Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 136(5): 1015-1039, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38328821

RESUMO

The efficacy of the NASA SPRINT exercise countermeasures program for quadriceps (vastus lateralis) and triceps surae (soleus) skeletal muscle health was investigated during 70 days of simulated microgravity. Individuals completed 6° head-down-tilt bedrest (BR, n = 9), bedrest with resistance and aerobic exercise (BRE, n = 9), or bedrest with resistance and aerobic exercise and low-dose testosterone (BRE + T, n = 8). All groups were periodically tested for muscle (n = 9 times) and aerobic (n = 4 times) power during bedrest. In BR, surprisingly, the typical bedrest-induced decrements in vastus lateralis myofiber size and power were either blunted (myosin heavy chain, MHC I) or eliminated (MHC IIa), along with no change (P > 0.05) in %MHC distribution and blunted quadriceps atrophy. In BRE, MHC I (vastus lateralis and soleus) and IIa (vastus lateralis) contractile performance was maintained (P > 0.05) or increased (P < 0.05). Vastus lateralis hybrid fiber percentage was reduced (P < 0.05) and energy metabolism enzymes and capillarization were generally maintained (P > 0.05), while not all of these positive responses were observed in the soleus. Exercise offsets 100% of quadriceps and approximately two-thirds of soleus whole muscle mass loss. Testosterone (BRE + T) did not provide any benefit over exercise alone for either muscle and for some myocellular parameters appeared detrimental. In summary, the periodic testing likely provided a partial exercise countermeasure for the quadriceps in the bedrest group, which is a novel finding given the extremely low exercise dose. The SPRINT exercise program appears to be viable for the quadriceps; however, refinement is needed to completely protect triceps surae myocellular and whole muscle health for astronauts on long-duration spaceflights.NEW & NOTEWORTHY This study provides unique exercise countermeasures development information for astronauts on long-duration spaceflights. The NASA SPRINT program was protective for quadriceps myocellular and whole muscle health, whereas the triceps surae (soleus) was only partially protected as has been shown with other programs. The bedrest control group data may provide beneficial information for overall exercise dose and targeting fast-twitch muscle fibers. Other unique approaches for the triceps surae are needed to supplement existing exercise programs.


Assuntos
Exercício Físico , Músculo Esquelético , Cadeias Pesadas de Miosina , Músculo Quadríceps , Simulação de Ausência de Peso , Humanos , Masculino , Músculo Quadríceps/fisiologia , Músculo Quadríceps/metabolismo , Simulação de Ausência de Peso/métodos , Adulto , Exercício Físico/fisiologia , Cadeias Pesadas de Miosina/metabolismo , Músculo Esquelético/fisiologia , Músculo Esquelético/metabolismo , United States National Aeronautics and Space Administration , Estados Unidos , Repouso em Cama/efeitos adversos , Testosterona/metabolismo , Testosterona/sangue , Voo Espacial/métodos , Atrofia Muscular/prevenção & controle , Atrofia Muscular/fisiopatologia , Treinamento Resistido/métodos , Ausência de Peso/efeitos adversos , Força Muscular/fisiologia
2.
Life Sci Space Res (Amst) ; 40: 8-18, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38245351

RESUMO

Female germ cells provide the structural basis for the development of a new organism, while the main molecular mechanisms of the impact of weightlessness on the cell remain unknown. The aim of this work was to determine the relative content and distribution of the main proteins of microtubules and microfilaments, to assess the relative RNA content of genes in mouse oocytes after short-term exposure to simulated microgravity, and to determine the potential for embryo development up to the 3-cell stage. Before starting the study, BALB/c mice were divided into two groups. One group received water and standard food without any modifications. Before exposure to simulated microgravity, the oocytes of these animals were randomly divided into two groups - c and µg. The second group of animals additionally received essential phospholipids containing at least 80% phosphatidylcholines, per os for 6 weeks before the start of the experiment at a dosage of 350 mg/kg of the animal's body to modify the lipid composition of the oocyte membrane. The obtained oocytes of these animals were also randomly divided into two groups - ce and µge. To determine the protein distribution and its relative content, immunofluorescence analysis was performed, and the RNA content of genes was assessed using real-time PCR with reverse transcription. After cultivation under simulated microgravity, beta-actin and acetylated alpha-tubulin are redistributed from the cortical layer to the central part of the oocyte, and the relative content of acetylated alpha-tubulin and tubulin isoforms decreases. At the same time, the mRNA content of most genes encoding cytoskeletal proteins was significantly higher in comparison with the control level. The use of essential phospholipids led to a decrease in the content of cellular cholesterol in the oocyte and leveled changes in the content and redistribution of acetylated alpha-tubulin and beta-actin after cultivation under simulated microgravity. In addition, after in vitro fertilization and further cultivation under simulated weightlessness, we observed a decrease in the number of embryos that passed the stage of the 2-cell embryo, but while taking essential phospholipids, the number of embryos that reached the 3-cell stage did not differ from the control group. The results obtained show changes in the content and redistribution of cytoskeletal proteins in the oocyte, which may be involved in the process of pronucleus migration, the formation of the fission spindle and the contractile ring under simulated weightlessness, which may be important for normal fertilization and cleavage of the future embryo.


Assuntos
Tubulina (Proteína) , Ausência de Peso , Camundongos , Feminino , Animais , Tubulina (Proteína)/metabolismo , Ausência de Peso/efeitos adversos , Actinas/metabolismo , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Oócitos/metabolismo , Proteínas do Citoesqueleto/metabolismo , Simulação de Ausência de Peso/métodos , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA