Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.702
Filtrar
1.
J Transl Med ; 22(1): 475, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764033

RESUMO

PURPOSE: To analyze the role of and mechanism underlying obstructive sleep apnea (OSA)-derived exosomes in inducing non-alcoholic fatty liver (NAFLD). METHODS: The role of OSA-derived exosomes was analyzed in inducing hepatocyte fat accumulation in mice models both in vivo and in vitro. RESULTS: OSA-derived exosomes caused fat accumulation and macrophage activation in the liver tissue. These exosomes promoted fat accumulation; steatosis was more noticeable in the presence of macrophages. Macrophages could internalize OSA-derived exosomes, which promoted macrophage polarization to the M1 type. Moreover, it inhibited sirtuin-3 (SIRT3)/AMP-activated protein kinase (AMPK) and autophagy and promoted the activation of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasomes. The use of 3-methyladenine (3-MA) to inhibit autophagy blocked NLRP3 inflammasome activation and inhibited the M1 polarization of macrophages. miR-421 targeting inhibited SIRT3 protein expression in the macrophages. miR-421 was significantly increased in OSA-derived exosomes. Additionally, miR-421 levels were increased in OSA + NAFLD mice- and patient-derived exosomes. In the liver tissues of OSA and OSA + NAFLD mice, miR-421 displayed similar co-localization with the macrophages. Intermittent hypoxia-induced hepatocytes deliver miR-421 to the macrophages via exosomes to inhibit SIRT3, thereby participating in macrophage M1 polarization. After OSA and NAFLD modeling in miR-421-/- mice, liver steatosis and M1 polarization were significantly reduced. Additionally, in the case of miR-421 knockout, the inhibitory effects of OSA-derived exosomes on SIRT3 and autophagy were significantly alleviated. Furthermore, their effects on liver steatosis and macrophage M1 polarization were significantly reduced. CONCLUSIONS: OSA promotes the delivery of miR-421 from the hepatocytes to macrophages. Additionally, it promotes M1 polarization by regulating the SIRT3/AMPK-autophagy pathway, thereby causing NAFLD.


Assuntos
Autofagia , Polaridade Celular , Exossomos , Macrófagos , Camundongos Endogâmicos C57BL , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Sirtuína 3 , Apneia Obstrutiva do Sono , Exossomos/metabolismo , Animais , Sirtuína 3/metabolismo , Sirtuína 3/genética , MicroRNAs/metabolismo , MicroRNAs/genética , Macrófagos/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Humanos , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/metabolismo , Masculino , Camundongos , Hepatócitos/metabolismo , Hepatócitos/patologia , Inflamassomos/metabolismo , Sequência de Bases , Fígado/patologia , Fígado/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
2.
Cell Biol Toxicol ; 40(1): 31, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767771

RESUMO

Mitochondrial dysfunction contributes to cerebral ischemia-reperfusion (CI/R) injury, which can be ameliorated by Sirtuin-3 (SIRT3). Under stress conditions, the SIRT3-promoted mitochondrial functional recovery depends on both its activity and expression. However, the approach to enhance SIRT3 activity after CI/R injury remains unelucidated. In this study, Sprague-Dawley (SD) rats were intracranially injected with either adeno-associated viral Sirtuin-1 (AAV-SIRT1) or AAV-sh_SIRT1 before undergoing transient middle cerebral artery occlusion (tMCAO). Primary cortical neurons were cultured and transfected with lentiviral SIRT1 (LV-SIRT1) and LV-sh_SIRT1 respectively before oxygen-glucose deprivation/reoxygenation (OGD/R). Afterwards, rats and neurons were respectively treated with a selective SIRT3 inhibitor, 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP). The expression, function, and related mechanism of SIRT1 were investigated by Western Blot, flow cytometry, immunofluorescence staining, etc. After CI/R injury, SIRT1 expression decreased in vivo and in vitro. The simulation and immune-analyses reported strong interaction between SIRT1 and SIRT3 in the cerebral mitochondria before and after CI/R. SIRT1 overexpression enhanced SIRT3 activity by increasing the deacetylation of SIRT3, which ameliorated CI/R-induced cerebral infarction, neuronal apoptosis, oxidative stress, neurological and motor dysfunction, and mitochondrial respiratory chain dysfunction, promoted mitochondrial biogenesis, and retained mitochondrial integrity and mitochondrial morphology. Meanwhile, SIRT1 overexpression alleviated OGD/R-induced neuronal death and mitochondrial bioenergetic deficits. These effects were reversed by AAV-sh_SIRT1 and the neuroprotective effects of SIRT1 were partially offset by 3-TYP. These results suggest that SIRT1 restores the structure and function of mitochondria by activating SIRT3, offering neuroprotection against CI/R injury, which signifies a potential approach for the clinical management of cerebral ischemia.


Assuntos
Isquemia Encefálica , Mitocôndrias , Neurônios , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Sirtuína 1 , Sirtuína 3 , Animais , Sirtuína 1/metabolismo , Sirtuína 1/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Mitocôndrias/metabolismo , Masculino , Sirtuína 3/metabolismo , Sirtuína 3/genética , Neurônios/metabolismo , Neurônios/patologia , Ratos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Apoptose , Sirtuínas
3.
Sci Rep ; 14(1): 10143, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698042

RESUMO

Sirtuin3 (SIRT3), a mitochondrial deacetylase, has been shown to be involved in various kidney diseases. In this study, we aimed to clarify the role of SIRT3 in cyclosporine-induced nephrotoxicity and the associated mitochondrial dysfunction. Madin-Darby canine kidney (MDCK) cells were transfected with Flag-tagged SIRT3 for SIRT3 overexpression or SIRT3 siRNA for the inhibition of SIRT3. Subsequently, the cells were treated with cyclosporine A (CsA) or vehicle. Wild-type and SIRT3 knockout (KO) mice were randomly assigned to receive cyclosporine A or olive oil. Furthermore, SIRT3 activator, honokiol, was treated alongside CsA to wild type mice. Our results revealed that CsA treatment inhibited mitochondrial SIRT3 expression in MDCK cells. Inhibition of SIRT3 through siRNA transfection exacerbated apoptosis, impaired the expression of the AMP-activated protein kinase-peroxisome proliferator-activated receptor gamma coactivator 1 alpha (AMPK-PGC1α) pathway, and worsened mitochondrial dysfunction induced by CsA treatment. Conversely, overexpression of SIRT3 through Flag-tagged SIRT3 transfection ameliorated apoptosis, increased the expression of mitochondrial superoxide dismutase 2, and restored the mitochondrial regulator pathway, AMPK-PGC1α. In SIRT3 KO mice, CsA treatment led to aggravated kidney dysfunction, increased kidney tubular injury, and accumulation of oxidative end products indicative of oxidative stress injury. Meanwhile, SIRT3 activation in vivo significantly mitigated these adverse effects, improving kidney function, reducing oxidative stress markers, and enhancing mitochondrial health following CsA treatment. Overall, our findings suggest that SIRT3 plays a protective role in alleviating mitochondrial dysfunction caused by CsA through the activation of the AMPK-PGC1α pathway, thereby preventing further kidney injury.


Assuntos
Apoptose , Ciclosporina , Camundongos Knockout , Mitocôndrias , Estresse Oxidativo , Sirtuína 3 , Animais , Sirtuína 3/metabolismo , Sirtuína 3/genética , Ciclosporina/efeitos adversos , Ciclosporina/toxicidade , Ciclosporina/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Camundongos , Cães , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Células Madin Darby de Rim Canino , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Nefropatias/prevenção & controle , Nefropatias/patologia , Nefropatias/genética , Rim/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Transdução de Sinais/efeitos dos fármacos
4.
BMC Complement Med Ther ; 24(1): 190, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750550

RESUMO

BACKGROUND: Bawei Chenxiang Wan (BCW) is among the most effective and widely used therapies for coronary heart disease and angina pectoris in Tibet. However, whether it confers protection through a right-ventricle (RV) myocardial metabolic mechanism is unknown. METHODS: Male Sprague-Dawley rats were orally administrated with BCW, which was injected concurrently with a bolus of Sugen5416, and subjected to hypoxia exposure (SuHx; 5000 m altitude) for 4 weeks. Right ventricular hypertrophy (RVH) in high-altitude heart disease (HAHD) was assessed using Fulton's index (FI; ratio of RV to left ventricle + septum weights) and heart-weight-to-body-weight ratio (HW/BW). The effect of therapeutic administration of BCW on the RVH hemodynamics was assessed through catheterization (mean right ventricular pressure and mean pulmonary artery pressure (mRVP and mPAP, respectively)). Tissue samples were used to perform histological staining, and confirmatory analyses of mRNA and protein levels were conducted to detect alterations in the mechanisms of RVH in HAHD. The protective mechanism of BCW was further verified via cell culture. RESULTS: BCW considerably reduced SuHx-associated RVH, as indicated by macro morphology, HW/BW ratio, FI, mPAP, mRVP, hypertrophy markers, heart function, pathological structure, and myocardial enzymes. Moreover, BCW can alleviate the disorder of glucose and fatty acid metabolism through upregulation of carnitine palmitoyltransferase1ɑ, citrate synthase, and acetyl-CoA and downregulation of glucose transport-4, phosphofructokinase, and pyruvate, which resulted in the reduced levels of free fatty acid and lactic acid and increased aerobic oxidation. This process may be mediated via the regulation of sirtuin 3 (SIRT3)-hypoxia-inducible factor 1α (HIF1α)-pyruvate dehydrogenase kinase (PDK)/pyruvate dehydrogenase (PDH) signaling pathway. Subsequently, the inhibition of SIRT3 expression by 3-TYP (a selective inhibitor of SIRT3) can reverse substantially the anti-RVH effect of BCW in HAHD, as indicated by hypertrophy marker and serum myocardial enzyme levels. CONCLUSIONS: BCW prevented SuHx-induced RVH in HAHD via the SIRT3-HIF1ɑ-PDK/PDH signaling pathway to alleviate the disturbance in fatty acid and glucose metabolism. Therefore, BCW can be used as an alternative drug for the treatment of RVH in HAHD.


Assuntos
Medicamentos de Ervas Chinesas , Hipertrofia Ventricular Direita , Subunidade alfa do Fator 1 Induzível por Hipóxia , Ratos Sprague-Dawley , Animais , Masculino , Ratos , Medicamentos de Ervas Chinesas/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipertrofia Ventricular Direita/tratamento farmacológico , Sirtuína 3/metabolismo , Ácidos Graxos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Glucose/metabolismo , Doença da Altitude/tratamento farmacológico , Modelos Animais de Doenças , Piruvato Desidrogenase Quinase de Transferência de Acetil
5.
Sci Adv ; 10(20): eadj5942, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758779

RESUMO

Acetyl-CoA synthetase short-chain family member 1 (ACSS1) uses acetate to generate mitochondrial acetyl-CoA and is regulated by deacetylation by sirtuin 3. We generated an ACSS1-acetylation (Ac) mimic mouse, where lysine-635 was mutated to glutamine (K635Q). Male Acss1K635Q/K635Q mice were smaller with higher metabolic rate and blood acetate and decreased liver/serum ATP and lactate levels. After a 48-hour fast, Acss1K635Q/K635Q mice presented hypothermia and liver aberrations, including enlargement, discoloration, lipid droplet accumulation, and microsteatosis, consistent with nonalcoholic fatty liver disease (NAFLD). RNA sequencing analysis suggested dysregulation of fatty acid metabolism, cellular senescence, and hepatic steatosis networks, consistent with NAFLD. Fasted Acss1K635Q/K635Q mouse livers showed increased fatty acid synthase (FASN) and stearoyl-CoA desaturase 1 (SCD1), both associated with NAFLD, and increased carbohydrate response element-binding protein binding to Fasn and Scd1 enhancer regions. Last, liver lipidomics showed elevated ceramide, lysophosphatidylethanolamine, and lysophosphatidylcholine, all associated with NAFLD. Thus, we propose that ACSS1-K635-Ac dysregulation leads to aberrant lipid metabolism, cellular senescence, and NAFLD.


Assuntos
Senescência Celular , Mitocôndrias , Hepatopatia Gordurosa não Alcoólica , Estearoil-CoA Dessaturase , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Camundongos , Senescência Celular/genética , Acetilação , Mitocôndrias/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Estearoil-CoA Dessaturase/genética , Masculino , Acetato-CoA Ligase/metabolismo , Acetato-CoA Ligase/genética , Técnicas de Introdução de Genes , Fígado/metabolismo , Fígado/patologia , Metabolismo dos Lipídeos , Sirtuína 3/metabolismo , Sirtuína 3/genética , Modelos Animais de Doenças , Coenzima A Ligases , Ácido Graxo Sintase Tipo I
6.
Signal Transduct Target Ther ; 9(1): 133, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38744811

RESUMO

Sirtuin 3 (SIRT3) is well known as a conserved nicotinamide adenine dinucleotide+ (NAD+)-dependent deacetylase located in the mitochondria that may regulate oxidative stress, catabolism and ATP production. Accumulating evidence has recently revealed that SIRT3 plays its critical roles in cardiac fibrosis, myocardial fibrosis and even heart failure (HF), through its deacetylation modifications. Accordingly, discovery of SIRT3 activators and elucidating their underlying mechanisms of HF should be urgently needed. Herein, we identified a new small-molecule activator of SIRT3 (named 2-APQC) by the structure-based drug designing strategy. 2-APQC was shown to alleviate isoproterenol (ISO)-induced cardiac hypertrophy and myocardial fibrosis in vitro and in vivo rat models. Importantly, in SIRT3 knockout mice, 2-APQC could not relieve HF, suggesting that 2-APQC is dependent on SIRT3 for its protective role. Mechanically, 2-APQC was found to inhibit the mammalian target of rapamycin (mTOR)-p70 ribosomal protein S6 kinase (p70S6K), c-jun N-terminal kinase (JNK) and transforming growth factor-ß (TGF-ß)/ small mother against decapentaplegic 3 (Smad3) pathways to improve ISO-induced cardiac hypertrophy and myocardial fibrosis. Based upon RNA-seq analyses, we demonstrated that SIRT3-pyrroline-5-carboxylate reductase 1 (PYCR1) axis was closely assoiated with HF. By activating PYCR1, 2-APQC was shown to enhance mitochondrial proline metabolism, inhibited reactive oxygen species (ROS)-p38 mitogen activated protein kinase (p38MAPK) pathway and thereby protecting against ISO-induced mitochondrialoxidative damage. Moreover, activation of SIRT3 by 2-APQC could facilitate AMP-activated protein kinase (AMPK)-Parkin axis to inhibit ISO-induced necrosis. Together, our results demonstrate that 2-APQC is a targeted SIRT3 activator that alleviates myocardial hypertrophy and fibrosis by regulating mitochondrial homeostasis, which may provide a new clue on exploiting a promising drug candidate for the future HF therapeutics.


Assuntos
Cardiomegalia , Fibrose , Sirtuína 3 , Animais , Sirtuína 3/genética , Sirtuína 3/metabolismo , Cardiomegalia/genética , Cardiomegalia/tratamento farmacológico , Cardiomegalia/patologia , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Fibrose/genética , Ratos , Camundongos , Isoproterenol , Humanos , Camundongos Knockout , Homeostase/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/patologia , Mitocôndrias/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Miocárdio/patologia , Miocárdio/metabolismo , Masculino
7.
Sci Rep ; 14(1): 8176, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589505

RESUMO

Knee osteoarthritis (KOA) usually leads to quadriceps femoris atrophy, which in turn can further aggravate the progression of KOA. Curcumin (CUR) has anti-inflammatory and antioxidant effects and has been shown to be a protective agent for skeletal muscle. CUR has been shown to have a protective effect on skeletal muscle. However, there are no studies related to whether CUR improves KOA-induced quadriceps femoris muscle atrophy. We established a model of KOA in rats. Rats in the experimental group were fed CUR for 5 weeks. Changes in autophagy levels, reactive oxygen species (ROS) levels, and changes in the expression of the Sirutin3 (SIRT3)-superoxide dismutase 2 (SOD2) pathway were detected in the quadriceps femoris muscle of rats. KOA led to quadriceps femoris muscle atrophy, in which autophagy was induced and ROS levels were increased. CUR increased SIRT3 expression, decreased SOD2 acetylation and ROS levels, inhibited the over-activation of autophagy, thereby alleviating quadriceps femoris muscle atrophy and improving KOA. CUR has a protective effect against quadriceps femoris muscle atrophy, and KOA is alleviated after improvement of quadriceps femoris muscle atrophy, with the possible mechanism being the reduction of ROS-induced autophagy via the SIRT3-SOD2 pathway.


Assuntos
Curcumina , Osteoartrite do Joelho , Sirtuína 3 , Superóxido Dismutase , Ratos , Animais , Espécies Reativas de Oxigênio/metabolismo , Osteoartrite do Joelho/patologia , Músculo Quadríceps/metabolismo , Sirtuína 3/metabolismo , Curcumina/farmacologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/patologia , Autofagia , Transdução de Sinais
8.
Pharmacol Ther ; 257: 108639, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561088

RESUMO

Sirtuin3 (SIRT3) is a nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase located in the mitochondria, which mainly regulates the acetylation of mitochondrial proteins. In addition, SIRT3 is involved in critical biological processes, including oxidative stress, inflammation, DNA damage, and apoptosis, all of which are closely related to the progression of liver disease. Liver fibrosis characterized by the deposition of extracellular matrix is a result of long termed or repeated liver damage, frequently accompanied by damaged hepatocytes, the recruitment of inflammatory cells, and the activation of hepatic stellate cells. Based on the functions and pharmacology of SIRT3, we will review its roles in liver fibrosis from three aspects: First, the main functions and pharmacological effects of SIRT3 were investigated based on its structure. Second, the roles of SIRT3 in major cells in the liver were summarized to reveal its mechanism in developing liver fibrosis. Last, drugs that regulate SIRT3 to prevent and treat liver fibrosis were discussed. In conclusion, exploring the pharmacological effects of SIRT3, especially in the liver, may be a potential strategy for treating liver fibrosis.


Assuntos
Hepatopatias , Sirtuína 3 , Humanos , Sirtuína 3/genética , Sirtuína 3/metabolismo , Proteínas Mitocondriais , Estresse Oxidativo/fisiologia , Cirrose Hepática/tratamento farmacológico
9.
Bioorg Chem ; 146: 107327, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579616

RESUMO

Colorectal cancer (CRC) is well known as a prevalent malignancy affecting the digestive tract, yet its precise etiological determinants remain to be elusive. Accordingly, identifying specific molecular targets for colorectal cancer and predicting potential malignant tumor behavior are potential strategies for therapeutic interventions. Of note, apoptosis (type I programmed cell death) has been widely reported to play a pivotal role in tumorigenesis by exerting a suppressive effect on cancer development. Moreover, autophagy-dependent cell death (type II programmed cell death) has been implicated in different types of human cancers. Thus, investigating the molecular mechanisms underlying apoptosis and autophagy-dependent cell death is paramount in treatment modalities of colorectal cancer. In this study, we uncovered that a new small-molecule activator of SIRT3, named MY-13, triggered both autophagy-dependent cell death and apoptosis by modulating the SIRT3/Hsp90/AKT signaling pathway. Consequently, this compound inhibited tumor cell proliferation and migration in RKO and HCT-116 cell lines. Moreover, we further demonstrated that the small-molecule activator significantly suppressed tumor growth in vivo. In conclusion, these findings demonstrate that the novel small-molecule activator of SIRT3 may hold a therapeutic potential as a drug candidate in colorectal cancer.


Assuntos
Morte Celular Autofágica , Neoplasias Colorretais , Sirtuína 3 , Humanos , Neoplasias Colorretais/metabolismo , Autofagia , Proliferação de Células , Apoptose , Linhagem Celular Tumoral
10.
PLoS One ; 19(4): e0301990, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625851

RESUMO

Cardiac remodeling is the primary pathological feature of chronic heart failure (HF). Exploring the characteristics of cardiac remodeling in the very early stages of HF and identifying targets for intervention are essential for discovering novel mechanisms and therapeutic strategies. Silent mating type information regulation 2 homolog 3 (SIRT3), as a major mitochondrial nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, is required for mitochondrial metabolism. However, whether SIRT3 plays a role in cardiac remodeling by regulating the biosynthesis of mitochondrial cardiolipin (CL) is unknown. In this study, we induced pressure overload in wild-type (WT) and SIRT3 knockout (SIRT3-/-) mice via transverse aortic constriction (TAC). Compared with WT mouse hearts, the hearts of SIRT3-/- mice exhibited more-pronounced cardiac remodeling and fibrosis, greater reactive oxygen species (ROS) production, decreased mitochondrial-membrane potential (ΔΨm), and abnormal mitochondrial morphology after TAC. Furthermore, SIRT3 deletion aggravated TAC-induced decrease in total CL content, which might be associated with the downregulation of the CL synthesis related enzymes cardiolipin synthase 1 (CRLS1) and phospholipid-lysophospholipid transacylase (TAFAZZIN). In our in vitro experiments, SIRT3 overexpression prevented angiotensin II (AngII)- induced aberrant mitochondrial function, CL biosynthesis disorder, and peroxisome proliferator-activated receptor gamma (PPARγ) downregulation in cardiomyocytes; meanwhile, SIRT3 knockdown exacerbated these effects. Moreover, the addition of GW9662, a PPARγ antagonist, partially counteracted the beneficial effects of SIRT3 overexpression. In conclusion, SIRT3 regulated PPARγ-mediated CL biosynthesis, maintained the structure and function of mitochondria, and thereby protected the myocardium against cardiac remodeling.


Assuntos
Cardiolipinas , Sirtuína 3 , Animais , Camundongos , Cardiolipinas/metabolismo , Camundongos Knockout , Miócitos Cardíacos/metabolismo , PPAR gama/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo , Remodelação Ventricular
11.
J Med Chem ; 67(8): 6749-6768, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38572607

RESUMO

Cardiovascular diseases (CVDs) persist as the predominant cause of mortality, urging the exploration of innovative pharmaceuticals. Mitochondrial dysfunction stands as a pivotal contributor to CVDs development. Sirtuin 3 (SIRT3), a prominent mitochondrial deacetylase known for its crucial role in protecting mitochondria against damage and dysfunction, has emerged as a promising therapeutic target for CVDs treatment. Utilizing isosteviol, a natural ent-beyerene diterpenoid, 24 derivatives were synthesized and evaluated in vivo using a zebrafish model, establishing a deduced structure-activity relationship. Among these, derivative 5v exhibited significant efficacy in doxorubicin-induced cardiomyopathy in zebrafish and murine models. Subsequent investigations revealed that 5v selectively elevated SIRT3 expression, leading to the upregulation of SOD2 and OPA1 expression, effectively preventing mitochondrial dysfunction, mitigating oxidative stress, and preserving cardiomyocyte viability. As a novel structural class of SIRT3 activators with robust therapeutic effects, 5v emerges as a promising candidate for further drug development.


Assuntos
Cardiotônicos , Diterpenos do Tipo Caurano , Desenho de Fármacos , Sirtuína 3 , Peixe-Zebra , Animais , Sirtuína 3/metabolismo , Sirtuína 3/antagonistas & inibidores , Diterpenos do Tipo Caurano/farmacologia , Diterpenos do Tipo Caurano/síntese química , Diterpenos do Tipo Caurano/química , Diterpenos do Tipo Caurano/uso terapêutico , Cardiotônicos/farmacologia , Cardiotônicos/síntese química , Cardiotônicos/química , Cardiotônicos/uso terapêutico , Relação Estrutura-Atividade , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Doxorrubicina/farmacologia
12.
Cell Cycle ; 23(4): 435-447, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38626328

RESUMO

The precise mechanisms underlying the inhibitory effects of SIRT3, a mitochondrial sirtuin protein, on hepatocellular carcinoma (HCC) development, as well as its impact on mitochondrial respiration, remain poorly understood. We assessed sirtuins 3 (SIRT3) levels in HCC tissues and Huh7 cells cultured under hypoxic condition. We investigated the effects of SIRT3 on cell proliferation, glycolytic metabolism, mitochondrial respiration, mitophagy, and mitochondrial biogenesis in Huh7 cells. Besides, we explored the potential mechanisms regulating SIRT3 expression in hypoxically cultured Huh7 cells. Gradual reduction in SIRT3 expressions were observed in both adjacent tumor tissues and tumor tissues. Similarly, SIRT3 expressions were diminished in Huh7 cells cultured under hypoxic condition. Forced expression of SIRT3 attenuated the growth of hypoxically cultured Huh7 cells. SIRT3 overexpression led to a decrease in extracellular acidification rate while increasing oxygen consumption rate. SIRT3 downregulated the levels of hexokinase 2 and pyruvate kinase M2. Moreover, SIRT3 enhanced mitophagy signaling, as indicated by mtKeima, and upregulated key proteins involved in various mitophagic pathways while reducing intracellular reactive oxygen species levels. Furthermore, SIRT3 increased proxisome proliferator-activated receptor-gamma coactivator 1α levels and the amount of mitochondrial DNA in Huh7 cells. Notably, ß-catenin expressions were elevated in Huh7 cells cultured under hypoxic condition. Antagonists and agonists of ß-catenin respectively upregulated and downregulated SIRT3 expressions in hypoxically cultured Huh7 cells. The modulationsof glycolysis and mitochondrial respiration represent the primary mechanism through which SIRT3, suppressed by ß-catenin, inhibits HCC cell proliferation.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Glicólise , Neoplasias Hepáticas , Mitocôndrias , Sirtuína 3 , beta Catenina , Humanos , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Sirtuína 3/metabolismo , Sirtuína 3/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Linhagem Celular Tumoral , beta Catenina/metabolismo , Mitocôndrias/metabolismo , Mitofagia/efeitos dos fármacos , Transdução de Sinais , Hipóxia Celular , Hexoquinase/metabolismo , Hexoquinase/genética , Espécies Reativas de Oxigênio/metabolismo , Regulação Neoplásica da Expressão Gênica
13.
Exp Gerontol ; 191: 112442, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38663491

RESUMO

In this study we investigated the potential synergistic effects of moderate interval training (MIT) and lithium on spatial learning and memory. Forty-two male Wistar males were classified into six groups including I: Control, II: 10 mg/kg/day IP lithium (Li10), III: MIT, IV: Li10 + MIT, V: 40 mg/kg/day IP lithium (Li40), and VI: Li40 + MIT. Then, the rats underwent Morris Water Maze (MWM) test to assess their spatial memory and learning ability. Brain-derived neurotrophic factor (BDNF) density was measured by enzyme-linked immunosorbent assay (ELISA), and the expression of PGC1 and SIRT3 were assessed via qRT-PCR. The results show that MIT improves both memory and spatial learning; but lithium alone, does not cause this. Additionally, those exposed to a combination of exercise and lithium also had improved spatial learning and memory. Finally, we observed a positive role of BDNF protein, and PGC1 gene on the effects of exercise and lithium.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Condicionamento Físico Animal , Ratos Wistar , Sirtuína 3 , Memória Espacial , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Masculino , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Sirtuína 3/metabolismo , Sirtuína 3/genética , Condicionamento Físico Animal/fisiologia , Ratos , Memória Espacial/efeitos dos fármacos , Aprendizagem Espacial/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Lítio/farmacologia , Sirtuínas
14.
CNS Neurosci Ther ; 30(4): e14703, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572816

RESUMO

INTRODUCTION: Painful diabetic neuropathy (PDN) is a common complication of diabetes. Previous studies have implicated that mitochondrial dysfunction plays a role in the development of PDN, but its pathogenesis and mechanism have not been fully investigated. METHODS: In this study, we used high-fat diet/low-dose streptozotocin-induced rats as a model of type 2 diabetes mellitus. Behavioral testing, whole-cell patch-clamp recordings of dorsal root ganglion (DRG) neurons, and complex sensory nerve conduction velocity studies were used to assess peripheral neuropathy. Mitochondrial membrane potential (MMP), ATP, tissue reactive oxygen species, and transmission electron microscopy were used to evaluate the function and morphology of mitochondria in DRG. Real-time PCR, western blot, and immunofluorescence were performed to investigate the mechanism. RESULTS: We found that damaged mitochondria were accumulated and mitophagy was inhibited in PDN rats. The expression of sirtuin 3 (SIRT3), which is an NAD+-dependent deacetylase in mitochondria, was inhibited. Overexpression of SIRT3 in DRG neurons by intrathecally administered LV-SIRT3 lentivirus ameliorated neurological and mitochondrial dysfunctions. This was evidenced by the reversal of allodynia and nociceptor hyperexcitability, as well as the restoration of MMP and ATP levels. Overexpression of SIRT3 restored the inhibited mitophagy by activating the FoxO3a-PINK1-Parkin signaling pathway. The effects of SIRT3 overexpression, including the reversal of allodynia and nociceptor hyperexcitability, the improvement of impaired mitochondria and mitophagy, and the restoration of PINK1 and Parkin expression, were counteracted when FoxO3a siRNA was intrathecally injected. CONCLUSION: These results showed that SIRT3 overexpression ameliorates PDN via activation of FoxO3a-PINK1-Parkin-mediated mitophagy, suggesting that SIRT3 may become an encouraging therapeutic strategy for PDN.


Assuntos
Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Sirtuína 3 , Animais , Ratos , Trifosfato de Adenosina/farmacologia , Hiperalgesia , Mitofagia , Proteínas Quinases/metabolismo , Transdução de Sinais , Sirtuína 3/genética , Sirtuína 3/metabolismo , Ubiquitina-Proteína Ligases/genética
15.
Cytokine ; 179: 156612, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38631184

RESUMO

INTRODUCTION: Pregnancy-induced hypertension (PIH) and preeclampsia (PE) are associated with disturbed maternal inflammatory response, oxidative stress and vascular endothelial cell dysfunction. Obesity is one of risk factors of PE. Leptin is elevated in obesity and its level correlates positively with the amount of adipose tissue. In contrast, adiponectin levels are decreased in obesity. Sirtuins are expressed in the placenta, however their role in pregnancy-related pathology in humans is not known. AIM OF THE STUDY: The aim of our study was to measure serum concentrations of selected sirtuins, adiponectin and leptin in healthy pregnancy and in women with PIH. MATERIALS AND METHODS: The study included 70 women: 38 healthy pregnant women and 32 women with PIH. Blood samples were obtained between the 20th and 40th week of gestation. Serum levels of sirtuins 1, 3, 6, leptin and adiponectin were measured with ELISA. RESULTS: Leptin levels were significantly higher in PIH group as compared to the controls and correlated positively with BMI. Highest leptin levels were observed in women who needed a cesarean section. Levels of sirtuins 1, 3 and 6 were similar in both groups and did not correlate with BMI. CONCLUSIONS: High leptin levels in PIH women during 3rd trimester might be helpful to predict the necessity for a caesarian section. Blood levels of sirtuins 1, 3 and 6 measured after the 20th week of gestation cannot be regarded as a single diagnostic test for PIH or preeclampsia. More studies to clarify significance of sirtuins in PIH and PE development and diagnosis are needed.


Assuntos
Adiponectina , Hipertensão Induzida pela Gravidez , Leptina , Sirtuínas , Humanos , Feminino , Adiponectina/sangue , Gravidez , Leptina/sangue , Adulto , Sirtuínas/sangue , Hipertensão Induzida pela Gravidez/sangue , Pré-Eclâmpsia/sangue , Índice de Massa Corporal , Sirtuína 3/sangue , Sirtuína 1/sangue
16.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 279-289, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38645862

RESUMO

Objective: To identify inflamm-aging related biomarkers in osteoarthritis (OA). Methods: Microarray gene profiles of young and aging OA patients were obtained from the Gene Expression Omnibus (GEO) database and aging-related genes (ARGs) were obtained from the Human Aging Genome Resource (HAGR) database. The differentially expressed genes of young OA and older OA patients were screened and then intersected with ARGs to obtain the aging-related genes of OA. Enrichment analysis was performed to reveal the potential mechanisms of aging-related markers in OA. Three machine learning methods were used to identify core senescence markers of OA and the receiver operating characteristic (ROC) curve was used to assess their diagnostic performance. Peripheral blood mononuclear cells were collected from clinical OA patients to verify the expression of senescence-associated secretory phenotype (SASP) factors and senescence markers. Results: A total of 45 senescence-related markers were obtained, which were mainly involved in the regulation of cellular senescence, the cell cycle, inflammatory response, etc. Through the screening with the three machine learning methods, 5 core senescence biomarkers, including FOXO3, MCL1, SIRT3, STAG1, and S100A13, were obtained. A total of 20 cases of normal controls and 40 cases of OA patients, including 20 cases in the young patient group and 20 in the elderly patient group, were enrolled. Compared with those of the young patient group, C-reactive protein (CRP), interleukin (IL)-6, and IL-1ß levels increased and IL-4 levels decreased in the elderly OA patient group (P<0.01); FOXO3, MCL1, and SIRT3 mRNA expression decreased and STAG1 and S100A13 mRNA expression increased (P<0.01). Pearson correlation analysis demonstrated that the selected markers were associated with some indicators, including erythrocyte sedimentation rate (ESR), IL-1ß, IL-4, CRP, and IL-6. The area under the ROC curve of the 5 core aging genes was always greater than 0.8 and the C-index of the calibration curve in the nomogram prediction model was 0.755, which suggested the good calibration ability of the model. Conclusion: FOXO3, MCL1, SIRT3, STAG1, and S100A13 may serve as novel diagnostic biomolecular markers and potential therapeutic targets for OA inflamm-aging.


Assuntos
Envelhecimento , Biomarcadores , Biologia Computacional , Aprendizado de Máquina , Osteoartrite , Humanos , Osteoartrite/genética , Osteoartrite/diagnóstico , Osteoartrite/metabolismo , Biomarcadores/metabolismo , Biomarcadores/sangue , Biologia Computacional/métodos , Envelhecimento/genética , Inflamação/genética , Inflamação/metabolismo , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Senescência Celular/genética , Sirtuína 3/genética , Sirtuína 3/metabolismo , Perfilação da Expressão Gênica , Idoso , Masculino
17.
Nutr Diabetes ; 14(1): 23, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653987

RESUMO

BACKGROUND: The number of patients with type 1 diabetes rises rapidly around the world in recent years. Maternal diabetes has a detrimental effect on reproductive outcomes due to decreased oocyte quality. However, the strategies to improve the oocyte quality and artificial reproductive technology (ART) efficiency of infertile females suffering from diabetes have not been fully studied. In this study, we aimed to examine the effects of nicotinamide mononucleotide (NMN) on oocyte maturation of mouse with type 1 diabetes mouse and explore the underlying mechanisms of NMN's effect. METHODS: Streptozotocin (STZ) was used to establish the mouse models with type 1 diabetes. The successful establishment of the models was confirmed by the results of body weight test, fasting blood glucose test and haematoxylin and eosin (H&E) staining. The in vitro maturation (IVM) rate of oocytes from diabetic mice was examined. Immunofluorescence staining (IF) was performed to examine the reactive oxygen species (ROS) level, spindle/chromosome structure, mitochondrial function, actin dynamics, DNA damage and histone modification of oocytes, which are potential factors affecting the oocyte quality. The quantitative reverse transcription PCR (RT-qPCR) was used to detect the mRNA levels of Sod1, Opa1, Mfn2, Drp1, Sirt1 and Sirt3 in oocytes. RESULTS: The NMN supplementation increased the oocyte maturation rate of the mice with diabetes. Furthermore, NMN supplementation improved the oocyte quality by rescuing the actin dynamics, reversing meiotic defects, improving the mitochondrial function, reducing ROS level, suppressing DNA damage and restoring changes in histone modifications of oocytes collected from the mice with diabetes. CONCLUSION: NMN could improve the maturation rate and quality of oocytes in STZ-induced diabetic mice, which provides a significant clue for the treatment of infertility of the patients with diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Dinaminas , Mononucleotídeo de Nicotinamida , Oócitos , Espécies Reativas de Oxigênio , Animais , Camundongos , Feminino , Oócitos/efeitos dos fármacos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Sirtuína 1/metabolismo , Sirtuína 3/metabolismo , Técnicas de Maturação in Vitro de Oócitos/métodos , Superóxido Dismutase-1 , Dano ao DNA/efeitos dos fármacos , Estreptozocina , Oogênese/efeitos dos fármacos
18.
Clin Exp Pharmacol Physiol ; 51(6): e13856, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621772

RESUMO

Colorectal cancer (CRC) is a typical and lethal digestive system malignancy. In this study, we investigated the effect of sirtuin 3 (SIRT3) expression, a fidelity mitochondrial protein, on the proliferation of CRC cells and the mechanisms involved. Using the University of Alabama at Birmingham Cancer Data Analysis Portal database and the Clinical Proteomic Tumour Analysis Consortium database, we discovered that low expression of SIRT3 in CRC was a negative factor for survival prognosis (P < .05). Meanwhile, SIRT3 expression was correlated with distant metastasis and tumour, node, metastasis stage of CRC patients (P < .05). Subsequently, we observed that CRC cells with stable SIRT3 expression exhibited a significant decrease in proliferative capacities both in vitro and in vivo, compared to their counterparts (P < .05). Further investigation using western blot, immunoprecipitation and TOPflash/FOPflash assay showed the mechanism of growth retardation of these cells was highly associated with the degradation of ß-catenin in cytosol, and the localization of ß-catenin/α-catenin complex in the nucleus. In conclusion, our findings suggest that the inhibition of CRC cell proliferation by SIRT3 is closely associated with the inactivation of the Wnt/ß-catenin signalling pathway.


Assuntos
Neoplasias Colorretais , Sirtuína 3 , Humanos , Sirtuína 3/genética , Sirtuína 3/metabolismo , Sirtuína 3/farmacologia , Linhagem Celular Tumoral , beta Catenina/metabolismo , Proteômica , Via de Sinalização Wnt , Proliferação de Células , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Movimento Celular
19.
Eur J Pharmacol ; 972: 176557, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574839

RESUMO

Cerebral ischemia-reperfusion injury (CIRI) can induce massive death of ischemic penumbra neurons via oxygen burst, exacerbating brain damage. Parthanatos is a form of caspase-independent cell death involving excessive activation of PARP-1, closely associated with intense oxidative stress following CIRI. 4'-O-methylbavachalcone (MeBavaC), an isoprenylated chalcone component in Fructus Psoraleae, has potential neuroprotective effects. This study primarily investigates whether MeBavaC can act on SIRT3 to alleviate parthanatos of ischemic penumbra neurons induced by CIRI. MeBavaC was oral gavaged to the middle cerebral artery occlusion-reperfusion (MCAO/R) rats after occlusion. The effects of MeBavaC on cerebral injury were detected by the neurological deficit score and cerebral infarct volume. In vitro, PC-12 cells were subjected to oxygen and glucose deprivation/reoxygenation (OGD/R), and assessed cell viability and cell injury. Also, the levels of ROS, mitochondrial membrane potential (MMP), and intracellular Ca2+ levels were detected to reflect mitochondrial function. We conducted western blotting analyses of proteins involved in parthanatos and related signaling pathways. Finally, the exact mechanism between the neuroprotection of MeBavaC and parthanatos was explored. Our results indicate that MeBavaC reduces the cerebral infarct volume and neurological deficit scores in MCAO/R rats, and inhibits the decreased viability of PC-12 cells induced by OGD/R. MeBavaC also downregulates the expression of parthanatos-related death proteins PARP-1, PAR, and AIF. However, this inhibitory effect is weakened after the use of a SIRT3 inhibitor. In conclusion, the protective effect of MeBavaC against CIRI may be achieved by inhibiting parthanatos of ischemic penumbra neurons through the SIRT3-PARP-1 axis.


Assuntos
Chalconas , Fármacos Neuroprotetores , Parthanatos , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Sirtuínas , Animais , Ratos , Masculino , Chalconas/farmacologia , Chalconas/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/metabolismo , Parthanatos/efeitos dos fármacos , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/patologia , AVC Isquêmico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células PC12 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/metabolismo , Cálcio/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/complicações , Sobrevivência Celular/efeitos dos fármacos , Sirtuína 3/metabolismo , Sirtuína 3/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
20.
Eur J Histochem ; 68(2)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656259

RESUMO

This study investigated the impact of resveratrol on abnormal metabolic remodeling in atrial fibrillation (AF) and explored potential molecular mechanisms. An AF cell model was established by high-frequency electrical stimulation of HL-1 atrial muscle cells. Resveratrol concentrations were optimized using CCK-8 and flow cytometry. AF-induced increases in ROS and mitochondrial calcium, along with decreased adenosine triphosphate (ATP) and mitochondrial membrane potential, were observed. Resveratrol mitigated these changes and maintained normal mitochondrial morphology. Moreover, resveratrol acted through the SIRT3-dependent pathway, as evidenced by its ability to suppress AF-induced acetylation of key metabolic enzymes. SIRT3 overexpression controls acetylation modifications, suggesting its regulatory role. In conclusion, resveratrol's SIRT3-dependent pathway intervenes in AF-induced mitochondrial dysfunction, presenting a potential therapeutic avenue for AF-related metabolic disorders. This study sheds light on the role of resveratrol in mitigating AF-induced mitochondrial remodeling and highlights its potential as a novel treatment for AF.


Assuntos
Fibrilação Atrial , Resveratrol , Sirtuína 3 , Resveratrol/farmacologia , Sirtuína 3/metabolismo , Fibrilação Atrial/metabolismo , Fibrilação Atrial/tratamento farmacológico , Animais , Camundongos , Linhagem Celular , Transdução de Sinais/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA