treatment enriched beneficial genera, such as Pseudomonas, Bacillus, and Variovorax in the leaf and root endosphere, likely enhancing plant growth and salinity stress resistance. These findings highlight the potential of SiO2 NPs for foliar application in sustainable farming by enhancing plant-microbe interactions to improve salinity tolerance.


Assuntos
Bactérias , Glycine max , Nanopartículas , Rizosfera , Silício , Glycine max/microbiologia , Glycine max/crescimento & desenvolvimento , Glycine max/efeitos dos fármacos , Glycine max/química , Nanopartículas/química , Bactérias/classificação , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/crescimento & desenvolvimento , Silício/farmacologia , Silício/química , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Microbiologia do Solo , Microbiota/efeitos dos fármacos , Folhas de Planta/química , Folhas de Planta/microbiologia , Folhas de Planta/crescimento & desenvolvimento , Endófitos/fisiologia , Endófitos/efeitos dos fármacos , Dióxido de Silício/química , Estresse Salino
6.
BMC Plant Biol ; 24(1): 471, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811870

RESUMO

BACKGROUND: Nutritional disorders of phosphorus (P), due to deficiency or toxicity, reduce the development of Eucalyptus spp. seedlings. Phosphorus deficiency often results in stunted growth and reduced vigor, while phosphorus toxicity can lead to nutrient imbalances and decreased physiological function. These sensitivities highlight the need for precise management of P levels in cultivation practices. The use of the beneficial element silicon (Si) has shown promising results under nutritional stress; nevertheless, comprehensive studies on its effects on Eucalyptus spp. seedlings are still emerging. To further elucidate the role of Si under varying P conditions, an experiment was conducted with clonal seedlings of a hybrid Eucalyptus spp. (Eucalyptus grandis × Eucalyptus urophylla, A207) in a soilless cultivation system. Seedlings were propagated using the minicutting method in vermiculite-filled tubes, followed by treatment with a nutrient solution at three P concentrations: a deficient dose (0.1 mM), an adequate dose (1.0 mM) and an excessive dose (10 mM), with and without the addition of Si (2mM). This study assessed P and Si concentration, nutritional efficiency, oxidative metabolism, photosynthetic parameters, and dry matter production. RESULTS: Si supply increased phenolic compounds production and reduced electrolyte leakage in seedlings provided with 0.1 mM of P. On the other hand, Si favored quantum efficiency of photosystem II as well as chlorophyll a content in seedlings supplemented with 10 mM of P. In general, Si attenuates P nutritional disorder by reducing the oxidative stress, favoring the non-enzymatic antioxidant system and photosynthetic parameters in seedlings of Eucalyptus grandis × Eucalyptus urophylla. CONCLUSION: The results of this study indicate that Eucalyptus grandis × Eucalyptus urophylla seedlings are sensitive to P deficiency and toxicity and Si has shown a beneficial effect, attenuating P nutritional disorder by reducing the oxidative stress, favoring the non-enzymatic antioxidant system and photosynthetic parameters.


Assuntos
Eucalyptus , Fósforo , Fotossíntese , Plântula , Silício , Eucalyptus/efeitos dos fármacos , Eucalyptus/fisiologia , Plântula/fisiologia , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Silício/farmacologia , Fósforo/metabolismo , Fósforo/deficiência , Fotossíntese/efeitos dos fármacos , Antioxidantes/metabolismo , Clorofila/metabolismo , Estresse Oxidativo/efeitos dos fármacos
7.
Plant Physiol Biochem ; 211: 108659, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691875

RESUMO

Chromium (Cr) contamination in agricultural soils poses a risk to crop productivity and quality. Emerging nano-enabled strategies show great promise in remediating soils contaminated with heavy metals and enhancing crop production. The present study was aimed to investigate the efficacy of nano silicon (nSi) in promoting wheat growth and mitigating adverse effects of Cr-induced toxicity. Wheat seedlings exposed to Cr (K2Cr2O7) at a concentration of 100 mg kg-1 showed significant reductions in plant height (29.56%), fresh weight (35.60%), and dry weight (38.92%) along with enhanced Cr accumulation in roots and shoots as compared to the control plants. However, the application of nSi at a concentration of 150 mg kg-1 showcased substantial mitigation of Cr toxicity, leading to a decrease in Cr accumulation by 27.30% in roots and 35.46% in shoots of wheat seedlings. Moreover, nSi exhibited the capability to scavenge oxidative stressors, such as hydrogen peroxide (H2O2), and malondialdehyde (MDA) and electrolyte leakage, while significantly enhancing gas exchange parameters, total chlorophyll content, and antioxidant activities (enzymatic and nonenzymatic) in plants grown in Cr-contaminated soil. This study further found that the reduced Cr uptake by nSi application was due to downregulating the expression of HMs transporter genes (TaHMA2 and TaHMA3), alongwith upregulating the expression of antioxidant-responsive genes (TaSOD and TaSOD). The findings of this investigation highlight the remarkable potential of nSi in ameliorating Cr toxicity. This enhanced efficacy could be ascribed to the distinctive size and structure of nSi, which augment its ability to counteract Cr stress. Thus, the application of nSi could serve as a viable solution for production of crops in metal contaminated soils, offering an effective alternative to time-consuming and costly remediation techniques.


Assuntos
Cromo , Silício , Triticum , Triticum/efeitos dos fármacos , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Silício/farmacologia , Cromo/toxicidade , Poluentes do Solo/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo
8.
Plant Physiol Biochem ; 211: 108680, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701606

RESUMO

Fruit crops are frequently subjected to biotic and abiotic stresses that can significantly reduce the absorption and translocation of essential elements, ultimately leading to a decrease in crop yield. It is imperative to grow fruits and vegetables in areas prone to drought, salinity, and extreme high, and low temperatures to meet the world's minimum nutrient demand. The use of integrated approaches, including supplementation of beneficial elements like silicon (Si), can enhance plant resilience under various stresses. Silicon is the second most abundant element on the earth crust, following oxygen, which plays a significant role in development and promote plant growth. Extensive efforts have been made to explore the advantages of Si supplementation in fruit crops. The application of Si to plants reinforces the cell wall, providing additional support through enhancing a mechanical and biochemical processes, thereby improving the stress tolerance capacity of crops. In this review, the molecular and physiological mechanisms that explain the beneficial effects of Si supplementation in horticultural crop species have been discussed. The review describes the role of Si and its transporters in mitigation of abiotic stress conditions in horticultural plants.


Assuntos
Produtos Agrícolas , Silício , Estresse Fisiológico , Produtos Agrícolas/metabolismo , Silício/farmacologia , Silício/metabolismo , Frutas/metabolismo , Frutas/crescimento & desenvolvimento
9.
Behav Brain Res ; 468: 115040, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38723675

RESUMO

Neurotoxins have been extensively investigated, particularly in the field of neuroscience. They induce toxic damage, oxidative stress, and inflammation on neurons, triggering neuronal dysfunction and neurodegenerative diseases. Here we demonstrate the neuroprotective effect of a silicon (Si)-based hydrogen-producing agent (Si-based agent) in a juvenile neurotoxic mouse model induced by 6-hydroxydopamine (6-OHDA). The Si-based agent produces hydrogen in bowels and functions as an antioxidant and anti-inflammatory agent. However, the effects of the Si-based agent on neural degeneration in areas other than the lesion and behavioral alterations caused by it are largely unknown. Moreover, the neuroprotective effects of Si-based agent in the context of lactation and use during infancy have not been explored in prior studies. In this study, we show the neuroprotective effect of the Si-based agent on 6-OHDA during lactation period and infancy using the mouse model. The Si-based agent safeguards against the degradation and neuronal cell death of dopaminergic neurons and loss of dopaminergic fibers in the striatum (STR) and ventral tegmental area (VTA) caused by 6-OHDA. Furthermore, the Si-based agent exhibits a neuroprotective effect on the length of axon initial segment (AIS) in the layer 2/3 (L2/3) neurons of the medial prefrontal cortex (mPFC). As a result, the Si-based agent mitigates hyperactive behavior in a juvenile neurotoxic mouse model induced by 6-OHDA. These results suggest that the Si-based agent serves as an effective neuroprotectant and antioxidant against neurotoxic effects in the brain, offering the possibility of the Si-based agent as a neuroprotectant for nervous system diseases.


Assuntos
Modelos Animais de Doenças , Neurônios Dopaminérgicos , Hidrogênio , Fármacos Neuroprotetores , Oxidopamina , Silício , Animais , Fármacos Neuroprotetores/farmacologia , Oxidopamina/farmacologia , Camundongos , Silício/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Feminino , Hidrogênio/farmacologia , Hidrogênio/administração & dosagem , Masculino , Síndromes Neurotóxicas/tratamento farmacológico , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos , Camundongos Endogâmicos C57BL
10.
Chemosphere ; 360: 142417, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797210

RESUMO

Silicon (Si) effectively promote the yield of many crops, mainly due to its ability to enhance plants resistance to stress. However, how Si helps hyperaccumulators to extract Cadmium (Cd) from soil has remained unclear. In this study, Sedum alfredii Hance (S. alfredii) was used as material to study how exogenous Si affected biomass, Cd accumulation, antioxidation, cell ultrastructure, subcellular distribution and changes in gene expression after Cd exposure. The study has shown that as Si concentration increases (1, 2 mM), the shoot biomass of plants increased by 33.1%-63.6%, the Cd accumulation increased by 31.9%-96.6%, and the chlorophyll, carotenoid content, photosynthetic gas exchange parameters significantly increased. Si reduced Pro and MDA, promoted the concentrations of SOD, CAT and POD to reduce antioxidant stress damage. In addition, Si promoted GSH and PC to chelate Cd in vacuoles, repaired damaged cell ultrastructure, improved the fixation of Cd and cell wall (especially in pectin), and reduced the toxic effects of Cd. Transcriptome analysis found that genes encoding Cd detoxification, Cd absorption and transport were up-regulated by Si supplying, including photosynthetic pathways (PSB, LHCB, PSA), antioxidant defense systems (CAT, APX, CSD, RBOH), cell wall biosynthesis such as pectinesterase (PME), chelation (GST, MT, NAS, GR), Cd absorption (Nramp3, Nramp5, ZNT) and Cd transport (HMA, PCR). Our result revealed the tentative mechanism of Si promotes Cd accumulation and enhances Cd tolerance in S. alfredii, and thereby provides a solid theoretical support for the practical use of Si fertilizer in phytoextraction.


Assuntos
Cádmio , Fotossíntese , Sedum , Silício , Poluentes do Solo , Sedum/efeitos dos fármacos , Sedum/metabolismo , Sedum/genética , Cádmio/toxicidade , Cádmio/metabolismo , Silício/farmacologia , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Fotossíntese/efeitos dos fármacos , Antioxidantes/metabolismo , Transcriptoma/efeitos dos fármacos , Perfilação da Expressão Gênica , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Biomassa
11.
Planta ; 259(6): 144, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709333

RESUMO

MAIN CONCLUSION: Silicon application mitigates phosphate deficiency in barley through an interplay with auxin and nitric oxide, enhancing growth, photosynthesis, and redox balance, highlighting the potential of silicon as a fertilizer for overcoming nutritional stresses. Silicon (Si) is reported to attenuate nutritional stresses in plants, but studies on the effect of Si application to plants grown under phosphate (Pi) deficiency are still very scarce, especially in barley. Therefore, the present work was undertaken to investigate the potential role of Si in mitigating the adverse impacts of Pi deficiency in barley Hordeum vulgare L. (var. BH902). Further, the involvement of two key regulatory signaling molecules--auxin and nitric oxide (NO)--in Si-induced tolerance against Pi deficiency in barley was tested. Morphological attributes, photosynthetic parameters, oxidative stress markers (O2·-, H2O2, and MDA), antioxidant system (enzymatic--APX, CAT, SOD, GR, DHAR, MDHAR as well as non-enzymatic--AsA and GSH), NO content, and proline metabolism were the key traits that were assessed under different treatments. The P deficiency distinctly declined growth of barley seedlings, which was due to enhancement in oxidative stress leading to inhibition of photosynthesis. These results were also in parallel with an enhancement in antioxidant activity, particularly SOD and CAT, and endogenous proline level and its biosynthetic enzyme (P5CS). The addition of Si exhibited beneficial effects on barley plants grown in Pi-deficient medium as reflected in increased growth, photosynthetic activity, and redox balance through the regulation of antioxidant machinery particularly ascorbate-glutathione cycle. We noticed that auxin and NO were also found to be independently participating in Si-mediated improvement of growth and other parameters in barley roots under Pi deficiency. Data of gene expression analysis for PHOSPHATE TRANSPORTER1 (HvPHT1) indicate that Si helps in increasing Pi uptake as per the need of Pi-deficient barley seedlings, and also auxin and NO both appear to help Si in accomplishing this task probably by inducing lateral root formation. These results are suggestive of possible application of Si as a fertilizer to correct the negative effects of nutritional stresses in plants. Further research at genetic level to understand Si-induced mechanisms for mitigating Pi deficiency can be helpful in the development of new varieties with improved tolerance against Pi deficiency, especially for cultivation in areas with Pi-deficient soils.


Assuntos
Hordeum , Ácidos Indolacéticos , Óxido Nítrico , Estresse Oxidativo , Fosfatos , Fotossíntese , Raízes de Plantas , Silício , Hordeum/metabolismo , Hordeum/genética , Hordeum/efeitos dos fármacos , Hordeum/crescimento & desenvolvimento , Hordeum/fisiologia , Silício/farmacologia , Silício/metabolismo , Ácidos Indolacéticos/metabolismo , Fosfatos/deficiência , Fosfatos/metabolismo , Óxido Nítrico/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Fotossíntese/efeitos dos fármacos , Antioxidantes/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/genética , Plântula/efeitos dos fármacos , Plântula/fisiologia
12.
Food Chem ; 450: 139331, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38621310

RESUMO

The sensitive detection of foodborne pathogenic and rapid antibiotic susceptibility testing (AST) is of great significance. This paper reports the enzyme-triggered in situ synthesis of yellow emitting silicon nanoparticles (SiNPs) and the detection of Escherichia coli (E. coli) O157:H7 in food samples and the rapid AST. The rapid counting of E. coli O157:H7 has been achieved through direct visual observation, equipment detection, and smartphone digitalization. A simple detection platform based on smartphone senses and cotton swabs has been established. Meanwhile, rapid AST based on enzyme-catalyzed SiNPs can intuitively obtain colorimetric samples. This paper established a system for bacterial enzyme-triggered in situ synthesis of SiNPs, with high responsiveness, luminescence ratio, and specificity. The detection limit for E. coli O157:H7 can reach 100 CFU/mL during 5 h, and the recovery efficiency ranges from 90.14% to 110.16%, which makes it a promising strategy for the rapid detection of E. coli O157:H7 and AST.


Assuntos
Escherichia coli O157 , Nanopartículas , Silício , beta-Galactosidase , Escherichia coli O157/efeitos dos fármacos , Escherichia coli O157/isolamento & purificação , Nanopartículas/química , Silício/química , Silício/farmacologia , beta-Galactosidase/metabolismo , beta-Galactosidase/química , Testes de Sensibilidade Microbiana , Contaminação de Alimentos/análise , Colorimetria , Antibacterianos/farmacologia , Antibacterianos/química , Microbiologia de Alimentos
13.
Mol Biol Rep ; 51(1): 543, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642191

RESUMO

Heavy metal stress is a major problem in present scenario and the consequences are well known. The agroecosystems are heavily affected by the heavy metal stress and the question arises on the sustainability of the agricultural products. Heavy metals inhibit the process to influence the reactive oxygen species production. When abundantly present copper metal ion has toxic effects which is mitigated by the exogenous application of Si. The role of silicon is to enhance physical parameters as well as gas exchange parameters. Si is likely to increase antioxidant enzymes in response to copper stress which can relocate toxic metals at subcellular level and remove heavy metals from the cell. Silicon regulates phytohormones when excess copper is present. Rate of photosynthesis and mineral absorption is increased in response to metal stress. Silicon manages enzymatic and non-enzymatic activities to balance metal stress condition. Cu transport by the plasma membrane is controlled by a family of proteins called copper transporter present at cell surface. Plants maintain balance in absorption, use and storage for proper copper ion homeostasis. Copper chaperones play vital role in copper ion movement within cells. Prior to that metallochaperones control Cu levels. The genes responsible in copper stress mitigation are discovered in various plant species and their function are decoded. However, detailed molecular mechanism is yet to be studied. This review discusses about the crucial mechanisms of Si-mediated alleviation of copper stress, the role of copper binding proteins in copper homeostasis. Moreover, it also provides a brief information on the genes, their function and regulation of their expression in relevance to Cu abundance in different plant species which will be beneficial for further understanding of the role of silicon in stabilization of copper stress.


Assuntos
Cobre , Metais Pesados , Cobre/metabolismo , Silício/farmacologia , Silício/metabolismo , Metais Pesados/metabolismo , Antioxidantes/metabolismo , Plantas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Suplementos Nutricionais
14.
Methods Mol Biol ; 2788: 197-207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656515

RESUMO

The best Vaccinium corymbosum plant growth under in vitro conditions can be achieved by using the right composition and pH of the medium. For the initial phase of in vitro culture, a combination of cytokinins-mostly zeatin-can usually be used. Organic supplementation of the medium enables the use of a replacement for the expensive natural cytokinin used in micropropagation of highbush blueberry. This chapter describes the experiments with silicon Hydroplus™ Actisil (Si), coconut water (CW), and different pH (5.0; 5.5, and 6.0) as a stress factor. The addition of 200 mg dm-3 silicon solution and 15% coconut water strongly stimulated highbush blueberry plant growth in vitro. Moreover, silicon solution benefits the negative effects of higher pH of the medium used for micropropagation of V. corymbosum. Maximum vegetative development of blueberry explants was obtained at pH 5.


Assuntos
Mirtilos Azuis (Planta) , Meios de Cultura , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Mirtilos Azuis (Planta)/crescimento & desenvolvimento , Vaccinium/crescimento & desenvolvimento , Aclimatação , Silício/farmacologia
15.
Physiol Plant ; 176(3): e14313, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38666351

RESUMO

Bipolaris setariae is known to cause brown stripe disease in sugarcane, resulting in significant yield losses. Silicon (Si) has the potential to enhance plant growth and biotic resistance. In this study, the impact of Si on brown stripe disease was investigated across susceptible and resistant sugarcane varieties, utilizing four Si concentrations (0, 15, 30, and 45 g per barrel of Na2SiO3·5H2O). Si significantly reduced the incidence of brown stripe disease (7.41-59.23%) and alleviated damage to sugarcane growth parameters, photosynthetic parameters, and photosynthetic pigments. Submicroscopic observations revealed that Si induced the accumulation of silicified cells in leaves, reduced spore accumulation, decreased stomatal size, and protected organelles from B. setariae damage. In addition, Si increased the activity of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase), reduced reactive oxygen species production (malondialdehyde and hydrogen peroxide) and modulated the expression of genes associated with hormone signalling (PR1, TGA, AOS, AOC, LOX, PYL8, and SnRK2), leading to the accumulation of abscisic acid and jasmonic acid and inhibiting SA synthesis. Si also activated the activity of metabolism-related enzymes (polyphenol oxidase and phenylalanine ammonia lyase) and the gene expression of PAL-dependent genes (PAL, C4H, and 4CL), regulating the accumulation of metabolites, such as chlorogenic acid and lignin. The antifungal test showed that chlorogenic acid (15ug µL-1) had a significant inhibitory effect on the growth of B. setariae. This study is the first to demonstrate the inhibitory effect of Si on B. setariae in sugarcane, highlighting Si as a promising and environmentally friendly strategy for managing brown stripe disease.


Assuntos
Doenças das Plantas , Reguladores de Crescimento de Plantas , Espécies Reativas de Oxigênio , Saccharum , Silício , Saccharum/efeitos dos fármacos , Saccharum/metabolismo , Saccharum/microbiologia , Saccharum/genética , Saccharum/crescimento & desenvolvimento , Silício/farmacologia , Silício/metabolismo , Doenças das Plantas/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Folhas de Planta/genética , Ascomicetos/fisiologia , Ascomicetos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Sequestradores de Radicais Livres/metabolismo
16.
Biol Lett ; 20(3): 20230451, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442870

RESUMO

Elevated leaf silicon (Si) concentrations improve drought resistance in cultivated plants, suggesting Si might also improve drought performance of wild species. Tropical tree species, for instance, take up substantial amounts of Si, and leaf Si varies markedly at local and regional scales, suggesting consequences for seedling drought resistance. Yet, whether elevated leaf Si improves seedling drought performance in tropical forests is unknown. To manipulate leaf Si concentrations, seedlings of seven tropical tree species were grown in Si-rich and -poor soil, before exposing them to drought in the forest understorey. Survival, growth and wilting were monitored. Elevated leaf Si did not improve drought survival and growth in any of the species. In one species, drought survival was reduced in seedlings previously grown in Si-rich soil, contrary to our expectation. Our results suggest that elevated leaf Si does not improve drought resistance of wild tropical tree species. Elevated leaf Si may even reduce drought performance, suggesting differences in soil conditions influencing leaf Si may contribute to soil-related variation of tropical seedling performance. Furthermore, our results are at odds with most studies on cultivated species and show that alleviative effects of Si in crops cannot be generalized to wild plants in natural systems.


Assuntos
Plântula , Árvores , Secas , Silício/farmacologia , Folhas de Planta , Solo
17.
Sci Rep ; 14(1): 5986, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472251

RESUMO

Lead (Pb) is toxic to the development and growth of rice plants. Nanoparticles (NPs) have been considered one of the efficient remediation techniques to mitigate Pb stress in plants. Therefore, a study was carried out to examine the underlying mechanism of iron (Fe) and silicon (Si) nanoparticle-induced Pb toxicity alleviation in rice seedlings. Si-NPs (2.5 mM) and Fe-NPs (25 mg L-1) were applied alone and in combination to rice plants grown without (control; no Pb stress) and with (100 µM) Pb concentration. Our results revealed that Pb toxicity severely affected all rice growth-related traits, such as inhibited root fresh weight (42%), shoot length (24%), and chlorophyll b contents (26%). Moreover, a substantial amount of Pb was translocated to the above-ground parts of plants, which caused a disturbance in the antioxidative enzyme activities. However, the synergetic use of Fe- and Si-NPs reduced the Pb contents in the upper part of plants by 27%. It reduced the lethal impact of Pb on roots and shoots growth parameters by increasing shoot length (40%), shoot fresh weight (48%), and roots fresh weight (31%). Both Si and Fe-NPs synergistic application significantly elevated superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and glutathione (GSH) concentrations by 114%, 186%, 135%, and 151%, respectively, compared to plants subjected to Pb stress alone. The toxicity of Pb resulted in several cellular abnormalities and altered the expression levels of metal transporters and antioxidant genes. We conclude that the synergistic application of Si and Fe-NPs can be deemed favorable, environmentally promising, and cost-effective for reducing Pb deadliness in rice crops and reclaiming Pb-polluted soils.


Assuntos
Nanopartículas , Oryza , Poluentes do Solo , Oryza/genética , Silício/farmacologia , Chumbo/metabolismo , Ferro/metabolismo , Antioxidantes/metabolismo , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Estresse Oxidativo , Poluentes do Solo/metabolismo
18.
Sci Rep ; 14(1): 6176, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486015

RESUMO

Arsenic (As) is a heavy metal that is toxic to both plants and animals. Silicon nanoparticles (SiNPs) can alleviate the detrimental effects of heavy metals on plants, but the underlying mechanisms remain unclear. The study aims to synthesize SiNPs and reveal how they promote plant health in Arsenic-polluted soil. 0 and 100% v/v SiNPs were applied to soil, and Arsenic 0 and 3.2 g/ml were applied twice. Maize growth was monitored until maturity. Small, irregular, spherical, smooth, and non-agglomerated SiNPs with a peak absorbance of 400 nm were synthesized from Pycreus polystachyos. The SiNPs (100%) assisted in the development of a deep, prolific root structure that aided hydraulic conductance and gave mechanical support to the maize plant under As stress. Thus, there was a 40-50% increase in growth, tripled yield weights, and accelerated flowering, fruiting, and senescence. SiNPs caused immobilization (As(III)=SiNPs) of As in the soil and induced root exudates Phytochelatins (PCs) (desGly-PC2 and Oxidized Glutathione) which may lead to formation of SiNPs=As(III)-PCs complexes and sequestration of As in the plant biomass. Moreover, SiNPs may alleviate Arsenic stress by serving as co-enzymes that activate the antioxidant-defensive mechanisms of the shoot and root. Thus, above 70%, most reactive ROS (OH) were scavenged, which was evident in the reduced MDA content that strengthened the plasma membrane to support selective ion absorption of SiNPs in place of Arsenic. We conclude that SiNPs can alleviate As stress through sequestration with PCs, improve root hydraulic conductance, antioxidant activity, and membrane stability in maize plants, and could be a potential tool to promote heavy metal stress resilience in the field.


Assuntos
Arsênio , Metais Pesados , Nanopartículas , Antioxidantes/metabolismo , Arsênio/metabolismo , Metais Pesados/metabolismo , Nanopartículas/química , Fitoquelatinas/metabolismo , Plantas/metabolismo , Silício/farmacologia , Solo , Zea mays/metabolismo
19.
Plant Physiol Biochem ; 208: 108459, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484684

RESUMO

The essentiality of silicon (Si) has always been a matter of debate as it is not considered crucial for the lifecycles of most plants. But beneficial effects of endogenous Si and its supplementation have been observed in many plants. Silicon plays a pivotal role in alleviating the biotic and abiotic stress in plants by acting as a physical barrier as well as affecting molecular pathways involved in stress tolerance, thus widely considered as "quasi-essential". In soil, most of Si is found in complex forms as mineral silicates which is not available for plant uptake. Monosilicic acid [Si(OH)4] is the only plant-available form of silicon (PAS) present in the soil. The ability of a plant to uptake Si is positively correlated with the PAS concentration of the soil. Since many cultivated soils often lack a sufficient amount of PAS, it has become common practice to supplement Si through the use of Si-based fertilizers in various crop cultivation systems. This review outlines the use of natural and chemical sources of Si as fertilizer, different regimes of Si fertilization, and conclude by identifying the optimum concentration of Si required to observe the beneficial effects in plants. Also, the different mathematical models defining the mineral dynamics for Si uptake at whole plant scale considering various natural factors like plant morphology, mineral distribution, and transporter expression have been discussed. Information provided here will further help in increasing understanding of Si role and thereby facilitate efficient exploration of the element as a fertilizer in crop production.


Assuntos
Fertilizantes , Silício , Silício/farmacologia , Solo/química , Transporte Biológico , Plantas/metabolismo , Minerais/metabolismo
20.
Environ Pollut ; 346: 123691, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38431245

RESUMO

The excessive accumulation of heavy metals, particularly lead (Pb) in agricultural soils, is a growing problem worldwide and needs urgent attention. This study aimed to prepare green silicon (Si) NPs using extract of Chenopodium quinoa leaves and evaluated their effects on Pb uptake and growth of maize (Zea mays L.). The results indicated that Pb exposure negatively affected the growth and chlorophyll contents of maize varieties, while SiNPs positively affected these attributes. Pb alone increased the electrolyte-leakage (EL), hydrogen-peroxide (H2O2) and selected antioxidant enzyme activities in leaves, whereas SiNPs decreased EL and H2O2 concentrations and further enhanced the enzyme activities as compared to their respective treatments without SiNPs. Pb-only treatments led to an increase in Pb concentrations and total Pb uptake in both shoots and roots. In contrast, SiNPs resulted in reduced Pb concentrations, with a concurrent decrease in total Pb uptake in shoots compared to the control treatment. The findings demonstrated that foliar application of SiNPs can mitigate the toxic effects of Pb in maize plants by triggering the antioxidant enzyme system and reducing the oxidative stress. Taken together, SiNPs have the potential to enhance maize production in Pb-contaminated soils. However, future research and application efforts should prioritize key aspects such as optimizing NPs synthesis, understanding positive mechanisms of green-synthesized NPs, and conducting multiple crop tests and real-world field trials.


Assuntos
Nanopartículas , Poluentes do Solo , Zea mays , Antioxidantes/farmacologia , Silício/farmacologia , Chumbo/toxicidade , Peróxido de Hidrogênio/farmacologia , Nanopartículas/toxicidade , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA