Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
BMC Plant Biol ; 23(1): 498, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848813

RESUMO

BACKGROUND: Lentil is an essential cool-season food legume that offers several benefits in human nutrition and cropping systems. Drought stress is the major environmental constraint affecting lentil plants' growth and productivity by altering various morphological, physiological, and biochemical traits. Our previous research provided physiological and biochemical evidence showing the role of silicon (Si) in alleviating drought stress in lentil plants, while the molecular mechanisms are still unidentified. Understanding the molecular mechanisms of Si-mediated drought stress tolerance can provide fundamental information to enhance our knowledge of essential gene functions and pathways modulated by Si during drought stress in plants. Thus, the present study compared the transcriptomic characteristics of two lentil genotypes (drought tolerant-ILL6002; drought sensitive-ILL7537) under drought stress and investigated the gene expression in response to Si supplementation using high-throughput RNA sequencing. RESULTS: This study identified 7164 and 5576 differentially expressed genes (DEGs) from drought-stressed lentil genotypes (ILL 6002 and ILL 7537, respectively), with Si treatment. RNA sequencing results showed that Si supplementation could alter the expression of genes related to photosynthesis, osmoprotection, antioxidant systems and signal transduction in both genotypes under drought stress. Furthermore, these DEGs from both genotypes were found to be associated with the metabolism of carbohydrates, lipids and proteins. The identified DEGs were also linked to cell wall biosynthesis and vasculature development. Results suggested that Si modulated the dynamics of biosynthesis of alkaloids and flavonoids and their metabolism in drought-stressed lentil genotypes. Drought-recovery-related DEGs identified from both genotypes validated the role of Si as a drought stress alleviator. This study identified different possible defense-related responses mediated by Si in response to drought stress in lentil plants including cellular redox homeostasis by reactive oxygen species (ROS), cell wall reinforcement by the deposition of cellulose, lignin, xyloglucan, chitin and xylan, secondary metabolites production, osmotic adjustment and stomatal closure. CONCLUSION: Overall, the results suggested that a coordinated interplay between various metabolic pathways is required for Si to induce drought tolerance. This study identified potential genes and different defence mechanisms involved in Si-induced drought stress tolerance in lentil plants. Si supplementation altered various metabolic functions like photosynthesis, antioxidant defence system, osmotic balance, hormonal biosynthesis, signalling, amino acid biosynthesis and metabolism of carbohydrates and lipids under drought stress. These novel findings validated the role of Si in drought stress mitigation and have also provided an opportunity to enhance our understanding at the genomic level of Si's role in alleviating drought stress in plants.


Assuntos
Secas , Lens (Planta) , Humanos , Antioxidantes/metabolismo , Carboidratos , Lens (Planta)/genética , Lens (Planta)/metabolismo , Lipídeos , Análise de Sequência de RNA , Silício/toxicidade , Estresse Fisiológico/genética
2.
Braz J Biol ; 83: e271301, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37646754

RESUMO

Aluminum (Al) is highly toxic to plants, since it causes stress and inhibits plant growth. Silicon (Si) is known to mitigate the stress caused by Al in several plant species. Thus, the current study aims to investigate the soothing effects of Si on morphophysiological and photosynthetic variables, and the attributes associated with oxidative stress in Schinus terebinthifolius plants exposed to Al. Treatments have followed a completely randomized design, with three repetitions based on the following Al/Si combinations (in mM): Treatment 1: 0 Al + 0 Si; Treatment 2: 0 Al + 2.5 Si; Treatment 3: 1.85 Al + 0 Si; Treatment 4: 1.85 Al + 2.5 Si; Treatment 5: 3.71 Al + 0 Si; Treatment 6: 3.71 Al + 2.5 Si. Each sampling unit consisted of a tray with 15 plants, totaling forty-five per treatment. Shoot and root morphological variables, photosynthetic variables, photosynthetic pigments, hydrogen peroxide concentration, lipid peroxidation (MDA), guaiacol peroxidase (POD) and superoxide dismutase (SOD) enzymes, and non-enzymatic antioxidant such as Ascorbic acid (AsA) and non-protein thiol (NPSH) concentration were assessed. Root growth inhibition followed by changes in root morphological variables have negatively affected root and shoot biomass production in plants only subjected to Al. However, adding 2.5 mM Si to the treatment has mitigated the toxic effects caused by 1.85 mM of aluminum on S. terebinthifolius plants.


Assuntos
Alumínio , Schinus , Alumínio/toxicidade , Silício/toxicidade , Antioxidantes , Ácido Ascórbico
3.
Artigo em Inglês | MEDLINE | ID: mdl-35409783

RESUMO

Fluorescent silicon nanoparticles (SiNPs), resembling a typical zero-dimensional silicon nanomaterial, have shown great potential in a wide range of biological and biomedical applications. However, information regarding the toxicity of this material in live organisms is still very scarce. In this study, we utilized Caenorhabditis elegans (C. elegans), a simple but biologically and anatomically well-described model, as a platform to systematically investigate the in vivo toxicity of SiNPs in live organisms at the whole-animal, cellular, subcellular, and molecular levels. We calculated the effect of SiNPs on C. elegans body length (N ≥ 75), lifespan (N ≥ 30), reproductive capacity (N ≥ 10), endocytic sorting (N ≥ 20), endoplasmic reticulum (ER) stress (N ≥ 20), mitochondrial stress (N ≥ 20), oxidative stress (N ≥ 20), immune response (N ≥ 20), apoptosis (N ≥ 200), hypoxia response (N ≥ 200), metal detoxification (N ≥ 200), and aging (N ≥ 200). The studies showed that SiNPs had no significant effect on development, lifespan, or reproductive ability (p > 0.05), even when the worms were treated with a high concentration (e.g., 50 mg/mL) of SiNPs at all growth and development stages. Subcellular analysis of the SiNP-treated worms revealed that the intracellular processes of the C. elegans intestine were not disturbed by the presence of SiNPs (p > 0.05). Toxicity analyses at the molecular level also demonstrated that the SiNPs did not induce harmful or defensive cellular events, such as ER stress, mitochondria stress, or oxidative stress (p > 0.05). Together, these findings confirmed that the SiNPs are low in toxicity and biocompatible, supporting the suggestion that the material is an ideal fluorescent nanoprobe for wide-ranging biological and biomedical applications.


Assuntos
Caenorhabditis elegans , Nanopartículas , Animais , Nanopartículas/toxicidade , Silício/toxicidade , Dióxido de Silício , Água
4.
J Hazard Mater ; 428: 128170, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032955

RESUMO

Silicon (Si) has gained considerable attention for its utility in improved plant health under biotic and abiotic stresses through alteration of physiological and metabolic processes. Its interaction with arsenic (As) has been the compelling area of research amidst heavy metal toxicity. However, microbe mediated Si solubilization and their role for reduced As uptake is still an unexplored domain. Foremost role of Bacillus amyloliquefaciens (NBRISN13) in impediment of arsenite (AsIII) translocation signifies our work. Reduced grain As content (52-72%) during SN13 inoculation under feldspar supplementation (Si+SN+As) highlight the novel outcome of our study. Upregulation of Lsi1, Lsi2 and Lsi3genes in Si+SN+As treated rice plants associated with restricted As translocation, frames new propositions for future research on microbemediated reduced As uptake through increased Si transport. In addition to low As accumulation, alleviation of oxidative stress markers by modulation of defense enzyme activities and differential accumulation of plant hormones was found to be associated with improved growth and yield. Thus, our findings confer the potential role of microbe mediated Si solubilization in mitigation of As stress to restore plant growth and yield.


Assuntos
Arsênio , Bacillus amyloliquefaciens , Oryza , Arsênio/toxicidade , Raízes de Plantas , Plantas , Silício/toxicidade
5.
J Biotechnol ; 343: 71-82, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34534595

RESUMO

The present study investigates ameliorative effect of silicon nanoparticles (SiNPs) and indole acetic acid (IAA) alone and in combination against hexavalent chromium (CrVI) toxicity in rice seedlings. The results of the study revealed protective effects of SiNPs and IAA against CrVI toxicity. The 100 µM of CrVI imposed toxic effects in rice seedlings at morphological, physiological and biochemical levels which coincided with increased level of intracellular CrVI and declined level of endogenous nitric oxide (NO). The CrVI enhanced levels of superoxide radicals (SOR) (59.51% and 50.1% in shoot and root, respectively) and H2O2 (19.5% and 23.69% in shoot and root, respectively). However, when SiNPs and IAA were applied to plants under CrVI stress, they enhanced tolerance and defence mechanisms as manifested in terms of increased biomass, endogenous NO, photosynthetic pigments, and antioxidants level. It was also noticed that CrVI arrested cell cycle at G2/M phase whereas growth was restored as compared to control when SiNPs and IAA were supplemented. Thus, the hypothesis that combined application of SiNPs and IAA will be effective in alleviating CrVI toxicity is validated from the results of this study. Moreover, in SiNPs and IAA-mediated mitigation of CrVI toxicity, endogenous NO has a positive role. The importance of the study will be that the combination of SiNPs and IAA can be utilized against heavy metal stress and even when supplied alone, they will enhance the crop productivity parameters with and without stress conditions.


Assuntos
Nanopartículas , Oryza , Cromo/toxicidade , Peróxido de Hidrogênio , Ácidos Indolacéticos , Estresse Oxidativo , Plântula , Silício/toxicidade
6.
J Environ Sci (China) ; 109: 88-101, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34607677

RESUMO

The inessential heavy metal/loids cadmium (Cd) and arsenic (As), which often co-occur in polluted paddy soils, are toxic to rice. Silicon (Si) treatment is known to reduce Cd and As toxicity in rice plants. To better understand the shared mechanisms by which Si alleviates Cd and As stress, rice seedlings were hydroponically exposed to Cd or As, then treated with Si. The addition of Si significantly ameliorated the inhibitory effects of Cd and As on rice seedling growth. Si supplementation decreased Cd and As translocation from roots to shoots, and significantly reduced Cd- and As-induced reactive oxygen species generation in rice seedlings. Transcriptomics analyses were conducted to elucidate molecular mechanisms underlying the Si-mediated response to Cd or As stress in rice. The expression patterns of the differentially expressed genes in Cd- or As-stressed rice roots with and without Si application were compared. The transcriptomes of the Cd- and As-stressed rice roots were similarly and profoundly reshaped by Si application, suggesting that Si may play a fundamental, active role in plant defense against heavy metal/loid stresses by modulating whole genome expression. We also identified two novel genes, Os01g0524500 and Os06g0514800, encoding a myeloblastosis (MYB) transcription factor and a thionin, respectively, which may be candidate targets for Si to alleviate Cd and As stress in rice, as well as for the generation of Cd- and/or As-resistant plants. This study provides valuable resources for further clarification of the shared molecular mechanisms underlying the Si-mediated alleviation of Cd and As toxicity in rice.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Arsênio/toxicidade , Cádmio/toxicidade , Oryza/genética , Raízes de Plantas , Plântula/genética , Silício/toxicidade , Poluentes do Solo/toxicidade , Transcriptoma
7.
J Hazard Mater ; 415: 124907, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34088169

RESUMO

Nanoparticle-pollution has associated severe negative effects on crop productivity. Hence, methods are needed to alleviate nano-toxicity in crop plants. The present study aims to evaluate if the exogenous hydrogen sulfide (H2S) application in combination with silicon (Si) could palliate the harmful effects of copper oxide nanoparticles (CuO NPs). Fifteen day-old rice (Oryza sativa L.) seedlings were used as a model plant. The results indicate that simultaneous exogenous addition of 10 µM Si and 100 µM NaHS (as an H2S donor) provided tolerance and enhanced defence mechanism of the rice seedlings against 100 µM CuO NPs. Thus, it was observed in terms of their growth, photosynthetic pigments, antioxidant enzyme activities, the content of non-enzymatic components, chlorophyll fluorescence and up-regulation of antioxidant genes. Si and NaHS stimulated gene expression of silicon (Lsi1 and Lsi2) and auxin (PIN5 and PIN10) transporters. Taken together, data indicate that H2S underpins the beneficial Si effects in rice seedlings against the oxidative stress triggers by CuO NPs, and stimulation of enzymatic components of the ascorbate-glutathione cycle being the main factor for the beneficial effects triggered by the couple of Si and H2S. Therefore, it could be concluded that the simultaneous application of Si and H2S promote the resilience of the rice seedlings against the oxidative stress induced by CuO NPs.


Assuntos
Sulfeto de Hidrogênio , Nanopartículas , Oryza , Cobre/toxicidade , Sulfeto de Hidrogênio/toxicidade , Nanopartículas/toxicidade , Óxidos , Plântula , Silício/toxicidade
8.
Environ Pollut ; 286: 117321, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33975211

RESUMO

The negative impact of antibiotic pollution on the agricultural system and human health is a hot issue in the world. However, little information is available on the antibiotics toxicity mechanism and the role of silicon (Si) to alleviate the antibiotics toxicity. In this study, strawberry (Fragaria ananassa) showed excitatory response to low-dose SMZ (1 mg L-1), but strawberry root and photosynthetic efficiency were damaged under high level. When SMZ level exceeded 10 mg L-1, H202, O2-, MDA and relative conductivity increased, while SOD and CAT activities first increased and then decreased. SMZ accumulated more in roots and fruits, but less in stems, and the accumulation increased with the increase of SMZ-dose. Under 1 mg L-1 SMZ, the SMZ accumulation in fruits was 110.54 µg kg-1, which exceeded the maximum residue limit. SMZ can induce the expression of sul1, sul2 and intI1, and intI1 had the highest abundance. Exogenous application of Si alleviated the toxicity of SMZ, which is mainly related to the degradation of SMZ in soil and the reduction of SMZ absorption by strawberry. In addition, Si relieved root damage, promoted the increase of photosynthetic efficiency, and improved the antioxidant system to resist SMZ toxicity.


Assuntos
Fragaria , Sulfametoxazol , Antibacterianos , Silício/toxicidade , Solo
9.
J Hazard Mater ; 415: 125570, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-33765562

RESUMO

Although beneficial metalloid silicon (Si) has been shown to alleviate the toxicity of various heavy metals, there is a lack of knowledge about the role of Si in possible alleviation of phytotoxicity caused by excess of essential nickel (Ni). In the present study we investigated the growth and biomass production, reactive oxygen species (ROS) formation and activities of selected antioxidants, as well as combined effect of Ni and Si on the integrity of cell membranes and electrolyte leakage in young maize roots treated for 24, 48 and 72 h with excess of Ni and/or Si. By histochemical methods we also visualized Ni distribution in root tissues and compared the uptake of Ni and Si with the development of root apoplasmic barriers. Ni enhanced the root lignification and suberization and shifted the development of apoplasmic barriers towards the root tip. Similarly, localization of Ni correlated with lignin and suberin deposition in root endodermis, further supporting the barrier role of this tissue in Ni uptake. Si reversed the negative impact of Ni on root anatomy. Additionally, improved cell membrane integrity, and enhanced ascorbate-based antioxidant system might be the mechanisms how Si partially mitigates the deleterious effects of Ni excess in maize plants.


Assuntos
Silício , Zea mays , Antioxidantes , Níquel/toxicidade , Raízes de Plantas , Silício/toxicidade
10.
Sci Total Environ ; 750: 142209, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33182188

RESUMO

While the impacts of arsenic (As) and Magnaporthe oryzae on rice have been well-studied, a dearth of knowledge exists on how rice responds to their combined stress. Moreover, increasing exogenous silicon (Si) can alleviate M. oryzae infection and As uptake, but how increasing exogenous Si affects the combined stress of M. oryzae and As is unknown. We grew three cultivars of rice that varied in their susceptibility to As and M. oryzae under low (50 µM, SiL) and high (1500 µM, SiH) Si with and without As (4 µM, 80/20 As (III)/As(V)) and with or without M. oryzae infection and examined the impacts of treatments on plant As and Si concentrations, severity of disease by M. oryzae, and stress via targeted gene expression. SiH treatments generally decreased shoot As concentrations by 20-70% compared to SiL treatments depending on cultivar and M. oryzae exposure. There was no effect of Si or As treatments on percent of leaf diseased in the As-tolerant cultivar M206, but in the As-sensitive cultivar IR66, SiH treatment decreased percent of leaf diseased in the absence of As and had no impact when As was present. In the M. oryzae-susceptible Sariceltik, plants receiving SiH had significantly fewer lesions than those receiving SiL and plants with the fewest lesions were in the SiH + As treatments. Plants that were exposed to As + M. oryzae were the most stressed when grown under SiL, but this stress response was lowered by SiH treatments. A separate pathogenicity assay with Sariceltik showed that in contrast to our hypothesis, As exposure decreased lesion growth, particularly under SiH treatments, and lessened the impact of M. oryzae on rice. These results suggest that rice grown under replete Si will be able to withstand combined stressors of M. oryzae and As, but will be highly stressed under Si deficient scenarios.


Assuntos
Arsênio , Magnaporthe , Oryza , Arsênio/toxicidade , Doenças das Plantas , Silício/toxicidade
11.
Eur J Pharm Biopharm ; 158: 254-265, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33279602

RESUMO

Porous silicon (PSi) is a biocompatible and biodegradable material, which can be utilized in biomedical applications. It has several favorable properties, which makes it an excellent material for building engineered nanosystems for drug delivery and diagnostic purposes. One significant hurdle for commercial applications of PSi is the lack of industrial scale production of nanosized PSi particles. Here, we report a novel two-step production method for PSi nanoparticles. The method is based on centrifuge chemical vapor deposition (cCVD) of elemental silicon in an industrial scale reactor followed by electrochemical post-processing to porous particles. Physical properties, biocompatibility and in vivo biodistribution of the cCVD produced nanoparticles were investigated and compared to PSi nanoparticles conventionally produced from silicon wafers by pulse electrochemical etching. Our results demonstrate that the cCVD production provides PSi nanoparticles with comparable physical and biological quality to the conventional method. This method may circumvent several limitations of the conventional method such as the requirements for high purity monocrystalline silicon substrates as starting material and the material losses during the top-down milling process of the pulse-etched films to porous nanoparticles. However, the electroless etching required for the porosification of cCVD-produced nanoparticles limited control over the pore size, but is amenable for scaling of the production to industrial requirements.


Assuntos
Portadores de Fármacos/farmacocinética , Composição de Medicamentos/métodos , Nanopartículas/toxicidade , Compostos Radiofarmacêuticos/administração & dosagem , Silício/farmacocinética , Animais , Sobrevivência Celular/efeitos dos fármacos , Centrifugação , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Portadores de Fármacos/toxicidade , Feminino , Radioisótopos de Índio/administração & dosagem , Injeções Intravenosas , Camundongos , Modelos Animais , Nanopartículas/administração & dosagem , Nanopartículas/química , Porosidade , Células RAW 264.7 , Silício/administração & dosagem , Silício/química , Silício/toxicidade , Distribuição Tecidual , Testes de Toxicidade Aguda
12.
Regul Toxicol Pharmacol ; 117: 104782, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32905813

RESUMO

Monomethylsilanetriol (MMST), a silicon-containing compound, has been sold in dietary supplements. However, toxicological studies on its safety profile are not readily available. To assess the safety of MMST stabilized in acacia gum, a novel delivery form of MMST, in accordance with internationally accepted standards, the genotoxic potential and repeated-dose oral toxicity of Living Silica® Acacia Gum Stabilized Monomethylsilanetriol (formerly known as Orgono Acacia Gum Powder®), a food grade product consisting of 80 ± 10% acacia gum and 2.8% (SD ± 10%) elemental silicon from MMST, was investigated. A bacterial reverse mutation test, an in vitro mammalian chromosomal aberration test, an in vivo mammalian micronucleus test, and a 90-day repeated-dose oral toxicity study in rats were performed. No evidence of mutagenicity or genotoxic activity was observed under the applied test systems. In the 90-day study, male and female Hsd.Han Wistar rats were administered daily doses of 0, 500, 1000, and 2000 mg/kg bw/day by gavage. No mortality or treatment-related adverse effects were observed, and no target organs were identified. Therefore, the no observed adverse effects level (NOAEL) was determined as 2000 mg/kg bw/day (201 mg MMST/kg bw/day), the highest dose tested.


Assuntos
Goma Arábica/toxicidade , Testes de Mutagenicidade/métodos , Nível de Efeito Adverso não Observado , Silício/toxicidade , Administração Oral , Animais , Linhagem Celular , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Feminino , Goma Arábica/administração & dosagem , Masculino , Camundongos , Ratos , Ratos Wistar , Silício/administração & dosagem
13.
BMC Genomics ; 21(1): 453, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611366

RESUMO

BACKGROUND: One of the health risks posed to astronauts during deep space flights is exposure to high charge, high-energy (HZE) ions (Z > 13), which can lead to the induction of hepatocellular carcinoma (HCC). However, little is known on the molecular mechanisms of HZE irradiation-induced HCC. RESULTS: We performed comparative RNA-Seq transcriptomic analyses to assess the carcinogenic effects of 600 MeV/n 56Fe (0.2 Gy), 1 GeV/n 16O (0.2 Gy), and 350 MeV/n 28Si (0.2 Gy) ions in a mouse model for irradiation-induced HCC. C3H/HeNCrl mice were subjected to total body irradiation to simulate space environment HZE-irradiation, and liver tissues were extracted at five different time points post-irradiation to investigate the time-dependent carcinogenic response at the transcriptomic level. Our data demonstrated a clear difference in the biological effects of these HZE ions, particularly immunological, such as Acute Phase Response Signaling, B Cell Receptor Signaling, IL-8 Signaling, and ROS Production in Macrophages. Also seen in this study were novel unannotated transcripts that were significantly affected by HZE. To investigate the biological functions of these novel transcripts, we used a machine learning technique known as self-organizing maps (SOMs) to characterize the transcriptome expression profiles of 60 samples (45 HZE-irradiated, 15 non-irradiated control) from liver tissues. A handful of localized modules in the maps emerged as groups of co-regulated and co-expressed transcripts. The functional context of these modules was discovered using overrepresentation analysis. We found that these spots typically contained enriched populations of transcripts related to specific immunological molecular processes (e.g., Acute Phase Response Signaling, B Cell Receptor Signaling, IL-3 Signaling), and RNA Transcription/Expression. CONCLUSIONS: A large number of transcripts were found differentially expressed post-HZE irradiation. These results provide valuable information for uncovering the differences in molecular mechanisms underlying HZE specific induced HCC carcinogenesis. Additionally, a handful of novel differentially expressed unannotated transcripts were discovered for each HZE ion. Taken together, these findings may provide a better understanding of biological mechanisms underlying risks for HCC after HZE irradiation and may also have important implications for the discovery of potential countermeasures against and identification of biomarkers for HZE-induced HCC.


Assuntos
Ferro/toxicidade , Neoplasias Hepáticas Experimentais/etiologia , Oxigênio/toxicidade , Silício/toxicidade , Animais , Hepatite/etiologia , Hepatite/genética , Hepatite/metabolismo , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/metabolismo , Aprendizado de Máquina , Masculino , Camundongos , RNA-Seq , Fatores de Tempo
14.
New Microbiol ; 43(1): 38-40, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32334490

RESUMO

Silicon nanowires (SiNWs) are attractive functional nanomaterials for biomedical applications. The ability to easily tune their size and density, potential biocompatibility, and knowledge of the chemical activation of SiNWs surface make them natural tools to interact with biological materials. We evaluated the possibility of exploiting SiNWs as carriers to introduce organic compounds into cells. The cellular toxicity and the internalization capacity of free-standing and label-free SiNWs were tested on Buffalo Green Monkey cells (BGM). Confocal fluorescent observation of SiNWs conjugated with fluorescein-polyethylene imine (PEI) confirmed the internalization of the NWs into the Buffalo Green Monkey Cells (BGM).


Assuntos
Células , Nanofios , Silício , Internalização do Vírus , Animais , Linhagem Celular , Células/efeitos dos fármacos , Células/virologia , Chlorocebus aethiops , Nanofios/toxicidade , Nanofios/virologia , Silício/metabolismo , Silício/toxicidade , Vírus/metabolismo
15.
Ann Bot ; 126(2): 331-341, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32337539

RESUMO

BACKGROUND AND AIMS: Synchrotron- and laboratory-based micro-X-ray fluorescence (µ-XRF) is a powerful technique to quantify the distribution of elements in physically large intact samples, including live plants, at room temperature and atmospheric pressure. However, analysis of light elements with atomic number (Z) less than that of phosphorus is challenging due to the need for a vacuum, which of course is not compatible with live plant material, or the availability of a helium environment. METHOD: A new laboratory µ-XRF instrument was used to examine the effects of silicon (Si) on the manganese (Mn) status of soybean (Glycine max) and sunflower (Helianthus annuus) grown at elevated Mn in solution. The use of a helium environment allowed for highly sensitive detection of both Si and Mn to determine their distribution. KEY RESULTS: The µ-XRF analysis revealed that when Si was added to the nutrient solution, the Si also accumulated in the base of the trichomes, being co-located with the Mn and reducing the darkening of the trichomes. The addition of Si did not reduce the concentrations of Mn in accumulations despite seeming to reduce its adverse effects. CONCLUSIONS: The ability to gain information on the dynamics of the metallome or ionome within living plants or excised hydrated tissues can offer valuable insights into their ecophysiology, and laboratory µ-XRF is likely to become available to more plant scientists for use in their research.


Assuntos
Helianthus , Fluorescência , Manganês/toxicidade , Folhas de Planta , Silício/toxicidade , Glycine max , Raios X
16.
J Hazard Mater ; 390: 121806, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32058900

RESUMO

An emerging stress of nanomaterials in soil and water is of great concern as it limits crop productivity and affects humans as well. Therefore, it is required to manage this problem. Silicon and plant growth promoting rhizobacteria has gained the engaging role in agriculture as (bio-)fertilizers. However, their role against silver nanoparticles (AgNPs) is still not known. Hence, present study was envisaged to investigate role of Si, PGPR and phytohormone indole acetic acid (IAA) in regulating AgNP stress in Brassica juncea seedlings. The study highlighted the impact of various treatments with respect to overproduction of reactive oxygen species, signaling molecule nitric oxide, oxidative markers like antioxidant enzymes and nonenzymatic components of ascorbate-glutathione pathway. Interestingly, silicon when present with AgNPs enhanced toxicity by reducing growth and mechanistic properties of B. juncea. Moreover, the results highlight the role of PGPR and IAA towards reduction in toxicity by promoting the plant growth under stressed conditions. Treatments AgNP + Si + PGPR/IAA were observed to significantly reduce the stress and enhance plant growth against treatment AgNPs alone. This reversal in toxicity by PGPR and IAA along with Si suggests the idea to formulate and utilize their combination as biofertilizers for eradicating the stress in near future.


Assuntos
Bacillus thuringiensis , Nanopartículas Metálicas/toxicidade , Mostardeira/efeitos dos fármacos , Óxido Nítrico/metabolismo , Rizoma/microbiologia , Silício/toxicidade , Prata/toxicidade , Ácido Ascórbico/metabolismo , Glutationa/metabolismo , Ácidos Indolacéticos/farmacologia , Mostardeira/crescimento & desenvolvimento , Mostardeira/microbiologia
17.
J Vis Exp ; (153)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31789319

RESUMO

Elevated intraocular pressure (IOP) is a well-documented risk factor for glaucoma. Here we describe a novel, effective method for consistently inducing stable IOP elevation in mice that mimics the post-operative complication of using silicone oil (SO) as a tamponade agent in human vitreoretinal surgery. In this protocol, SO is injected into the anterior chamber of the mouse eye to block the pupil and prevent inflow of aqueous humor. The posterior chamber accumulates aqueous humor and this in turn increases the IOP of the posterior segment. A single SO injection produces reliable, sufficient, and stable IOP elevation, which induces significant glaucomatous neurodegeneration. This model is a true replicate of secondary glaucoma in the eye clinic. To further mimic the clinical setting, SO can be removed from the anterior chamber to reopen the drainage pathway and allow inflow of aqueous humor, which is drained through the trabecular meshwork (TM) at the angle of the anterior chamber. Because IOP quickly returns to normal, the model can be used to test the effect of lowering IOP on glaucomatous retinal ganglion cells. This method is straightforward, does not require special equipment or repeat procedures, closely simulates clinical situations, and may be applicable to diverse animal species. However, minor modifications may be required.


Assuntos
Modelos Animais de Doenças , Hipertensão Ocular/induzido quimicamente , Hipertensão Ocular/patologia , Silício/toxicidade , Animais , Humor Aquoso/efeitos dos fármacos , Humor Aquoso/fisiologia , Injeções Intraoculares , Pressão Intraocular/efeitos dos fármacos , Pressão Intraocular/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óleos/administração & dosagem , Óleos/toxicidade , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/fisiologia , Silício/administração & dosagem
18.
Nanomedicine (Lond) ; 14(4): 375-385, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30688554

RESUMO

AIM: Amino functionalization is a first step modification aiming to achieve biomedical applications of silicon nanoparticles, for example, for photodynamic therapy or radiotherapy. Nevertheless, toxicity and low quantum yields due to the positive charge of amino groups emerge as a problem that could be solved with subsequent derivatizations. MATERIALS & METHODS: Folic and PEG-conjugated nanoparticles were obtained from amino-functionalized silicon nanoparticle (NH2SiNP). Cytotoxicity was determined on a tumor cell line at low and high concentrations. Four end points of in vivo toxicity were evaluated on zebrafish (Danio rerio). RESULTS: Folic acid functionalization reduced the cytotoxicity in comparison to amino and PEG-functionalized nanoparticles. In zebrafish, folic functionalization lowered toxicity in general while PEG increased it. CONCLUSION: Functionalization of NH2SiNP with folic acid reduced the toxic effects in vitro and in vivo. This could be useful for therapeutic applications. PEG functionalization did not lower the toxicity.


Assuntos
Ácido Fólico/química , Nanopartículas/química , Polietilenoglicóis/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Ácido Fólico/farmacologia , Nanopartículas/toxicidade , Silício/química , Silício/toxicidade , Peixe-Zebra
19.
Mar Environ Res ; 142: 306-318, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30409383

RESUMO

To have an understanding of potential mechanistic effects, sublethal endpoints able to discriminate between nanomaterials with similar physical and chemical features need to be used. In this sense, quantitative PCR was used to measure a battery of genes linked to a wide array of different cellular processes. Gene expression was measured in Mytilus edulis hemocytes following an in vitro and in vivo exposure to pure silicon (40 nm) and carbon-coated silicon (40 and 75 nm) after 24 h. Partial least squares discriminant analysis and correlation analysis were used to develop an integrative model, describing the relationship between genes, to identify which genes were important in describing responses to engineered nanomaterial exposure. The results suggested that some discriminations could be made based on the presence of a carbon coating or the alteration of size which could inform industrial patterns on ways to reduce the ecotoxicological impact of their product. The results also indicate that HTS on Mytilus hemocytes may be integrated into a safer-by-design approach but additional characterization of nanomaterial behavior in media is required to determine if it is a suitable alternative to in vivo testing.


Assuntos
Mytilus edulis/efeitos dos fármacos , Nanoestruturas/toxicidade , Silício/toxicidade , Animais , Carbono/química , Regulação da Expressão Gênica/efeitos dos fármacos , Hemócitos/efeitos dos fármacos , Silício/química
20.
Anal Chem ; 90(16): 9796-9804, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30014694

RESUMO

A ratiometric fluorescent sensor for mercury ions (Hg2+) has been constructed via covalent functionalization of silicon nanodot (SiND) with Hg2+-specific 6-carboxy-X-rhodamine (Rox)-tagged DNA. For the Rox-DNA functionalized SiND, the red fluorescence of Rox can be quenched by the blue-emitting SiND in the presence of Hg2+ due to structural change in DNA, which serves as the response signal. Meawhile, the fluorescence of SiND is insensitive to Hg2+ and acts as the reference signal. The wavelength difference in the optimal emission peak is as large as 190 nm between SiND (422 nm) and Rox (612 nm), which can efficaciously exclude the interference of the two emission peaks, and facilitates dual-color visualization of Hg2+ ions. The biofunctionalization of SiND improves the acid-base stability of SiND significantly, which is favorable for its application in the intracellular environment. Accordingly, a sensitive, simple, precise and rapid method for tracing Hg2+ was proposed. The limit of detection and precision of this method for Hg2+ was 9.2 nM and 8.8% (50 nM, n = 7), respectively. The increase of Hg2+ concentration in the range of 10-1500 nM was in accordance with linearly increase of the I422/ I612 ratio. As for practical application, the recoveries in spiked human urine and serum samples were in the range of 81-107%. Moreover, this fluorescent nanosensor was utilized to the ratiometric detection of Hg2+ in HeLa cells.


Assuntos
DNA/química , Corantes Fluorescentes/química , Mercúrio/análise , Nanopartículas/química , Rodaminas/química , Silício/química , DNA/síntese química , DNA/toxicidade , Corantes Fluorescentes/toxicidade , Células HeLa , Humanos , Limite de Detecção , Mercúrio/sangue , Mercúrio/urina , Nanopartículas/toxicidade , Rodaminas/síntese química , Rodaminas/toxicidade , Sensibilidade e Especificidade , Silício/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA