Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 541
Filtrar
1.
Am J Physiol Renal Physiol ; 326(6): F971-F980, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634133

RESUMO

The dietary approach to stop hypertension (DASH) diet combines the antihypertensive effect of a low sodium and high potassium diet. In particular, the potassium component of the diet acts as a switch in the distal convoluted tubule to reduce sodium reabsorption, similar to a diuretic but without the side effects. Previous trials to understand the mechanism of the DASH diet were based on animal models and did not characterize changes in human ion channel protein abundance. More recently, protein cargo of urinary extracellular vesicles (uEVs) has been shown to mirror tissue content and physiological changes within the kidney. We designed an inpatient open label nutritional study transitioning hypertensive volunteers from an American style diet to DASH diet to examine physiological changes in adults with stage 1 hypertension otherwise untreated (Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, Obarzanek E, Conlin PR, Miller ER 3rd, Simons-Morton DG, Karanja N, Lin PH; DASH-Sodium Collaborative Research Group. N Engl J Med 344: 3-10, 2001). Urine samples from this study were used for proteomic characterization of a large range of pure uEVs (small to large) to reveal kidney epithelium changes in response to the DASH diet. These samples were collected from nine volunteers at three time points, and mass spectrometry identified 1,800 proteins from all 27 samples. We demonstrated an increase in total SLC12A3 [sodium-chloride cotransporter (NCC)] abundance and a decrease in aquaporin-2 (AQP2) in uEVs with this mass spectrometry analysis, immunoblotting revealed a significant increase in the proportion of activated (phosphorylated) NCC to total NCC and a decrease in AQP2 from day 5 to day 11. This data demonstrates that the human kidney's response to nutritional interventions may be captured noninvasively by uEV protein abundance changes. Future studies need to confirm these findings in a larger cohort and focus on which factor drove the changes in NCC and AQP2, to which degree NCC and AQP2 contributed to the antihypertensive effect and address if some uEVs function also as a waste pathway for functionally inactive proteins rather than mirroring protein changes.NEW & NOTEWORTHY Numerous studies link DASH diet to lower blood pressure, but its mechanism is unclear. Urinary extracellular vesicles (uEVs) offer noninvasive insights, potentially replacing tissue sampling. Transitioning to DASH diet alters kidney transporters in our stage 1 hypertension cohort: AQP2 decreases, NCC increases in uEVs. This aligns with increased urine volume, reduced sodium reabsorption, and blood pressure decline. Our data highlight uEV protein changes as diet markers, suggesting some uEVs may function as waste pathways. We analyzed larger EVs alongside small EVs, and NCC in immunoblots across its molecular weight range.


Assuntos
Aquaporina 2 , Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Aquaporina 2/metabolismo , Aquaporina 2/urina , Masculino , Feminino , Pessoa de Meia-Idade , Abordagens Dietéticas para Conter a Hipertensão , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Hipertensão/dietoterapia , Hipertensão/urina , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Adulto , Dieta Hipossódica , Pressão Sanguínea , Proteômica/métodos , Rim/metabolismo
2.
J Am Soc Nephrol ; 35(4): 426-440, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38238903

RESUMO

SIGNIFICANCE STATEMENT: High-resolution single-nucleus RNA-sequencing data indicate a clear separation between primary sites of calcium and magnesium handling within distal convoluted tubule (DCT). Both DCT1 and DCT2 express Slc12a3, but these subsegments serve distinctive functions, with more abundant magnesium-handling genes along DCT1 and more calcium-handling genes along DCT2. The data also provide insight into the plasticity of the distal nephron-collecting duct junction, formed from cells of separate embryonic origins. By focusing/changing gradients of gene expression, the DCT can morph into different physiological cell states on demand. BACKGROUND: The distal convoluted tubule (DCT) comprises two subsegments, DCT1 and DCT2, with different functional and molecular characteristics. The functional and molecular distinction between these segments, however, has been controversial. METHODS: To understand the heterogeneity within the DCT population with better clarity, we enriched for DCT nuclei by using a mouse line combining "Isolation of Nuclei Tagged in specific Cell Types" and sodium chloride cotransporter-driven inducible Cre recombinase. We sorted the fluorescently labeled DCT nuclei using Fluorescence-Activated Nucleus Sorting and performed single-nucleus transcriptomics. RESULTS: Among 25,183 DCT cells, 75% were from DCT1 and 25% were from DCT2. In addition, there was a small population (<1%) enriched in proliferation-related genes, such as Top2a , Cenpp , and Mki67 . Although both DCT1 and DCT2 expressed sodium chloride cotransporter, magnesium transport genes were predominantly expressed along DCT1, whereas calcium, electrogenic sodium, and potassium transport genes were more abundant along DCT2. The transition between these two segments was gradual, with a transitional zone in which DCT1 and DCT2 cells were interspersed. The expression of the homeobox genes by DCT cells suggests that they develop along different trajectories. CONCLUSIONS: Transcriptomic analysis of an enriched rare cell population using a genetically targeted approach clarifies the function and classification of distal cells. The DCT segment is short, can be separated into two subsegments that serve distinct functions, and is speculated to derive from different origins during development.


Assuntos
Cálcio , Magnésio , Cálcio/metabolismo , Magnésio/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Transporte de Íons , RNA/análise , Túbulos Renais Distais/metabolismo
3.
Med ; 4(4): 223-225, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37060898

RESUMO

Sodium chloride cotransporter (NCC) plays a crucial role in regulating blood pressure through Na+ reabsorption. Recently, in Nature, Fan et al. determined the structure of human NCC and revealed the mechanism of action of thiazide diuretics, establishing the groundwork for future drug development.1.


Assuntos
Natriurese , Sódio , Humanos , Sódio/metabolismo , Simportadores de Cloreto de Sódio , Inibidores de Simportadores de Cloreto de Sódio/farmacologia , Biologia
4.
FASEB J ; 37(4): e22834, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36961378

RESUMO

The kidney regulates blood pressure through salt/water reabsorption affected by tubular sodium transporters. Expanding our prior research on placental cluster of differentiation 81 (CD81), this study explores the interaction of renal CD81 with sodium transporters in preeclampsia (PE). Effects of renal CD81 with sodium transporters were determined in lipopolysaccharide (LPS)-induced PE rats and immortalized mouse renal distal convoluted tubule cells. Urinary exosomal CD81, sodium potassium 2 chloride cotransporter (NKCC2), and sodium chloride cotransporter (NCC) were measured in PE patients. LPS-PE rats had hypertension from gestational days (GD) 6 to 18 and proteinuria from GD9 to GD18. Urinary CD81 in both groups tented to rise during pregnancy. Renal CD81, not sodium transporters, was higher in LPS-PE than controls on GD14. On GD18, LPS-PE rats exhibited higher CD81 in kidneys and urine exosomes, higher renal total and phosphorylated renal NKCC2 and NCC with elevated mRNAs, and lower ubiquitinated NCC than controls. CD81 was co-immunoprecipitated with NKCC2 or NCC in kidney homogenates and co-immunostained with NKCC2 or NCC in apical membranes of renal tubules. In plasma membrane fractions, LPS-PE rats had greater amounts of CD81, NKCC2, and NCC than controls with enhanced co-immunoprecipitations of CD81 with NKCC2 or NCC. In renal distal convoluted tubule cells, silencing CD81 with siRNA inhibited NCC and prevented LPS-induced NCC elevation. Further, PE patients had higher CD81 in original urines, urine exosomes and higher NKCC2 and NCC in urine exosomes than controls. Thus, the upregulation of renal CD81 on NKCC2 and NCC may contribute to the sustained hypertension observed in LPS-PE model. Urine CD81 with NKCC2 and NCC may be used as biomarkers for PE.


Assuntos
Hipertensão , Pré-Eclâmpsia , Gravidez , Camundongos , Humanos , Ratos , Feminino , Animais , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Simportadores de Cloreto de Sódio/genética , Simportadores de Cloreto de Sódio/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Cloretos/metabolismo , Pré-Eclâmpsia/induzido quimicamente , Pré-Eclâmpsia/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Placenta/metabolismo , Túbulos Renais Distais/metabolismo , Hipertensão/metabolismo , Sódio/metabolismo , Potássio/metabolismo , Tetraspanina 28/metabolismo
5.
JCI Insight ; 8(5)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36719746

RESUMO

Dietary potassium (K+) supplementation is associated with a lowering effect in blood pressure (BP), but not all studies agree. Here, we examined the effects of short- and long-term K+ supplementation on BP in mice, whether differences depend on the accompanying anion or the sodium (Na+) intake and molecular alterations in the kidney that may underlie BP changes. Relative to the control diet, BP was higher in mice fed a high NaCl (1.57% Na+) diet for 7 weeks or fed a K+-free diet for 2 weeks. BP was highest on a K+-free/high NaCl diet. Commensurate with increased abundance and phosphorylation of the thiazide sensitive sodium-chloride-cotransporter (NCC) on the K+-free/high NaCl diet, BP returned to normal with thiazides. Three weeks of a high K+ diet (5% K+) increased BP (predominantly during the night) independently of dietary Na+ or anion intake. Conversely, 4 days of KCl feeding reduced BP. Both feeding periods resulted in lower NCC levels but in increased levels of cleaved (active) α and γ subunits of the epithelial Na+ channel ENaC. The elevated BP after chronic K+ feeding was reduced by amiloride but not thiazide. Our results suggest that dietary K+ has an optimal threshold where it may be most effective for cardiovascular health.


Assuntos
Potássio na Dieta , Simportadores de Cloreto de Sódio , Camundongos , Animais , Pressão Sanguínea , Simportadores de Cloreto de Sódio/metabolismo , Cloreto de Sódio/metabolismo , Canais Epiteliais de Sódio/metabolismo , Sódio/metabolismo , Tiazidas , Suplementos Nutricionais
6.
J Am Soc Nephrol ; 34(1): 55-72, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36288902

RESUMO

BACKGROUND: The calcium-sensing receptor (CaSR) in the distal convoluted tubule (DCT) activates the NaCl cotransporter (NCC). Glucose acts as a positive allosteric modulator of the CaSR. Under physiologic conditions, no glucose is delivered to the DCT, and fructose delivery depends on consumption. We hypothesized that glucose/fructose delivery to the DCT modulates the CaSR in a positive allosteric way, activating the WNK4-SPAK-NCC pathway and thus increasing salt retention. METHODS: We evaluated the effect of glucose/fructose arrival to the distal nephron on the CaSR-WNK4-SPAK-NCC pathway using HEK-293 cells, C57BL/6 and WNK4-knockout mice, ex vivo perfused kidneys, and healthy humans. RESULTS: HEK-293 cells exposed to glucose/fructose increased SPAK phosphorylation in a WNK4- and CaSR-dependent manner. C57BL/6 mice exposed to fructose or a single dose of dapagliflozin to induce transient glycosuria showed increased activity of the WNK4-SPAK-NCC pathway. The calcilytic NPS2143 ameliorated this effect, which was not observed in WNK4-KO mice. C57BL/6 mice treated with fructose or dapagliflozin showed markedly increased natriuresis after thiazide challenge. Ex vivo rat kidney perfused with glucose above the physiologic threshold levels for proximal reabsorption showed increased NCC and SPAK phosphorylation. NPS2143 prevented this effect. In healthy volunteers, cinacalcet administration, fructose intake, or a single dose of dapagliflozin increased SPAK and NCC phosphorylation in urinary extracellular vesicles. CONCLUSIONS: Glycosuria or fructosuria was associated with increased NCC, SPAK, and WNK4 phosphorylation in a CaSR-dependent manner.


Assuntos
Glicosúria , Simportadores de Cloreto de Sódio , Humanos , Camundongos , Animais , Simportadores de Cloreto de Sódio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Glucose/metabolismo , Células HEK293 , Camundongos Endogâmicos C57BL , Fosforilação , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Túbulos Renais Distais/metabolismo , Camundongos Knockout , Glicosúria/metabolismo
7.
J Hum Hypertens ; 37(7): 524-531, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35978099

RESUMO

Urinary extracellular vesicles (UEV) mainly derive from cells of the urogenital tract and their cargo (proteins, nucleic acids, lipids, etc.) reflects their cells of origin. Na chloride cotransporter (NCC) is expressed at the kidney level in the distal convoluted tubule, is involved in salt reabsorption, and is the target of the diuretic thiazides. NCC protein has been recognized and quantified in UEV in previous studies; however, UEV NCC mRNA has never been studied. This study aimed to identify and analyze NCC mRNA levels in primary aldosteronism (PA). The rationale for this investigation stems from previous observations regarding NCC (protein) as a possible biomarker for the diagnosis of PA. To evaluate modulations in the expression of NCC, we analyzed NCC mRNA levels in UEV in PA and essential hypertensive (EH) patients under different conditions, that is, before and after saline infusion, anti-aldosterone pharmacological treatment, and adrenal surgery. NCC mRNA was measured by RT-qPCR in all the samples and was regulated by volume expansion. Its response to mineralocorticoid receptor antagonist was correlated with renin, and it was increased in PA patients after adrenalectomy. NCC mRNA is evaluable in UEV and it can provide insights into the pathophysiology of distal convolute tubule in different clinical conditions including PA.


Assuntos
Vesículas Extracelulares , Hipertensão , Humanos , Simportadores de Cloreto de Sódio/genética , Simportadores de Cloreto de Sódio/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/farmacologia , Hipertensão/diagnóstico , Hipertensão/tratamento farmacológico , Hipertensão/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Sódio/metabolismo , Túbulos Renais Distais
9.
Kidney360 ; 3(11): 1909-1923, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36514401

RESUMO

Background: Elevated abundance of sodium-chloride cotransporter (NCC) and phosphorylated NCC (pNCC) are potential markers of primary aldosteronism (PA), but these effects may be driven by hypokalemia. Methods: We measured plasma potassium in patients with PA. If potassium was <4.0 mmol/L, patients were given sufficient oral potassium chloride (KCl) over 24 hours to achieve as close to 4.0 mmol/L as possible. Clinical chemistries were assessed, and urinary extracellular vesicles (uEVs) were examined to investigate effects on NCC. Results: Among 21 patients with PA who received a median total dose of 6.0 g (2.4-16.8 g) of KCl, increases were observed in plasma potassium (from 3.4 to 4.0 mmol/L; P<0.001), aldosterone (from 305 to 558 pmol/L; P=0.01), and renin (from 1.2 to 2.5 mIU/L; P<0.001), whereas decreases were detected in uEV levels of NCC (median fold change(post/basal) [FC]=0.71 [0.09-1.99]; P=0.02), pT60-NCC (FC=0.84 [0.06-1.66]; P=0.05), and pT55/60-NCC (FC=0.67 [0.08-2.42]; P=0.02). By contrast, in 10 patients with PA who did not receive KCl, there were no apparent changes in plasma potassium, NCC abundance, and phosphorylation status, but increases were observed in plasma aldosterone (from 178 to 418 pmol/L; P=0.006) and renin (from 2.0 to 3.0 mU/L; P=0.009). Plasma potassium correlated inversely with uEV levels of NCC (R 2=0.11; P=0.01), pT60-NCC (R 2=0.11; P=0.01), and pT55/60-NCC (R 2=0.11; P=0.01). Conclusions: Acute oral KCl loading replenished plasma potassium in patients with PA and suppressed NCC abundance and phosphorylation, despite a significant rise in plasma aldosterone. This supports the view that potassium supplementation in humans with PA overrides the aldosterone stimulatory effect on NCC. The increased plasma aldosterone in patients with PA without KCl supplementation may be due to aldosterone response to posture challenge.


Assuntos
Hiperaldosteronismo , Simportadores de Cloreto de Sódio , Humanos , Aldosterona , Cloreto de Potássio/farmacologia , Renina , Fosforilação , Potássio , Hiperaldosteronismo/tratamento farmacológico , Suplementos Nutricionais
10.
Kidney Int ; 102(5): 956-958, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36272750

RESUMO

The potassium switch refers to plasma potassium regulation of the sodium-chloride cotransporter (NCC), which controls distal sodium delivery and therefore potassium secretion. Low extracellular potassium activates NCC by relieving chloride inhibition of With-No-Lysine 4 (WNK4). A new mouse model carrying a chloride-insensitive WNK4 mutant still shows NCC activation on low potassium diet. These effects are mediated by WNK4 activation and kelch-like 3 (KLHL3) inhibition and reveal additional chloride-sensitive pathways for NCC activation.


Assuntos
Cloretos , Potássio , Camundongos , Animais , Potássio/metabolismo , Cloretos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Simportadores de Cloreto de Sódio/metabolismo , Sódio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo
11.
Front Endocrinol (Lausanne) ; 13: 981317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105401

RESUMO

The thiazide-sensitive sodium chloride cotransporter (NCC), expressed in the renal distal convoluted tubule, plays a major role in Na+, Cl- and K+ homeostasis and blood pressure as exemplified by the symptoms of patients with non-functional NCC and Gitelman syndrome. NCC activity is modulated by a variety of hormones, but is also influenced by the extracellular K+ concentration. The putative "renal-K+ switch" mechanism is a relatively cohesive model that links dietary K+ intake to NCC activity, and may offer new targets for blood pressure control. However, a remaining hurdle for full acceptance of this model is the lack of human data to confirm molecular findings from animal models. Extracellular vesicles (EVs) have attracted attention from the scientific community due to their potential roles in intercellular communication, disease pathogenesis, drug delivery and as possible reservoirs of biomarkers. Urinary EVs (uEVs) are an excellent sample source for the study of physiology and pathology of renal, urothelial and prostate tissues, but the diverse origins of uEVs and their dynamic molecular composition present both methodological and data interpretation challenges. This review provides a brief overview of the state-of-the-art, challenges and knowledge gaps in current uEV-based analyses, with a focus on the application of uEVs to study the "renal-K+ switch" and NCC regulation. We also provide recommendations regarding biospecimen handling, processing and reporting requirements to improve experimental reproducibility and interoperability towards the realisation of the potential of uEV-derived biomarkers in hypertension and clinical practice.


Assuntos
Vesículas Extracelulares , Simportadores de Cloreto de Sódio , Animais , Biomarcadores , Humanos , Túbulos Renais Distais , Masculino , Reprodutibilidade dos Testes
12.
PLoS One ; 17(9): e0273313, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36129874

RESUMO

HIV-associated nephropathy (HIVAN) impairs functions of both glomeruli and tubules. Attention has been previously focused on the HIVAN glomerulopathy. Tubular injury has drawn increased attention because sodium wasting is common in hospitalized HIV/AIDS patients. We used viral protein R (Vpr)-transgenic mice to investigate the mechanisms whereby Vpr contributes to urinary sodium wasting. In phosphoenolpyruvate carboxykinase promoter-driven Vpr-transgenic mice, in situ hybridization showed that Vpr mRNA was expressed in all nephron segments, including the distal convoluted tubule. Vpr-transgenic mice, compared with wild-type littermates, markedly increased urinary sodium excretion, despite similar plasma renin activity and aldosterone levels. Kidneys from Vpr-transgenic mice also markedly reduced protein abundance of the Na+-Cl- cotransporter (NCC), while mineralocorticoid receptor (MR) protein expression level was unchanged. In African green monkey kidney cells, Vpr abrogated the aldosterone-mediated stimulation of MR transcriptional activity. Gene expression of Slc12a3 (NCC) in Vpr-transgenic mice was significantly lower compared with wild-type mice, assessed by both qRT-PCR and RNAScope in situ hybridization analysis. Chromatin immunoprecipitation assays identified multiple MR response elements (MRE), located from 5 kb upstream of the transcription start site and extending to the third exon of the SLC12A3 gene. Mutation of MRE and SP1 sites in the SLC12A3 promoter region abrogated the transcriptional responses to aldosterone and Vpr, indicating that functional MRE and SP1 are required for the SLC12A3 gene suppression in response to Vpr. Thus, Vpr attenuates MR transcriptional activity and inhibits Slc12a3 transcription in the distal convoluted tubule and contributes to salt wasting in Vpr-transgenic mice.


Assuntos
Produtos do Gene vpr , HIV-1 , Aldosterona/metabolismo , Aldosterona/farmacologia , Animais , Chlorocebus aethiops , Produtos do Gene vpr/metabolismo , HIV-1/genética , Túbulos Renais Distais/metabolismo , Camundongos , Camundongos Transgênicos , Fosfoenolpiruvato , RNA Mensageiro/metabolismo , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Renina/metabolismo , Sódio/metabolismo , Cloreto de Sódio/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Tiazidas
13.
Kidney360 ; 3(5): 910-921, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-36128481

RESUMO

Background: Sodium chloride (NaCl) loading and volume expansion suppress the renin-angiotensin-aldosterone system to reduce renal tubular reabsorption of NaCl and water, but effects on the sodium-chloride cotransporter (NCC) and relevant renal transmembrane proteins that are responsible for this modulation in humans are less well investigated. Methods: We used urinary extracellular vesicles (uEVs) as an indirect readout to assess renal transmembrane proteins involved in NaCl and water homeostasis in 44 patients with hypertension who had repeatedly raised aldosterone/renin ratios undergoing infusion of 2 L of 0.9% saline over 4 hours. Results: When measured by mass spectrometry in 13 patients, significant decreases were observed in NCC (median fold change [FC]=0.70); pendrin (FC=0.84); AQP2 (FC=0.62); and uEV markers, including ALIX (FC=0.65) and TSG101 (FC=0.66). Immunoblotting reproduced the reduction in NCC (FC=0.54), AQP2 (FC=0.42), ALIX (FC=0.52), and TSG101 (FC=0.55) in the remaining 31 patients, and demonstrated a significant decrease in phosphorylated NCC (pNCC; FC=0.49). However, after correction for ALIX, the reductions in NCC (FC=0.90) and pNCC (FC=1.00) were no longer apparent, whereas the significant decrease in AQP2 persisted (FC=0.62). Conclusion: We conclude that (1) decreases in NCC and pNCC, induced by acute NaCl loading and volume expansion, may be due to diluted post-test urines; (2) the lack of change of NCC and pNCC when corrected for ALIX, despite a fall in plasma aldosterone, may be due to the lack of change in plasma K+; and (3) the decrease in AQP2 may be due to a decrease in vasopressin in response to volume expansion.


Assuntos
Vesículas Extracelulares , Simportadores de Cloreto de Sódio , Aldosterona/metabolismo , Aquaporina 2/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Fosforilação , Renina/metabolismo , Solução Salina/metabolismo , Cloreto de Sódio/metabolismo , Água/metabolismo
14.
Cell Death Dis ; 13(9): 795, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123332

RESUMO

Mammalian WNK kinases (WNKs) are serine/threonine kinases that contain four members, WNK1-4. They function to maintain ion homeostasis and regulate blood pressure in mammals. Recent studies have revealed that the dysregulation of WNKs contributes to tumor growth, metastasis, and angiogenesis through complex mechanisms, especially through phosphorylating kinase substrates SPS1-related proline/alanine-rich kinase (SPAK) and oxidative stress-responsive kinase 1 (OSR1). Here, we review and discuss the relationships between WNKs and several key factors/biological processes in cancer, including ion channels, cation chloride cotransporters, sodium bicarbonate cotransporters, signaling pathways, angiogenesis, autophagy, and non-coding RNAs. In addition, the potential drugs for targeting WNK-SPAK/OSR1 signaling have also been discussed. This review summarizes and discusses knowledge of the roles of WNKs in cancer, which provides a comprehensive reference for future studies.


Assuntos
Bicarbonatos , Neoplasias , Alanina , Animais , Mamíferos , Neoplasias/genética , Neovascularização Patológica , Prolina , Serina , Simportadores de Cloreto de Sódio , Treonina
15.
Kidney Int ; 102(5): 1030-1041, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35870644

RESUMO

Low potassium intake activates the kidney sodium-chloride cotransporter (NCC) whose phosphorylation and activity depend on the With-No-Lysine kinase 4 (WNK4) that is inhibited by chloride binding to its kinase domain. Low extracellular potassium activates NCC by decreasing intracellular chloride thereby promoting chloride dissociation from WNK4 where residue L319 of WNK4 participates in chloride coordination. Since the WNK4-L319F mutant is constitutively active and chloride-insensitive in vitro, we generated mice harboring this mutation that displayed slightly increased phosphorylated NCC and mild hyperkalemia when on a 129/sv genetic background. On a low potassium diet, upregulation of phosphorylated NCC was observed, suggesting that in addition to chloride sensing by WNK4, other mechanisms participate which may include modulation of WNK4 activity and degradation by phosphorylation of the RRxS motif in regulatory domains present in WNK4 and KLHL3, respectively. Increased levels of WNK4 and kidney-specific WNK1 and phospho-WNK4-RRxS were observed in wild-type and WNK4L319F/L319F mice on a low potassium diet. Decreased extracellular potassium promoted WNK4-RRxS phosphorylation in vitro and ex vivo as well. These effects might be secondary to intracellular chloride depletion, as reduction of intracellular chloride in HEK293 cells increased phospho-WNK4-RRxS. Phospho-WNK4-RRxS levels were increased in mice lacking the Kir5.1 potassium channel, which presumably have decreased distal convoluted tubule intracellular chloride. Similarly, phospho-KLHL3 was modulated by changes in intracellular chloride in HEK293 cells. Thus, our data suggest that multiple chloride-regulated mechanisms are responsible for NCC upregulation by low extracellular potassium.


Assuntos
Hipopotassemia , Simportadores de Cloreto de Sódio , Animais , Humanos , Camundongos , Cloretos/metabolismo , Células HEK293 , Hipopotassemia/genética , Hipopotassemia/metabolismo , Túbulos Renais Distais/metabolismo , Fosforilação , Potássio/metabolismo , Canais de Potássio/metabolismo , Proteínas Serina-Treonina Quinases/genética , Simportadores de Cloreto de Sódio/metabolismo
16.
Am J Physiol Cell Physiol ; 323(2): C385-C399, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35759442

RESUMO

The thiazide-sensitive Na+-Cl- cotransporter (NCC) is the major pathway for salt reabsorption in the mammalian distal convoluted tubule, and the inhibition of its function with thiazides is widely used for the treatment of arterial hypertension. In mammals and teleosts, NCC is present as one ortholog that is mainly expressed in the kidney. One exception, however, is the eel, which has two genes encoding NCC. The eNCCα is located in the kidney and eNCCß, which is present in the apical membrane of the rectum. Interestingly, the European eNCCß functions as a Na+-Cl- cotransporter that is nevertheless resistant to thiazides and is not activated by low-chloride hypotonic stress. However, in the Japanese eel rectal sac, a thiazide-sensitive NaCl transport mechanism has been described. The protein sequences between eNCCß and jNCCß are 98% identical. Here, by site-directed mutagenesis, we transformed eNCCß into jNCCß. Our data showed that jNCCß, similar to eNCCß, is resistant to thiazides. In addition, both NCCß proteins have high transport capacity with respect to their renal NCC orthologs and, in contrast to known NCCs, exhibit electrogenic properties that are reduced when residue I172 is substituted by A, G, or M. This is considered a key residue for the chloride ion-binding sites of NKCC and KCC. We conclude that NCCß proteins are not sensitive to thiazides and have electrogenic properties dependent on Cl-, and site I172 is important for the function of NCCß.


Assuntos
Cloretos , Inibidores de Simportadores de Cloreto de Sódio , Animais , Cloretos/metabolismo , Enguias/metabolismo , Mamíferos/metabolismo , Cloreto de Sódio , Inibidores de Simportadores de Cloreto de Sódio/metabolismo , Inibidores de Simportadores de Cloreto de Sódio/farmacologia , Simportadores de Cloreto de Sódio/genética , Simportadores de Cloreto de Sódio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/genética , Tiazidas/farmacologia
17.
Osteoporos Int ; 33(10): 2193-2204, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35767093

RESUMO

Gitelman syndrome (GS) is the disease model of the inactivation of thiazide-sensitive sodium chloride cotransporter (NCC), which is believed to benefit bone mass and reduce fracture risk. In this study, we found that GS patients have superior bone microarchitecture, which is associated with the disease status. Several decreased bone parameters with aging in healthy controls were reversed in GS patients to a certain extent. PURPOSE: To evaluate the impact of the inactivation of NCC on bone turnover and microarchitecture in Gitelman syndrome patients. METHODS: A cross-sectional study was conducted in 45 GS patients (25 males and 20 females). Serum procollagen type 1 N-terminal propeptide (P1NP), ß-carboxy-terminal crosslinked telopeptide of type 1 collagen (ß-CTX), and osteocalcin were measured. High-resolution peripheral quantitative computed tomography (HR-pQCT) was conducted to evaluate bone microarchitecture in GS patients and age- and sex-matched healthy controls. Areal bone mineral density (aBMD) was measured by dual-energy X-ray absorptiometry (DXA) simultaneously. RESULTS: GS patients had a relatively lower level of ß-CTX. aBMD at several skeletal sites was improved in GS patients. HR-pQCT assessment revealed that GS patients had slightly thinner but significantly more compact trabecular bone (increased trabecular number and decreased thickness), notably decreased cortical porosity, and increased volume BMD (vBMD) at both the radius and tibia compared with controls. The disease severity, represented as the relationship with the minimum level of magnesium during the course and standard base excess, was associated with bone microarchitecture parameters after adjusting for age, sex, and BMI. The decreased vBMD and Tb.BV/TV, and increased Tb.Sp and Ct.Po with aging, were reversed in GS patients to a certain extent. CONCLUSION: GS patients have superior bone microarchitecture, which suggests that the inactivation of NCC might be beneficial for avoiding osteoporosis.


Assuntos
Síndrome de Gitelman , Simportadores , Absorciometria de Fóton , Densidade Óssea/fisiologia , Colágeno Tipo I , Estudos Transversais , Feminino , Inativação Gênica , Humanos , Magnésio , Masculino , Osteocalcina , Pró-Colágeno , Rádio (Anatomia)/diagnóstico por imagem , Simportadores de Cloreto de Sódio , Tiazidas , Tíbia/diagnóstico por imagem
18.
Circ Res ; 130(10): 1550-1564, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35430873

RESUMO

BACKGROUND: Renal T cells contribute importantly to hypertension, but the underlying mechanism is incompletely understood. We reported that CD8Ts directly stimulate distal convoluted tubule cells (DCTs) to increase NCC (sodium chloride co-transporter) expression and salt reabsorption. However, the mechanistic basis of this pathogenic pathway that promotes hypertension remains to be elucidated. METHODS: We used mouse models of DOCA+salt (DOCA) treatment and adoptive transfer of CD8+ T cells (CD8T) from hypertensive animals to normotensive animals in in vivo studies. Co-culture of mouse DCTs and CD8Ts was used as in vitro model to test the effect of CD8T activation in promoting NCC-mediated sodium retention and to identify critical molecular players contributing to the CD8T-DCT interaction. Interferon (IFNγ)-KO mice and mice receiving renal tubule-specific knockdown of PDL1 were used to verify in vitro findings. Blood pressure was continuously monitored via radio-biotelemetry, and kidney samples were saved at experimental end points for analysis. RESULTS: We identified critical molecular players and demonstrated their roles in augmenting the CD8T-DCT interaction leading to salt-sensitive hypertension. We found that activated CD8Ts exhibit enhanced interaction with DCTs via IFN-γ-induced upregulation of MHC-I and PDL1 in DCTs, thereby stimulating higher expression of NCC in DCTs to cause excessive salt retention and progressive elevation of blood pressure. Eliminating IFN-γ or renal tubule-specific knockdown of PDL1 prevented T cell homing into the kidney, thereby attenuating hypertension in 2 different mouse models. CONCLUSIONS: Our results identified the role of activated CD8Ts in contributing to increased sodium retention in DCTS through the IFNγ-PDL1 pathway. These findings provide a new mechanism for T cell involvement in the pathogenesis of hypertension and reveal novel therapeutic targets.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Animais , Linfócitos T CD8-Positivos/metabolismo , Acetato de Desoxicorticosterona/metabolismo , Acetato de Desoxicorticosterona/farmacologia , Modelos Animais de Doenças , Hipertensão/metabolismo , Túbulos Renais Distais/metabolismo , Túbulos Renais Distais/patologia , Camundongos , Sódio/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Cloreto de Sódio na Dieta
19.
Front Endocrinol (Lausanne) ; 13: 834409, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444613

RESUMO

Background: Adrenal venous sampling (AVS) is recognized as the gold standard for subtyping primary aldosteronism (PA), but its invasive nature and technical challenges limit its availability. A recent study reported that sodium chloride cotransporter (NCC) in urinary extracellular vesicles (uEVs) is a promising marker for assessing the biological activity of aldosterone and can be treated as a potential biomarker of PA. The current study was conducted to verify the hypothesis that the expression of NCC and its phosphorylated form (pNCC) in uEVs are different in various subtypes and genotypes of PA and can be used to select AVS candidates. Methods: A total of 50 patients with PA were enrolled in the study. Urinary extracellular vesicles (uEVs) were isolated from spot urine samples using ultracentrifugation. NCC and pNCC expressions were tested in patients diagnosed with PA who underwent AVS. Sanger sequencing of KCNJ5 was performed on DNA extracted from adrenal adenoma. Results: pNCC (1.89 folds, P<.0001) and NCC (1.82 folds, P=0.0002) was more abundant in the uEVs in the high lateralization index (h-LI, ≥ 4) group than in the low LI (l-LI, < 4) group. Carriers of the somatic KCNJ5 mutations, compared with non-carriers, had more abundant pNCC expression (2.16 folds, P=0.0039). Positive correlation between pNCC abundance and plasma aldosterone level was found in this study (R = 0.1220, P = 0.0129). Conclusions: The expression of pNCC in uEVs in patients with PA with various subtypes and genotypes was different. It can be used as biomarker of AVS for PA subtyping.


Assuntos
Vesículas Extracelulares , Hiperaldosteronismo , Aldosterona/metabolismo , Biomarcadores/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Humanos , Hiperaldosteronismo/diagnóstico , Hiperaldosteronismo/metabolismo , Simportadores de Cloreto de Sódio/metabolismo
20.
Pediatr Nephrol ; 37(10): 2245-2254, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35195759

RESUMO

By controlling urinary potassium excretion, the kidneys play a key role in maintaining whole-body potassium homeostasis. Conversely, low urinary potassium excretion (as a proxy for insufficient dietary intake) is increasingly recognized as a risk factor for the progression of kidney disease. Thus, there is a reciprocal relationship between potassium and the kidney: the kidney regulates potassium balance but potassium also affects kidney function. This review explores this relationship by discussing new insights into kidney potassium handling derived from recently characterized tubulopathies and studies on sexual dimorphism. These insights reveal a central but non-exclusive role for the distal convoluted tubule in sensing potassium and subsequently modifying the activity of the sodium-chloride cotransporter. This is another example of reciprocity: activation of the sodium-chloride cotransporter not only reduces distal sodium delivery and therefore potassium secretion but also increases salt sensitivity. This mechanism helps explain the well-known relationship between dietary potassium and blood pressure. Remarkably, in children, blood pressure is related to dietary potassium but not sodium intake. To explore how potassium deficiency can cause kidney injury, we review the mechanisms of hypokalemic nephropathy and discuss if these mechanisms may explain the association between low dietary potassium intake and adverse kidney outcomes. We discuss if potassium should be repleted in patients with kidney disease and what role dietary potassium plays in the risk of hyperkalemia. Supported by data and physiology, we reach the conclusion that we should view potassium not only as a potentially dangerous cation but also as a companion in the battle against kidney disease.


Assuntos
Nefropatias , Potássio , Criança , Humanos , Nefropatias/etiologia , Túbulos Renais Distais , Potássio/metabolismo , Potássio na Dieta , Simportadores de Cloreto de Sódio , Membro 3 da Família 12 de Carreador de Soluto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA