Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
1.
Curr Opin Microbiol ; 79: 102470, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569420

RESUMO

The governing principles and suites of genes for lateral elongation or incorporation of new cell wall material along the length of a rod-shaped cell are well described. In contrast, relatively little is known about unipolar elongation or incorporation of peptidoglycan at one end of the rod. Recent work in three related model systems of unipolar growth (Agrobacterium tumefaciens, Brucella abortus, and Sinorhizobium meliloti) has clearly established that unipolar growth in the Hyphomicrobiales order relies on a set of genes distinct from the canonical elongasome. Polar incorporation of envelope components relies on homologous proteins shared by the Hyphomicrobiales, reviewed here. Ongoing and future work will reveal how unipolar growth is integrated into the alphaproteobacterial cell cycle and coordinated with other processes such as chromosome segregation and cell division.


Assuntos
Brucella abortus , Brucella abortus/crescimento & desenvolvimento , Brucella abortus/genética , Brucella abortus/metabolismo , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/crescimento & desenvolvimento , Sinorhizobium meliloti/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/crescimento & desenvolvimento , Agrobacterium tumefaciens/metabolismo , Parede Celular/metabolismo , Peptidoglicano/metabolismo , Divisão Celular
2.
Methods Mol Biol ; 2309: 91-103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34028681

RESUMO

In the Rhizobium-legume symbiosis, strigolactones (SLs) promote root nodule formation; however, the exact mechanism underlying this positive effect remains unknown. The recent finding that an SL receptor legume mutant shows a wild-type nodulation phenotype suggests that SLs influence the symbiosis by acting on the bacterial partner. In agreement with this, the application of the synthetic SL analog GR24 on the alfalfa symbiont Sinorhizobium (Ensifer) meliloti has been shown to stimulate swarming, a specialized bacterial surface motility, which could influence infection of legumes by Rhizobia. Surface motility assays for many bacteria, and particularly for Rhizobia, are challenging. The establishment of protocols to study bacterial surface motility is key to decipher the role of SLs as rhizosphere cues for rhizobacteria. In this chapter, we describe a set of protocols implemented to study the different types of motility exhibited by S. meliloti.


Assuntos
Compostos Heterocíclicos com 3 Anéis/farmacologia , Lactonas/farmacologia , Movimento/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Nodulação/efeitos dos fármacos , Raízes de Plantas/microbiologia , Sinorhizobium meliloti/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/síntese química , Lactonas/síntese química , Sinorhizobium meliloti/crescimento & desenvolvimento , Simbiose
3.
Acta Crystallogr D Struct Biol ; 77(Pt 3): 380-390, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33645541

RESUMO

Sinorhizobium meliloti 1021 is a Gram-negative alphaproteobacterium with a robust capacity for carbohydrate metabolism. The enzymes that facilitate these reactions assist in the survival of the bacterium across a range of environmental niches, and they may also be suitable for use in industrial processes. SmoS is a dehydrogenase that catalyzes the oxidation of the commonly occurring sugar alcohols sorbitol and galactitol to fructose and tagatose, respectively, using NAD+ as a cofactor. The main objective of this study was to evaluate SmoS using biochemical techniques. The nucleotide sequence was codon-optimized for heterologous expression in Escherichia coli BL21 (DE3) Gold cells and the protein was subsequently overexpressed and purified. Size-exclusion chromatography and X-ray diffraction experiments suggest that SmoS is a tetramer. SmoS was crystallized, and crystals obtained in the absence of substrate diffracted to 2.1 Šresolution and those of a complex with sorbitol diffracted to 2.0 Šresolution. SmoS was characterized kinetically and shown to have a preference for sorbitol despite having a higher affinity for galactitol. Computational ligand-docking experiments suggest that tagatose binds the protein in a more energetically favourable complex than fructose, which is retained in the active site over a longer time frame following oxidation and reduces the rate of the reaction. These results supplement the inventory of biomolecules with potential for industrial applications and enhance the understanding of metabolism in the model organism S. meliloti.


Assuntos
Proteínas de Bactérias/química , L-Iditol 2-Desidrogenase/química , Sinorhizobium meliloti/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Estabilidade Enzimática , Frutose/química , Galactitol/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Sinorhizobium meliloti/crescimento & desenvolvimento , Sorbitol/química , Sorbitol/metabolismo
4.
Nat Commun ; 12(1): 545, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483499

RESUMO

In Rhizobiales bacteria, such as Sinorhizobium meliloti, cell elongation takes place only at new cell poles, generated by cell division. Here, we show that the role of the FtsN-like protein RgsS in S. meliloti extends beyond cell division. RgsS contains a conserved SPOR domain known to bind amidase-processed peptidoglycan. This part of RgsS and peptidoglycan amidase AmiC are crucial for reliable selection of the new cell pole as cell elongation zone. Absence of these components increases mobility of RgsS molecules, as well as abnormal RgsS accumulation and positioning of the growth zone at the old cell pole in about one third of the cells. These cells with inverted growth polarity are able to complete the cell cycle but show partially impaired chromosome segregation. We propose that amidase-processed peptidoglycan provides a landmark for RgsS to generate cell polarity in unipolarly growing Rhizobiales.


Assuntos
Amidoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Sinorhizobium meliloti/metabolismo , Amidoidrolases/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Western Blotting , Divisão Celular/genética , Proteínas de Membrana/genética , Microscopia de Fluorescência , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/crescimento & desenvolvimento
5.
mBio ; 11(3)2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32605980

RESUMO

Sinorhizobium meliloti is an alphaproteobacterium belonging to the Rhizobiales Bacteria from this order elongate their cell wall at the new cell pole, generated by cell division. Screening for protein interaction partners of the previously characterized polar growth factors RgsP and RgsM, we identified the inner membrane components of the Tol-Pal system (TolQ and TolR) and novel Rgs (rhizobial growth and septation) proteins with unknown functions. TolQ, Pal, and all Rgs proteins, except for RgsE, were indispensable for S. meliloti cell growth. Six of the Rgs proteins, TolQ, and Pal localized to the growing cell pole in the cell elongation phase and to the septum in predivisional cells, and three Rgs proteins localized to the growing cell pole only. The putative FtsN-like protein RgsS contains a conserved SPOR domain and is indispensable at the early stages of cell division. The components of the Tol-Pal system were required at the late stages of cell division. RgsE, a homolog of the Agrobacterium tumefaciens growth pole ring protein GPR, has an important role in maintaining the normal growth rate and rod cell shape. RgsD is a periplasmic protein with the ability to bind peptidoglycan. Analysis of the phylogenetic distribution of the Rgs proteins showed that they are conserved in Rhizobiales and mostly absent from other alphaproteobacterial orders, suggesting a conserved role of these proteins in polar growth.IMPORTANCE Bacterial cell proliferation involves cell growth and septum formation followed by cell division. For cell growth, bacteria have evolved different complex mechanisms. The most prevalent growth mode of rod-shaped bacteria is cell elongation by incorporating new peptidoglycans in a dispersed manner along the sidewall. A small share of rod-shaped bacteria, including the alphaproteobacterial Rhizobiales, grow unipolarly. Here, we identified and initially characterized a set of Rgs (rhizobial growth and septation) proteins, which are involved in cell division and unipolar growth of Sinorhizobium meliloti and highly conserved in Rhizobiales Our data expand the knowledge of components of the polarly localized machinery driving cell wall growth and suggest a complex of Rgs proteins with components of the divisome, differing in composition between the polar cell elongation zone and the septum.


Assuntos
Proteínas de Bactérias/metabolismo , Divisão Celular , Nucleotidases/metabolismo , Proteínas RGS/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Sinorhizobium meliloti/crescimento & desenvolvimento , Agrobacterium tumefaciens/genética , Ciclo Celular , Polaridade Celular , Nucleotidases/genética , Filogenia , Proteínas RGS/genética , Rhizobiaceae/genética , Proteínas de Schizosaccharomyces pombe/genética , Sinorhizobium meliloti/citologia , Sinorhizobium meliloti/genética
6.
FEMS Microbiol Lett ; 366(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31062028

RESUMO

Polyamines are ubiquitous molecules containing two or more amino groups that fulfill varied and often essential physiological and regulatory roles in all organisms. In the symbiotic nitrogen-fixing bacteria known as rhizobia, putrescine and homospermidine are invariably produced while spermidine and norspermidine synthesis appears to be restricted to the alfalfa microsymbiont Sinorhizobium meliloti. Studies with rhizobial mutants deficient in the synthesis of one or more polyamines have shown that these compounds are important for growth, stress resistance, motility, exopolysaccharide production and biofilm formation. In this review, we describe these studies and examine how polyamines are synthesized and regulated in rhizobia.


Assuntos
Poliaminas/metabolismo , Sinorhizobium meliloti/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Medicago sativa/microbiologia , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/crescimento & desenvolvimento
7.
Mol Microbiol ; 112(2): 678-698, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31124196

RESUMO

The genome of Sinorhizobium meliloti, a model for studying plant-bacteria symbiosis, contains eight genes coding for LuxR-like proteins. Two of these, SinR and ExpR, are essential for quorum sensing (QS). Roles and regulation surrounding the others are mostly unknown. Here, we reveal the DNA recognition sequence and regulon of the LuxR-like protein SMc00877. Unlike ExpR, which uses the long-chain acyl homoserine lactones (AHLs) as inducers, SMc00877 functioned independently of AHLs and was even functional in Escherichia coli. A target of SMc00877 is SinR, the major regulator of AHL production in S. meliloti. Disruption of SMc00877 decreased AHL production. A weaker production of AHLs resulted in smaller microcolonies, starting from single cells, and delayed AHL-dependent regulation. SMc00877 was expressed only in growing cells in the presence of replete nutrients. Therefore, we renamed it NurR (nutrient sensitive LuxR-like regulator). We traced this nutrient-sensitive expression to transcription control by the DNA replication initiation factor, DnaA, which is essential for growth. These results indicate that NurR has a role in modulating the threshold of QS activation according to growth. We propose growth behavior as an additional prerequisite to population density for the activation of QS in S. meliloti.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Percepção de Quorum , Proteínas Repressoras/metabolismo , Sinorhizobium meliloti/fisiologia , Transativadores/metabolismo , Acil-Butirolactonas/metabolismo , Proteínas de Bactérias/genética , Replicação do DNA , Proteínas de Ligação a DNA/genética , Regulon , Proteínas Repressoras/genética , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/crescimento & desenvolvimento , Transativadores/genética
8.
Biometals ; 32(2): 273-291, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30810877

RESUMO

Heme may represent a major iron-source for bacteria. In the symbiotic nitrogen-fixing bacterium Ensifer meliloti 1021, iron acquisition from heme depends on the outer-membrane heme-receptor ShmR. Expression of shmR gene is repressed by iron in a RirA dependent manner while under iron-limitation its expression requires the small protein HmuP. In this work, we identified highly conserved nucleotide motifs present upstream the shmR gene. These motifs are widely distributed among Alpha and Beta Proteobacteria, and correlate with the presence of HmuP coding sequences in bacterial genomes. According to data presented in this work, we named these new motifs as HmuP-responsive elements (HPREs). In the analyzed genomes, the HPREs were always present upstream of genes encoding putative heme-receptors. Moreover, in those Alpha and Beta Proteobacteria where transcriptional start sites for shmR homologs are known, HPREs were located in the 5'UTR region. In this work we show that in E. meliloti 1021, HPREs are involved in HmuP-dependent shmR expression. Moreover, we show that changes in sequence composition of the HPREs correlate with changes in a predicted RNA secondary structure element and affect shmR gene expression.


Assuntos
Regiões 5' não Traduzidas/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Sequência Conservada/genética , Motivos de Nucleotídeos/genética , Receptores de Superfície Celular/genética , Sinorhizobium meliloti/genética , Reação em Cadeia da Polimerase em Tempo Real , Sinorhizobium meliloti/crescimento & desenvolvimento
9.
J Bacteriol ; 201(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30670545

RESUMO

Symbiotic nitrogen fixation (SNF) in the interaction between the soil bacteria Sinorhizobium meliloti and legume plant Medicago sativa is carried out in specialized root organs called nodules. During nodule development, each symbiont must drastically alter their proteins, transcripts, and metabolites in order to support nitrogen fixation. Moreover, bacteria within the nodules are under stress, including challenges by plant antimicrobial peptides, low pH, limited oxygen availability, and strongly reducing conditions, all of which challenge proteome integrity. S. meliloti stress adaptation, proteome remodeling, and quality control are controlled in part by the large oligomeric protease complexes HslUV and ClpXP1. To improve understanding of the roles of S. meliloti HslUV and ClpXP1 under free-living conditions and in symbiosis with M. sativa, we generated ΔhslU, ΔhslV, ΔhslUV, and ΔclpP1 knockout mutants. The shoot dry weight of M. sativa plants inoculated with each deletion mutant was significantly reduced, suggesting a role in symbiosis. Further, slower free-living growth of the ΔhslUV and ΔclpP1 mutants suggests that HslUV and ClpP1 were involved in adapting to heat stress, the while ΔhslU and ΔclpP1 mutants were sensitive to kanamycin. All deletion mutants produced less exopolysaccharide and succinoglycan, as shown by replicate spot plating and calcofluor binding. We also generated endogenous C-terminal enhanced green fluorescent protein (eGFP) fusions to HslU, HslV, ClpX, and ClpP1 in S. meliloti Using anti-eGFP antibodies, native coimmunoprecipitation experiments with proteins from free-living and nodule tissues were performed and analyzed by mass spectrometry. The results suggest that HslUV and ClpXP were closely associated with ribosomal and proteome quality control proteins, and they identified several novel putative protein-protein interactions.IMPORTANCE Symbiotic nitrogen fixation (SNF) is the primary means by which biologically available nitrogen enters the biosphere, and it is therefore a critical component of the global nitrogen cycle and modern agriculture. SNF is the result of highly coordinated interactions between legume plants and soil bacteria collectively referred to as rhizobia, e.g., Medicago sativa and S. meliloti, respectively. Accomplishing SNF requires significant proteome changes in both organisms to create a microaerobic environment suitable for high-level bacterial nitrogenase activity. The bacterial protease systems HslUV and ClpXP are important in proteome quality control, in metabolic remodeling, and in adapting to stress. This work shows that S. meliloti HslUV and ClpXP are involved in SNF, in exopolysaccharide production, and in free-living stress adaptation.


Assuntos
Endopeptidase Clp/metabolismo , Medicago sativa/microbiologia , Sinorhizobium meliloti/enzimologia , Sinorhizobium meliloti/crescimento & desenvolvimento , Simbiose , Endopeptidase Clp/genética , Deleção de Genes , Medicago sativa/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Proteínas Ribossômicas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Sinorhizobium meliloti/genética
10.
Arch Microbiol ; 201(1): 107-121, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30276423

RESUMO

In this study, two populations of leguminous plants Lathyrus sativus were grown in four soils that were collected from sites differently contaminated by heavy metals. Evaluations included basic soil properties, concentrations of major nutrients and four metals (copper, zinc, lead and cadmium) in these soils. Investigation of Lathyrus sativus response to contamination showed that the increase of heavy metal concentration in soils affected biomass of plant, number of nodules and plant metal uptake. Heavy metal tolerance of 46 isolated bacteria from the root nodules was evaluated and demonstrated that the maximum concentration of Cd, Pb, Cu and Zn tolerated by strains were 0.8, 2.5, 0.2, and 0.5 mM, respectively. Twenty-two isolates were tested for their effects on plant biomass production and nodule formation and showed that only R. leguminosarum nodulated Lathyrus sativus, while some bacteria improved the shoot and root dry biomass. Sequences of their 16S rDNA gene fragments were also obtained and evaluated for tentative identification of the isolates which revealed different bacterial genera represented by Rhizobium sp, Rhizobium leguminosarum, Sinorhizobium meliloti, Pseudomonas sp, Pseudomonas fluorescens, Luteibacter sp, Variovorax sp, Bacillus simplex and Bacillus megaterium. The existence of Pb- and Cd-resistant genes (PbrA and CadA) in these bacteria was determined by PCR, and it showed high homology with PbrA and CadA genes from other bacteria. The tested resistant population was able to accumulate high concentrations of Pb and Cd in all plant parts and, therefore, can be classified as a strong metal accumulator with suitable potential for phytoremediation of Pb and Cd polluted sites. Heavy metal resistant and efficient bacteria isolated from root nodules were chosen with Lathyrus sativus to form symbiotic associations for eventual bioremediation program, which could be tested to remove pollutants from contaminated sites.


Assuntos
Lathyrus/crescimento & desenvolvimento , Lathyrus/microbiologia , Metais Pesados/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Poluentes do Solo/metabolismo , Bacillus/crescimento & desenvolvimento , Bacillus/isolamento & purificação , Bacillus/metabolismo , Biodegradação Ambiental , Cádmio/metabolismo , Cobre/metabolismo , Fabaceae/microbiologia , Chumbo/metabolismo , Raízes de Plantas/microbiologia , Pseudomonas/crescimento & desenvolvimento , Pseudomonas/isolamento & purificação , Pseudomonas/metabolismo , Rhizobium/crescimento & desenvolvimento , Rhizobium/isolamento & purificação , Rhizobium/metabolismo , Sinorhizobium meliloti/crescimento & desenvolvimento , Sinorhizobium meliloti/isolamento & purificação , Sinorhizobium meliloti/metabolismo , Solo , Microbiologia do Solo , Simbiose , Zinco/metabolismo
11.
mSphere ; 3(6)2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30404932

RESUMO

Bacterial cells need to coordinate the cell cycle with biomass growth to maintain cell size homeostasis. For fast-growing bacterial species like Escherichia coli and Bacillus subtilis, it is well-known that cell size exhibits a strong dependence on the growth rate under different nutrient conditions (known as the nutrient growth law). However, cell size changes little with slow growth (doubling time of >90 min) for E. coli, posing the interesting question of whether slow-growing bacteria species also observe the nutrient growth law. Here, we quantitatively characterize the cell size and cell cycle parameter of a slow-growing bacterium, Sinorhizobium meliloti, at different nutrient conditions. We find that S. meliloti exhibits a threefold change in its cell size when its doubling time varies from 2 h to 6 h. Moreover, the progression rate of its cell cycle is much longer than that of E. coli, suggesting a delicate coordination between the cell cycle progression rate and the biomass growth rate. Our study shows that the nutrient growth law holds robustly regardless of the growth capacity of the bacterial species, generalizing its applicability among the bacterial kingdom.IMPORTANCE The dependence of cell size on growth rate is a fundamental principle in the field of bacterial cell size regulation. Previous studies of cell size regulation mainly focus on fast-growing bacterial species such as Escherichia coli and Bacillussubtilis We find here that Sinorhizobium meliloti, a slow-growing bacterium, exhibits a remarkable growth rate-dependent cell size pattern under nutrient limitation, generalizing the applicability of the empirical nutrient growth law of cell size. Moreover, S. meliloti exhibits a much slower speed of cell cycle progression than E. coli does, suggesting a delicate coordination between the cell cycle progression rate and the biomass growth rate.


Assuntos
Ciclo Celular , Sinorhizobium meliloti/citologia , Sinorhizobium meliloti/crescimento & desenvolvimento , Metabolismo , Sinorhizobium meliloti/metabolismo
12.
mSphere ; 3(5)2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305320

RESUMO

Bacteria must sense alterations in their environment and respond with changes in function and/or structure in order to cope. Extracytoplasmic function sigma factors (ECF σs) modulate transcription in response to cellular and environmental signals. The symbiotic nitrogen-fixing alphaproteobacterium Sinorhizobium meliloti carries genes for 11 ECF-like σs (RpoE1 to -E10 and FecI). We hypothesized that some of these play a role in mediating the interaction between the bacterium and its plant symbiotic partner. The bacterium senses changes in its immediate environment as it establishes contact with the plant root, initiates invasion of the plant as the root nodule is formed, traverses several root cell layers, and enters plant cortical cells via endocytosis. We used genetics, transcriptomics, and functionality to characterize the entire S. meliloti cohort of ECF σs. We discovered new targets for individual σs, confirmed others by overexpressing individual ECF σs, and identified or confirmed putative promoter motifs for nine of them. We constructed precise deletions of each ECF σ gene and its demonstrated or putative anti-σ gene and also a strain in which all 11 ECF σ and anti-σ genes were deleted. This all-ECF σ deletion strain showed no major defects in free-living growth, in Biolog Phenotype MicroArray assays, or in response to multiple stresses. None of the ECF σs were required for symbiosis on the host plants Medicago sativa and Medicago truncatula: the strain deleted for all ECF σ and anti-σ genes was symbiotically normal.IMPORTANCE Fixed (reduced) soil nitrogen plays a critical role in soil fertility and successful food growth. Much soil fertility relies on symbiotic nitrogen fixation: the bacterial partner infects the host plant roots and reduces atmospheric dinitrogen in exchange for host metabolic fuel, a process that involves complex interactions between the partners mediated by changes in gene expression in each partner. Here we test the roles of a family of 11 extracytoplasmic function (ECF) gene regulatory proteins (sigma factors [σs]) that interact with RNA polymerase to determine if they play a significant role in establishing a nitrogen-fixing symbiosis or in responding to various stresses, including cell envelope stress. We discovered that symbiotic nitrogen fixation occurs even when all 11 of these regulatory genes are deleted, that most ECF sigma factors control accessory functions, and that none of the ECF sigma factors are required to survive envelope stress.


Assuntos
Proteínas de Bactérias/metabolismo , Fator sigma/metabolismo , Sinorhizobium meliloti/crescimento & desenvolvimento , Sinorhizobium meliloti/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Redes e Vias Metabólicas , Mutação , Nitrogênio/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Fator sigma/genética , Sinorhizobium meliloti/genética , Simbiose/genética
13.
Microbiology (Reading) ; 164(4): 600-613, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29619919

RESUMO

Polyamines (PAs) are ubiquitous polycations derived from basic l-amino acids whose physiological roles are still being defined. Their biosynthesis and functions in nitrogen-fixing rhizobia such as Sinorhizobium meliloti have not been extensively investigated. Thin layer chromatographic and mass spectrometric analyses showed that S. meliloti Rm8530 produces the PAs, putrescine (Put), spermidine (Spd) and homospermidine (HSpd), in their free forms and norspermidine (NSpd) in a form bound to macromolecules. The S. meliloti genome encodes two putative ornithine decarboxylases (ODC) for Put synthesis. Activity assays with the purified enzymes showed that ODC2 (SMc02983) decarboxylates both ornithine and lysine. ODC1 (SMa0680) decarboxylates only ornithine. An odc1 mutant was similar to the wild-type in ODC activity, PA production and growth. In comparison to the wild-type, an odc2 mutant had 45 % as much ODC activity and its growth rates were reduced by 42, 14 and 44 % under non-stress, salt stress or acid stress conditions, respectively. The odc2 mutant produced only trace levels of Put, Spd and HSpd. Wild-type phenotypes were restored when the mutant was grown in cultures supplemented with 1 mM Put or Spd or when the odc2 gene was introduced in trans. odc2 gene expression was increased under acid stress and reduced under salt stress and with exogenous Put or Spd. An odc1 odc2 double mutant had phenotypes similar to the odc2 mutant. These results indicate that ODC2 is the major enzyme for Put synthesis in S. meliloti and that PAs are required for normal growth in vitro.


Assuntos
Ornitina Descarboxilase/metabolismo , Poliaminas/metabolismo , Sinorhizobium meliloti/crescimento & desenvolvimento , Sinorhizobium meliloti/metabolismo , Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Meios de Cultura , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Mutação , Ornitina Descarboxilase/genética , Poliaminas/análise , Putrescina/metabolismo , Sinorhizobium meliloti/enzimologia , Espermidina/análogos & derivados , Espermidina/metabolismo , Transcrição Gênica
14.
PLoS Genet ; 14(4): e1007357, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29672509

RESUMO

Bacterial genome evolution is characterized by gains, losses, and rearrangements of functional genetic segments. The extent to which large-scale genomic alterations influence genotype-phenotype relationships has not been investigated in a high-throughput manner. In the symbiotic soil bacterium Sinorhizobium meliloti, the genome is composed of a chromosome and two large extrachromosomal replicons (pSymA and pSymB, which together constitute 45% of the genome). Massively parallel transposon insertion sequencing (Tn-seq) was employed to evaluate the contributions of chromosomal genes to growth fitness in both the presence and absence of these extrachromosomal replicons. Ten percent of chromosomal genes from diverse functional categories are shown to genetically interact with pSymA and pSymB. These results demonstrate the pervasive robustness provided by the extrachromosomal replicons, which is further supported by constraint-based metabolic modeling. A comprehensive picture of core S. meliloti metabolism was generated through a Tn-seq-guided in silico metabolic network reconstruction, producing a core network encompassing 726 genes. This integrated approach facilitated functional assignments for previously uncharacterized genes, while also revealing that Tn-seq alone missed over a quarter of wild-type metabolism. This work highlights the many functional dependencies and epistatic relationships that may arise between bacterial replicons and across a genome, while also demonstrating how Tn-seq and metabolic modeling can be used together to yield insights not obtainable by either method alone.


Assuntos
Genoma Bacteriano , Replicon , Sinorhizobium meliloti/genética , Simulação por Computador , Sequência Conservada , Elementos de DNA Transponíveis , DNA Bacteriano/genética , Ecossistema , Epistasia Genética , Evolução Molecular , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Redes e Vias Metabólicas/genética , Modelos Genéticos , Anotação de Sequência Molecular , Mutação , Análise de Sequência de DNA , Sinorhizobium meliloti/crescimento & desenvolvimento , Sinorhizobium meliloti/metabolismo , Simbiose/genética
15.
Methods Mol Biol ; 1737: 351-370, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29484603

RESUMO

The identification of the protein partners of bacterial small noncoding RNAs (sRNAs) is essential to understand the mechanistic principles and functions of riboregulation in prokaryotic cells. Here, we describe an optimized affinity chromatography protocol that enables purification of in vivo formed sRNA-protein complexes in Sinorhizobium meliloti, a genetically tractable nitrogen-fixing plant symbiotic bacterium. The procedure requires the tagging of the desired sRNA with the MS2 aptamer, which is affinity-captured by the MS2-MBP protein conjugated to an amylose resin. As proof of principle, we show recovery of the RNA chaperone Hfq associated to the strictly Hfq-dependent AbcR2 trans-sRNA. This method can be applied for the investigation of sRNA-protein interactions on a broad range of genetically tractable α-proteobacteria.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Cromatografia de Afinidade/métodos , Fator Proteico 1 do Hospedeiro/metabolismo , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/metabolismo , Sinorhizobium meliloti/metabolismo , Aptâmeros de Nucleotídeos/genética , Fator Proteico 1 do Hospedeiro/genética , Espectrometria de Massas , Plantas/microbiologia , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/crescimento & desenvolvimento , Simbiose
16.
FEMS Microbiol Lett ; 365(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29462313

RESUMO

The alfalfa endosymbiont Ensifer meliloti strain1021 is known to be an incomplete denitrifier due to its inability to grow anoxically using nitrate as respiratory substrate to produce ATP and grow under anoxic conditions. Although this bacterium contains and expresses the complete set of denitrification genes napEFDABC, nirK, norECBQD and nosRZDFYLX encoding the periplasmic nitrate reductase (Nap), Cu-containing nitrite reductase (NirK), c-type nitric oxide (cNor) and nitrous oxide reductase (Nos), respectively, the reasons of its inability to grow under anoxic conditions are still very poorly understood. In the present study, we have constructed an E. meliloti strain overexpressing napEFDABC genes (Nap+) and demonstrated that this strain is able to grow through anaerobic nitrate respiration. Furthermore, Nap+ showed increased NapC levels as well as Nap, Nir and cNor activities and higher capacity to produce NO and N2O compared to wild-type cells. These results suggest that the inability of E. meliloti to grow under anaerobic conditions using nitrate as electron acceptor is attributable to a limitation in the expression of the periplasmic nitrate reductase.


Assuntos
Proteínas de Bactérias/genética , Nitrato Redutase/genética , Periplasma/enzimologia , Sinorhizobium meliloti/enzimologia , Sinorhizobium meliloti/crescimento & desenvolvimento , Anaerobiose , Proteínas de Bactérias/metabolismo , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Periplasma/genética , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo
17.
Microbiology (Reading) ; 164(1): 88-98, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29214973

RESUMO

In the N2-fixing symbiont of alfalfa root nodules, Sinorhizobium meliloti 2011, the mmgR gene encodes a 77 nt small untranslated RNA (sRNA) that negatively regulates the accumulation of polyhydroxybutyrate (PHB) when the bacterium is grown under conditions of surplus carbon (C) in relation to nitrogen (N). We previously showed that the expression of mmgR is primarily controlled at the transcriptional level and that it depends on the cellular N status, although the regulatory mechanism and the factors involved were unknown. In this study, we provide experimental data supporting that: (a) mmgR is induced upon N limitation with the maximum expression found at the highest tested C/N molar ratio in the growth medium; (b) a conserved heptamer TTGTGCA located between the -35 and -10 mmgR promoter elements is necessary and sufficient for induction by N limitation; (c) induction of mmgR requires the N-status regulator NtrC; (d) under C limitation, mmgR transcription is repressed by AniA, a global regulator of C flow; (e) the mmgR promoter contains a conserved dyadic motif (TGC[N3]GCA) partially overlapping the heptamer TTGTGCA, which was also found in the promoters of the PHB-related genes phaP1, phaP2, phaZ and phaR (aniA) of S. meliloti and other alpha-proteobacteria. Taken together, these results suggest that the mmgR promoter would integrate signals from the metabolism of C and N through - at least - the global regulators NtrC and AniA, to provide an optimal level of the MmgR sRNA to fine-tune gene expression post-transcriptionally according to varying C and N availability.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Pequeno RNA não Traduzido/genética , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Sítios de Ligação , Carbono/metabolismo , Ciclo do Carbono/genética , Sequência Conservada , Técnicas de Inativação de Genes , Genes Reguladores/genética , Genes Reguladores/fisiologia , Medicago sativa/microbiologia , Mutação , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Regiões Promotoras Genéticas , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/metabolismo , Alinhamento de Sequência , Sinorhizobium meliloti/crescimento & desenvolvimento , Simbiose
18.
J Bacteriol ; 200(2)2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29084855

RESUMO

Sinorhizobium meliloti is a Gram-negative alphaproteobacterium that can enter into a symbiotic relationship with Medicago sativa and Medicago truncatula Previous work determined that a mutation in the tkt2 gene, which encodes a putative transketolase, could prevent medium acidification associated with a mutant strain unable to metabolize galactose. Since the pentose phosphate pathway in S. meliloti is not well studied, strains carrying mutations in either tkt2 and tal, which encodes a putative transaldolase, were characterized. Carbon metabolism phenotypes revealed that both mutants were impaired in growth on erythritol and ribose. This phenotype was more pronounced for the tkt2 mutant strain, which also displayed auxotrophy for aromatic amino acids. Changes in pentose phosphate pathway metabolite concentrations were also consistent with a mutation in either tkt2 or tal The concentrations of metabolites in central carbon metabolism were also found to shift dramatically in strains carrying a tkt2 mutation. While the concentrations of proteins involved in central carbon metabolism did not change significantly under any conditions, the levels of those associated with iron acquisition increased in the wild-type strain with erythritol induction. These proteins were not detected in either mutant, resulting in less observable rhizobactin production in the tkt2 mutant. While both mutants were impaired in succinoglycan synthesis, only the tkt2 mutant strain was unable to establish symbiosis with alfalfa. These results suggest that tkt2 and tal play central roles in regulating the carbon flow necessary for carbon metabolism and the establishment of symbiosis.IMPORTANCESinorhizobium meliloti is a model organism for the study of plant-microbe interactions and metabolism, especially because it effects nitrogen fixation. The ability to derive the energy necessary for nitrogen fixation is dependent on an organism's ability to metabolize carbon efficiently. The pentose phosphate pathway is central in the interconversion of hexoses and pentoses. This study characterizes the key enzymes of the nonoxidative branch of the pentose phosphate pathway by using defined genetic mutations and shows the effects the mutations have on the metabolite profile and on physiological processes such as the biosynthesis of exopolysaccharide, as well as the ability to regulate iron acquisition.


Assuntos
Carbono/metabolismo , Mutação , Via de Pentose Fosfato/genética , Sinorhizobium meliloti/genética , Proteínas de Bactérias/metabolismo , Eritritol/metabolismo , Medicago sativa/microbiologia , Medicago truncatula/microbiologia , Fixação de Nitrogênio , Fenótipo , Raízes de Plantas/microbiologia , Sinorhizobium meliloti/crescimento & desenvolvimento , Sinorhizobium meliloti/metabolismo , Simbiose , Transcetolase/genética
19.
Mol Plant Microbe Interact ; 30(12): 1009-1019, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28871850

RESUMO

In this work, the hypothesis that exopolysaccharide plays a role in the survival of Sinorhizobium meliloti at low pH levels is addressed. When S. meliloti was grown at pH 5.75, synthesis of succinoglycan increased, whereas synthesis of galactoglucan decreased. Succinoglycan that was isolated from cultures grown at low pH had a lower degree of polymerization relative to that which was isolated from cultures grown at neutral pH, suggesting that low-molecular weight (LMW) succinoglycan might play a role in adaptation to low pH. Mutants unable to produce succinoglycan or only able to produce high-molecular weight polysaccharide were found to be sensitive to low pH. However, strains unable to produce LMW polysaccharide were 10-fold more sensitive. In response to low pH, transcription of genes encoding proteins for succinoglycan, glycogen, and cyclic ß(1-2) glucans biosynthesis increased, while those encoding proteins necessary for the biosynthesis of galactoglucan decreased. While changes in pH did not affect the production of glycogen or cyclic ß(1-2) glucan, it was found that the inability to produce cyclic ß(1-2) glucan did contribute to pH tolerance in the absence of succinoglycan. Finally, in addition to being sensitive to low pH, a strain carrying mutations in exoK and exsH, which encode the glycanases responsible for the cleavage of succinoglycan to LMW succinoglycan, exhibited a delay in nodulation and was uncompetitive for nodule occupancy. Taken together, the data suggest that the role for LMW succinoglycan in nodule development may be to enhance survival in the colonized curled root hair.


Assuntos
Ácidos/metabolismo , Adaptação Fisiológica , Polissacarídeos Bacterianos/metabolismo , Sinorhizobium meliloti/fisiologia , Adaptação Fisiológica/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Glicogênio/metabolismo , Concentração de Íons de Hidrogênio , Peso Molecular , Mutação/genética , Polimerização , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/crescimento & desenvolvimento , Estresse Fisiológico/genética , Simbiose
20.
PLoS One ; 12(7): e0180424, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28686606

RESUMO

In an effort to axenically culture the previously uncultivable populations of the rhizobacteria of Lucerne (Medicago sativa L.), we propose plant-only teabags culture media to mimic the nutritional matrix available in the rhizosphere. Here, we show that culture media prepared from Lucerne powder teabags substantially increased the cultivability of Lucerne rhizobacteria compared with a standard nutrient agar, where we found that the cultivable populations significantly increased by up to 60% of the total bacterial numbers as estimated by Quantitative Real-time Polymerase Chain Reaction (qRT-PCR). Cluster analysis of 16S rDNA Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) of cultivable Colony-Forming Units (CFUs) revealed a more distinct composition and separation of bacterial populations recovered on the plant-only teabags culture media than those developed on a standard nutrient agar. Further, the new plant medium gave preference to the micro-symbiont Sinorhizobium meliloti, and succeeded in isolating a number of not-yet-cultured bacteria, most closely matched to Novosphingobium sp., Lysobacter sp. and Pedobacter sp. The present study may encourage other researchers to consider moving from the well-established standard culture media to the challenging new plant-only culture media. Such a move may reveal previously hidden members of rhizobacteria, and help to further explore their potential environmental impacts.


Assuntos
Técnicas de Cultura de Células/métodos , Medicago sativa/microbiologia , Rhizobiaceae/crescimento & desenvolvimento , Microbiologia do Solo , Meios de Cultura/farmacologia , Ecossistema , Lysobacter/efeitos dos fármacos , Lysobacter/crescimento & desenvolvimento , Pedobacter/efeitos dos fármacos , Pedobacter/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Rhizobiaceae/efeitos dos fármacos , Rizosfera , Sinorhizobium meliloti/efeitos dos fármacos , Sinorhizobium meliloti/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA