Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.015
Filtrar
1.
Bull Exp Biol Med ; 176(5): 636-639, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38727953

RESUMO

Immunohistochemical detection of the LYVE-1 marker in healthy human full-thickness skin (the epidermis and the dermis) was carried out. LYVE-1 expression was found in the endothelium of lymphatic capillaries located in the papillary dermis, in the endothelium of larger lymphatic vessels of the reticular dermis, and in fibroblasts, which indicates their joint participation in hyaluronan metabolism. LYVE-1+ staining detected for the first time in cells of the stratum basale, the stratum spinosum, and the stratum granulosum of healthy human epidermis indicates their participation in hyaluronan metabolism and allows us to consider the spaces between epidermis cells as prelimphatics.


Assuntos
Epiderme , Ácido Hialurônico , Vasos Linfáticos , Pele , Proteínas de Transporte Vesicular , Humanos , Ácido Hialurônico/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Pele/metabolismo , Vasos Linfáticos/metabolismo , Epiderme/metabolismo , Ligantes , Fibroblastos/metabolismo , Derme/metabolismo , Sistema Linfático/metabolismo , Adulto , Feminino , Masculino , Imuno-Histoquímica
2.
Cell Mol Life Sci ; 81(1): 192, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652179

RESUMO

BACKGROUND:  Alzheimer's disease (AD) is pathologically characterized by the abnormal accumulation of Aß and tau proteins. There has long been a keen interest among researchers in understanding how Aß and tau are ultimately cleared in the brain. The discovery of this glymphatic system introduced a novel perspective on protein clearance and it gained recognition as one of the major brain clearance pathways for clearing these pathogenic proteins in AD. This finding has sparked interest in exploring the potential contribution of the glymphatic/meningeal lymphatic system in AD. Furthermore, there is a growing emphasis and discussion regarding the possibility that activating the glymphatic/meningeal lymphatic system could serve as a novel therapeutic strategy against AD. OBJECTIVES:  Given this current research trend, the primary focus of this comprehensive review is to highlight the role of the glymphatic/meningeal lymphatic system in the pathogenesis of AD. The discussion will encompass future research directions and prospects for treatment in relation to the glymphatic/meningeal lymphatic system.


Assuntos
Doença de Alzheimer , Sistema Glinfático , Sistema Linfático , Meninges , Proteostase , Animais , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Sistema Glinfático/metabolismo , Sistema Glinfático/patologia , Sistema Linfático/metabolismo , Sistema Linfático/patologia , Meninges/metabolismo , Meninges/patologia , Proteínas tau/metabolismo
3.
Adv Drug Deliv Rev ; 209: 115304, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599495

RESUMO

The lymphatic system has garnered significant attention in drug delivery research due to the advantages it offers, such as enhancing systemic exposure and enabling lymph node targeting for nanomedicines via the lymphatic delivery route. The journey of drug carriers involves transport from the administration site to the lymphatic vessels, traversing the lymph before entering the bloodstream or targeting specific lymph nodes. However, the anatomical and physiological barriers of the lymphatic system play a pivotal role in influencing the behavior and efficiency of carriers. To expedite research and subsequent clinical translation, this review begins by introducing the composition and classification of the lymphatic system. Subsequently, we explore the routes and mechanisms through which nanoparticles enter lymphatic vessels and lymph nodes. The review further delves into the interactions between nanomedicine and body fluids at the administration site or within lymphatic vessels. Finally, we provide a comprehensive overview of recent advancements in lymphatic delivery systems, addressing the challenges and opportunities inherent in current systems for delivering macromolecules and vaccines.


Assuntos
Sistemas de Liberação de Medicamentos , Sistema Linfático , Nanopartículas , Humanos , Nanopartículas/administração & dosagem , Sistema Linfático/metabolismo , Animais , Vasos Linfáticos/metabolismo , Vasos Linfáticos/fisiologia , Portadores de Fármacos/química , Nanomedicina , Linfonodos/metabolismo
4.
J Drug Target ; 32(4): 347-364, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38253594

RESUMO

PRIMARY OBJECTIVE: The primary objective of the review is to assess the potential of lymphatic-targeted drug delivery systems, with a particular emphasis on their role in tumour therapy and vaccination efficacy. REASON FOR LYMPHATIC TARGETING: The lymphatic system's crucial functions in maintaining bodily equilibrium, regulating metabolism, and orchestrating immune responses make it an ideal target for drug delivery. Lymph nodes, being primary sites for tumour metastasis, underscore the importance of targeting the lymphatic system for effective treatment. OUTCOME: Nanotechnologies and innovative biomaterials have facilitated the development of lymphatic-targeted drug carriers, leveraging endogenous macromolecules to enhance drug delivery efficiency. Various systems such as liposomes, micelles, inorganic nanomaterials, hydrogels, and nano-capsules demonstrate significant potential for delivering drugs to the lymphatic system. CONCLUSION: Understanding the physiological functions of the lymphatic system and its involvement in diseases underscores the promise of targeted drug delivery in improving treatment outcomes. The strategic targeting of the lymphatic system presents opportunities to enhance patient prognosis and advance therapeutic interventions across various medical contexts, indicating the importance of ongoing research and development in this area.


Assuntos
Vasos Linfáticos , Nanopartículas , Neoplasias , Humanos , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Sistema Linfático/metabolismo , Neoplasias/metabolismo
5.
Adv Sci (Weinh) ; 10(34): e2304284, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37867233

RESUMO

Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Long-term changes in the microenvironment of the brain contribute to the degeneration of neurological function following TBI. However, current research focuses primarily on short-term modulation during the early phases of TBI, not on the critical significance of long-term homeostasis in the brain microenvironment. Notably, dysfunction of the glymphatic-lymphatic system results in the accumulation of danger/damage-associated molecular patterns (DAMPs) in the brain, which is regarded as the leading cause of long-term microenvironmental disturbances following TBI. Here, a nanostructure, Nano-plumber, that co-encapsulates the microenvironment regulator pro-DHA and the lymphatic-specific growth factor VEGF-C is developed, allowing for a sustainable and orderly regulation of the microenvironment to promote long-term neurological recovery. Nano-plumber reverses the injury microenvironment by suppressing microglia and astrocytes activation and maintaining reduced activation via enhanced glymphatic-lymphatic drainage, and significantly improves the neurological function of rodents with TBI. This study demonstrates that glymphatic-lymphatic system reconstruction is essential for enhancing long-term prognosis following TBI, and that the Nano-plumber developed here may serve as a clinically translatable treatment option for TBI.


Assuntos
Lesões Encefálicas Traumáticas , Humanos , Sistema Linfático/metabolismo , Encéfalo/metabolismo , Prognóstico
6.
J Control Release ; 363: 507-524, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37797891

RESUMO

Many viruses, bacteria, and parasites rely on the lymphatic system for survival, replication, and dissemination. While conventional anti-infectives can combat infection-causing agents in the bloodstream, they do not reach the lymphatic system to eradicate the pathogens harboured there. This can result in ineffective drug exposure and reduce treatment effectiveness. By developing effective lymphatic delivery strategies for antiviral, antibacterial, and antiparasitic drugs, their systemic pharmacokinetics may be improved, as would their ability to reach their target pathogens within the lymphatics, thereby improving clinical outcomes in a variety of acute and chronic infections with lymphatic involvement (e.g., acquired immunodeficiency syndrome, tuberculosis, and filariasis). Here, we discuss approaches to targeting anti-infective drugs to the intestinal and dermal lymphatics, aiming to eliminate pathogen reservoirs and interfere with their survival and reproduction inside the lymphatic system. These include optimized lipophilic prodrugs and drug delivery systems that promote lymphatic transport after oral and dermal drug intake. For intestinal lymphatic delivery via the chylomicron pathway, molecules should have logP values >5 and long-chain triglyceride solubilities >50 mg/g, and for dermal lymphatic delivery via interstitial lymphatic drainage, nanoparticle formulations with particle size between 10 and 100 nm are generally preferred. Insight from this review may promote new and improved therapeutic solutions for pathogen eradication and combating infective diseases, as lymphatic system involvement in pathogen dissemination and drug resistance has been neglected compared to other pathways leading to treatment failure.


Assuntos
Vasos Linfáticos , Pró-Fármacos , Sistemas de Liberação de Medicamentos , Vasos Linfáticos/metabolismo , Sistema Linfático/metabolismo , Intestinos
7.
Mol Neurodegener ; 18(1): 55, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580702

RESUMO

Alzheimer's disease (AD) is an aging-related form of dementia associated with the accumulation of pathological aggregates of amyloid beta and neurofibrillary tangles in the brain. These phenomena are accompanied by exacerbated inflammation and marked neuronal loss, which altogether contribute to accelerated cognitive decline. The multifactorial nature of AD, allied to our still limited knowledge of its etiology and pathophysiology, have lessened our capacity to develop effective treatments for AD patients. Over the last few decades, genome wide association studies and biomarker development, alongside mechanistic experiments involving animal models, have identified different immune components that play key roles in the modulation of brain pathology in AD, affecting its progression and severity. As we will relay in this review, much of the recent efforts have been directed to better understanding the role of brain innate immunity, and particularly of microglia. However, and despite the lack of diversity within brain resident immune cells, the brain border tissues, especially the meninges, harbour a considerable number of different types and subtypes of adaptive and innate immune cells. Alongside microglia, which have taken the centre stage as important players in AD research, there is new and exciting evidence pointing to adaptive immune cells, namely T and B cells found in the brain and its meninges, as important modulators of neuroinflammation and neuronal (dys)function in AD. Importantly, a genuine and functional lymphatic vascular network is present around the brain in the outermost meningeal layer, the dura. The meningeal lymphatics are directly connected to the peripheral lymphatic system in different mammalian species, including humans, and play a crucial role in preserving a "healthy" immune surveillance of the CNS, by shaping immune responses, not only locally at the meninges, but also at the level of the brain tissue. In this review, we will provide a comprehensive view on our current knowledge about the meningeal lymphatic vasculature, emphasizing its described roles in modulating CNS fluid and macromolecule drainage, meningeal and brain immunity, as well as glial and neuronal function in aging and in AD.


Assuntos
Doença de Alzheimer , Animais , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Estudo de Associação Genômica Ampla , Meninges/patologia , Meninges/fisiologia , Sistema Linfático/metabolismo , Sistema Linfático/patologia , Encéfalo/metabolismo , Mamíferos/metabolismo
8.
Mol Neurodegener ; 18(1): 26, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081555

RESUMO

Understanding and treating Alzheimer's disease (AD) has been a remarkable challenge for both scientists and physicians. Although the amyloid-beta and tau protein hypothesis have largely explained the key pathological features of the disease, the mechanisms by which such proteins accumulate and lead to disease progression are still unknown. Such lack of understanding disrupts the development of disease-modifying interventions, leaving a therapeutic gap that remains unsolved. Nonetheless, the recent discoveries of the glymphatic pathway and the meningeal lymphatic system as key components driving central solute clearance revealed another mechanism underlying AD pathogenesis. In this regard, this narrative review integrates the glymphatic and meningeal lymphatic systems as essential components involved in AD pathogenesis. Moreover, it discusses the emerging evidence suggesting that nutritional supplementation, non-invasive brain stimulation, and traditional Chinese medicine can improve the pathophysiology of the disease by increasing glymphatic and/or meningeal lymphatic function. Given that physical exercise is a well-regarded preventive and pro-cognitive intervention for dementia, we summarize the evidence suggesting the glymphatic system as a mediating mechanism of the physical exercise therapeutic effects in AD. Targeting these central solute clearance systems holds the promise of more effective treatment strategies.


Assuntos
Doença de Alzheimer , Sistema Glinfático , Humanos , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Sistema Linfático/metabolismo , Sistema Linfático/patologia , Sistema Glinfático/metabolismo , Sistema Glinfático/patologia , Peptídeos beta-Amiloides/metabolismo
9.
EBioMedicine ; 91: 104558, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37043871

RESUMO

BACKGROUND: Routes along the olfactory nerves crossing the cribriform plate that extend to lymphatic vessels within the nasal cavity have been identified as a critical cerebrospinal fluid (CSF) outflow pathway. However, it is still unclear how the efflux pathways along the nerves connect to lymphatic vessels or if any functional barriers are present at this site. The aim of this study was to anatomically define the connections between the subarachnoid space and the lymphatic system at the cribriform plate in mice. METHODS: PEGylated fluorescent microbeads were infused into the CSF space in Prox1-GFP reporter mice and decalcification histology was utilized to investigate the anatomical connections between the subarachnoid space and the lymphatic vessels in the nasal submucosa. A fluorescently-labelled antibody marking vascular endothelium was injected into the cisterna magna to demonstrate the functionality of the lymphatic vessels in the olfactory region. Finally, we performed immunostaining to study the distribution of the arachnoid barrier at the cribriform plate region. FINDINGS: We identified that there are open and direct connections from the subarachnoid space to lymphatic vessels enwrapping the olfactory nerves as they cross the cribriform plate towards the nasal submucosa. Furthermore, lymphatic vessels adjacent to the olfactory bulbs form a continuous network that is functionally connected to lymphatics in the nasal submucosa. Immunostainings revealed a discontinuous distribution of the arachnoid barrier at the olfactory region of the mouse. INTERPRETATION: Our data supports a direct bulk flow mechanism through the cribriform plate allowing CSF drainage into nasal submucosal lymphatics in mice. FUNDING: This study was supported by the Swiss National Science Foundation (310030_189226), Dementia Research Switzerland-Synapsis Foundation, the Heidi Seiler Stiftung and the Fondation Dr. Corinne Schuler.


Assuntos
Vasos Linfáticos , Nervo Olfatório , Animais , Camundongos , Osso Etmoide , Sistema Linfático/metabolismo , Espaço Subaracnóideo/metabolismo
10.
Acta Neuropathol Commun ; 11(1): 61, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37024941

RESUMO

The persistent dysregulation and accumulation of poisonous proteins from destructive neural tissues and cells activate pathological mechanisms after traumatic brain injury (TBI). The lymphatic drainage system of the brain, composed of the glymphatic system and meningeal lymphatic vessels (MLVs), plays an essential role in the clearance of toxic waste after brain injury. The neuroprotective effect of interleukin 33 (IL-33) in TBI mice has been demonstrated; however, its impact on brain lymphatic drainage is unclear. Here, we established a fluid percussion injury model to examine the IL-33 administration effects on neurological function and lymphatic drainage in the acute brain of TBI mice. We verified that exogenous IL-33 could improve the motor and memory skills of TBI mice and demonstrated that in the acute phase, it increased the exchange of cerebrospinal and interstitial fluid, reversed the dysregulation and depolarization of aquaporin-4 in the cortex and hippocampus, improved the drainage of MLVs to deep cervical lymph nodes, and reduced tau accumulation and glial activation. We speculate that the protective effect of exogenous IL-33 on TBI mice's motor and cognitive functions is related to the enhancement of brain lymphatic drainage and toxic metabolite clearance from the cortex and hippocampus in the acute stage. These data further support the notion that IL-33 therapy may be an effective treatment strategy for alleviating acute brain injury after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Interleucina-33 , Animais , Camundongos , Encéfalo/patologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Interleucina-33/farmacologia , Sistema Linfático/metabolismo
11.
Zhonghua Xin Xue Guan Bing Za Zhi ; 51(3): 288-295, 2023 Mar 24.
Artigo em Chinês | MEDLINE | ID: mdl-36925139

RESUMO

Objective: To investigate whether rosuvastatin acts on lymphatic system and influences lymphatic system-mediated reverse cholesterol transport to play an anti-atherosclerosis role. Methods: Forty-eight apolipoprotein E-/- mice fed a high fat diet were used to construct the atherosclerosis model. They were randomly divided into 4 groups with 12 rats in each group. They were treated with rosuvastatin, vascular endothelial growth factor-C (VEGF-C) and rosuvastatin+VEGF-C inhibitors as experimental group, and no intervention measures were given in control group. After 8 weeks, aortic plaque area, high density lipoprotein cholesterol (HDL-C) content in lymph fluid, the function of popliteal lymphatic drainage of peripheral Evans blue, and the ability of lymphatic system to transport peripheral cell membrane red fluorescent probes to label high-density lipoprotein (HDL) were detected. Subsequently, the effects of rosuvastatin on proliferation, migration and tubular function of lymphoendothelial cells and the expression of scavenger receptor class B type 1 (SR-B1) on lymphoendothelial cells at different concentrations were detected. Results: Compared with the control group, Rosuvastatin and VEGF-C could reduce the area of aortic atherosclerotic plaque (P<0.05). In addition to rosuvastatin plus VEGF-C inhibitor, the intra-aortic plaque area increased (P<0.05). Compared with the control group, Rosuvastatin could increase the content of HDL-C in lymphatic fluid (P<0.05), enhance the drainage function of lymphatic vessels, and enhance the capacity of HDL in the transport tissue fluid of lymphatic system. Compared with the control group, VEGF-C increased the content of HDL-C in mouse lymph fluid (P<0.01), enhanced the drainage function of popliteal lymphatic canal, and enhanced the ability of lymphatic system to transport HDL. With the addition of VEGF-C inhibitor on the basis of rosuvastatin, the content of HDL-C in lymph fluid was reduced, the drainage of popliteal lymphatic canal was interrupted, and the ability of lymphatic system to transport HDL was reduced. Western blotting showed that rosuvastatin increased the protein expression of SR-B1. Conclusion: Rosuvastatin can promote the proliferation, migration and tube formation of lymphatic endothelial cells. At the same time, SR-B1 expression on lymphatic endothelial cells is promoted, thus enhancing the lymphatic system mediated cholesterol reversal transport and playing the role of anti-atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Ratos , Camundongos , Animais , Rosuvastatina Cálcica/farmacologia , Rosuvastatina Cálcica/uso terapêutico , Fator C de Crescimento do Endotélio Vascular , Células Endoteliais/metabolismo , Aterosclerose/tratamento farmacológico , HDL-Colesterol , Sistema Linfático/metabolismo
12.
J Alzheimers Dis ; 94(s1): S355-S366, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36683509

RESUMO

Meningeal lymphatic vessels (mLVs), the functional lymphatic system present in the meninges, are the key drainage route responsible for the clearance of molecules, immune cells, and cellular debris from the cerebrospinal fluid and interstitial fluid into deep cervical lymph nodes. Aging and ApoE4, the two most important risk factors for Alzheimer's disease (AD), induce mLV dysfunction, decrease cerebrospinal fluid influx and outflux, and exacerbate amyloid pathology and cognitive dysfunction. Dysfunction of mLVs results in the deposition of metabolic products, accelerates neuroinflammation, and promotes the release of pro-inflammatory cytokines in the brain. Thus, mLVs represent a novel therapeutic target for treating neurodegenerative and neuroinflammatory diseases. This review aims to summarize the structure and function of mLVs and to discuss the potential effect of aging and ApoE4 on mLV dysfunction, as well as their roles in the pathogenesis of AD.


Assuntos
Doença de Alzheimer , Sistema Glinfático , Vasos Linfáticos , Humanos , Doença de Alzheimer/patologia , Sistema Glinfático/metabolismo , Apolipoproteína E4/metabolismo , Sistema Linfático/metabolismo , Sistema Linfático/patologia
13.
Curr Neuropharmacol ; 21(2): 380-391, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35410605

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia worldwide. Pathological deposits of neurotoxic proteins within the brain, such as amyloid-ß and hyperphosphorylated tau tangles, are the prominent features in AD. According to recent studies, the newly discovered brain lymphatic system was demonstrated to be crucial in the clearance of metabolic macromolecules from the brain. Meningeal lymphatic vessels located in the dura mater drain the fluid, macromolecules, and immune cells from cerebrospinal fluid (CSF) and transport them, as lymph, to the deep cervical lymph nodes. The lymphatic system provides the perivascular exchange of CSF with interstitial fluid (ISF) and ensures the homeostasis of neuronal interstitial space. In this review, we aim to summarize recent findings on the role of the lymphatic system in AD pathophysiology and discuss possible therapeutic perspectives, targeting the lymphatic clearance mechanisms within the brain.


Assuntos
Doença de Alzheimer , Sistema Glinfático , Humanos , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Sistema Linfático/metabolismo , Sistema Linfático/patologia , Sistema Glinfático/metabolismo , Líquido Extracelular/metabolismo
14.
Int J Mol Sci ; 23(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36012401

RESUMO

BACKGROUND: In recent years, the attention of the scientific world has focused on a clearance system of brain waste metabolites, called the glymphatic system, based on its similarity to the lymphatic system in peripheral tissue and the relevant role of the AQP4 glial channels and described for the first time in 2012. Consequently, numerous studies focused on its role in organ damage in cases of neuropathologies, including TBI. METHODS: To evaluate the role that the glymphatic system has in the pathogenesis of TBI, on 23 March 2022, a systematic review of the literature according to PRISMA guidelines was carried out using the SCOPUS and Medline (via PubMed) databases, resulting in 12 articles after the selection process. DISCUSSION AND CONCLUSION: The present review demonstrated that an alteration of AQP4 is associated with the accumulation of substances S100b, GFAP, and NSE, known markers of TBI in the forensic field. In addition, the alteration of the functionality of AQP4 favors edema, which, as already described, constitutes alterations of secondary brain injuries. Moreover, specific areas of the brain were demonstrated to be prone to alterations of the glymphatic pathway, suggesting their involvement in post-TBI damage. Therefore, further studies are mandatory. In this regard, a study protocol on cadavers is also proposed, based on the analyzed evidence.


Assuntos
Lesões Encefálicas , Sistema Glinfático , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo , Sistema Glinfático/metabolismo , Humanos , Sistema Linfático/metabolismo , Neuroglia/metabolismo
15.
Biol Open ; 11(7)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35776777

RESUMO

Histamine exerts its physiological functions through its four receptor subtypes. In this work, we report the subcellular localization of histamine receptor 2 (H2R), a G protein-coupled receptor (GPCR), which is expressed in a wide variety of cell and tissue types. A growing number of GPCRs have been shown to be localized in the nucleus and contribute toward transcriptional regulation. In this study, for the first time, we demonstrate the nuclear localization of H2R in lymphatic endothelial cells. In the presence of its ligand, we show significant upregulation of H2R nuclear translocation kinetics. Using fluorescently tagged histamine, we explored H2R-histamine binding interaction, which exhibits a critical role in this translocation event. Altogether, our results highlight the previously unrecognized nuclear localization pattern of H2R. At the same time, H2R as a GPCR imparts many unresolved questions, such as the functional relevance of this localization, and whether H2R can contribute directly to transcriptional regulation and can affect lymphatic specific gene expression. H2R blockers are commonly used medications that recently have shown significant side effects. Therefore, it is imperative to understand the precise molecular mechanism of H2R biology. In this aspect, our present data shed new light on the unexplored H2R signaling mechanisms. This article has an associated First Person interview with the first author of the paper.


Assuntos
Células Endoteliais , Histamina , Receptores Histamínicos H2 , Núcleo Celular/metabolismo , Células Endoteliais/metabolismo , Histamina/metabolismo , Humanos , Sistema Linfático/citologia , Sistema Linfático/metabolismo , Receptores Histamínicos/genética , Receptores Histamínicos/metabolismo , Receptores Histamínicos H2/genética , Receptores Histamínicos H2/metabolismo
16.
Int J Mol Sci ; 23(13)2022 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-35806420

RESUMO

Lymphedema is a chronic inflammatory disorder caused by ineffective fluid uptake by the lymphatic system, with effects mainly on the lower limbs. Lymphedema is either primary, when caused by genetic mutations, or secondary, when it follows injury, infection, or surgery. In this study, we aim to assess to what extent the current genetic tests detect genetic variants of lymphedema, and to identify the major molecular pathways that underlie this rather unknown disease. We recruited 147 individuals with a clinical diagnosis of primary lymphedema and used established genetic tests on their blood or saliva specimens. Only 11 of these were positive, while other probands were either negative (63) or inconclusive (73). The low efficacy of such tests calls for greater insight into the underlying mechanisms to increase accuracy. For this purpose, we built a molecular pathways diagram based on a literature analysis (OMIM, Kegg, PubMed, Scopus) of candidate and diagnostic genes. The PI3K/AKT and the RAS/MAPK pathways emerged as primary candidates responsible for lymphedema diagnosis, while the Rho/ROCK pathway appeared less critical. The results of this study suggest the most important pathways involved in the pathogenesis of lymphedema, and outline the most promising diagnostic and candidate genes to diagnose this disease.


Assuntos
Linfedema , Fosfatidilinositol 3-Quinases , Testes Genéticos , Humanos , Sistema Linfático/metabolismo , Linfedema/diagnóstico , Linfedema/genética , Mutação , Fosfatidilinositol 3-Quinases/genética
17.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1867(11): 159207, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35882297

RESUMO

The vascular and lymphatic systems in the gut regulate lipid transport while restricting transfer of commensal gut microbiota and directing immune cell trafficking. Increased permeability of the endothelial systems in the intestine associates with passage of antigens and microbiota from the gut into the bloodstream leading to tissue inflammation, the release of pro-inflammatory mediators and ultimately to abnormalities of systemic metabolism. Recent studies show that lipid metabolism maintains homeostasis and function of intestinal blood and lymphatic endothelial cells, BECs and LECs, respectively. This review highlights recent progress in this area, and information related to the contribution of the lipid transporter CD36, abundant in BECs and LECs, to gastrointestinal barrier integrity, inflammation, and to gut regulation of whole body metabolism. The potential role of endothelial lipid delivery in epithelial tissue renewal after injury and consequently in the risk of gastric and intestinal diseases is also discussed.


Assuntos
Células Endoteliais , Microbioma Gastrointestinal , Células Endoteliais/metabolismo , Humanos , Inflamação/metabolismo , Lipídeos , Sistema Linfático/metabolismo
18.
Pharmacol Res ; 182: 106331, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35772646

RESUMO

The Angiopoietin (Ang)-Tyrosine kinase with immunoglobulin-like and EGF-like domains (Tie) axis is an endothelial cell-specific ligand-receptor signaling pathway necessary for vascular and lymphatic development. The Ang-Tie axis is involved in regulating angiogenesis, vascular remodeling, vascular permeability, and inflammation to maintain vascular quiescence. Disruptions in the Ang-Tie axis are involved in many vascular and lymphatic diseases and play an important role in physiological and pathological vascular processes. Given recent advances in the Ang-Tie axis in the vascular and lymphatic systems, this review focuses on the multiple functions of the Ang-Tie axis in inflammation-induced vascular permeability, vascular remodeling, atherosclerosis, ocular angiogenesis, tumor angiogenesis, and metastasis. A summary of relevant therapeutic approaches to the Ang-Tie axis, including therapeutic antibodies, recombinant proteins and small molecule drugs are also discussed. The purpose of this review is to provide new hypotheses and identify potential therapeutic strategies based on the Ang-Tie signaling axis for the treatment of vascular and lymphatic-related diseases.


Assuntos
Angiopoietinas , Receptor TIE-2 , Angiopoietina-1 , Angiopoietinas/metabolismo , Humanos , Inflamação , Sistema Linfático/metabolismo , Neovascularização Patológica , Receptor TIE-2/metabolismo
19.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35328396

RESUMO

The glymphatic system is a glial-dependent waste clearance pathway in the central nervous system, devoted to drain away waste metabolic products and soluble proteins such as amyloid-beta. An impaired brain glymphatic system can increase the incidence of neurovascular, neuroinflammatory, and neurodegenerative diseases. Photobiomodulation (PBM) therapy can serve as a non-invasive neuroprotective strategy for maintaining and optimizing effective brain waste clearance. In this review, we discuss the crucial role of the glymphatic drainage system in removing toxins and waste metabolites from the brain. We review recent animal research on the neurotherapeutic benefits of PBM therapy on glymphatic drainage and clearance. We also highlight cellular mechanisms of PBM on the cerebral glymphatic system. Animal research has shed light on the beneficial effects of PBM on the cerebral drainage system through the clearance of amyloid-beta via meningeal lymphatic vessels. Finally, PBM-mediated increase in the blood-brain barrier permeability with a subsequent rise in Aß clearance from PBM-induced relaxation of lymphatic vessels via a vasodilation process will be discussed. We conclude that PBM promotion of cranial and extracranial lymphatic system function might be a promising strategy for the treatment of brain diseases associated with cerebrospinal fluid outflow abnormality.


Assuntos
Sistema Glinfático , Terapia com Luz de Baixa Intensidade , Doenças Neurodegenerativas , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Sistema Glinfático/metabolismo , Sistema Linfático/metabolismo , Doenças Neurodegenerativas/metabolismo
20.
J Biomech Eng ; 144(7)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35118490

RESUMO

The lymphatic system has been proposed to play a crucial role in preventing the development and progression of osteoarthritis (OA). As OA develops and progresses, inflammatory cytokines and degradation by-products of joint tissues build up in the synovial fluid (SF) providing a feedback system to exacerbate disease. The lymphatic system plays a critical role in resolving inflammation and maintaining overall joint homeostasis; however, there is some evidence that the lymphatics can become dysfunctional during OA. We hypothesized that the functional mechanics of lymphatic vessels (LVs) draining the joint could be directly compromised due to factors within SF derived from osteoarthritis patients (OASF). Here, we utilized OASF and SF derived from healthy (non-OA) individuals (healthy SF (HSF)) to investigate potential effects of SF entering the draining lymph on migration of lymphatic endothelial cells (LECs) in vitro, and lymphatic contractile activity of rat femoral LVs (RFLVs) ex vivo. Dilutions of both OASF and HSF containing serum resulted in a similar LEC migratory response to the physiologically endothelial basal medium-treated LECs (endothelial basal medium containing serum) in vitro. Ex vivo, OASF and HSF treatments were administered within the lumen of isolated LVs under controlled pressures. OASF treatment transiently enhanced the RFLVs tonic contractions while phasic contractions were significantly reduced after 1 h of treatment and complete ceased after overnight treatment. HSF treatment on the other hand displayed a gradual decrease in lymphatic contractile activity (both tonic and phasic contractions). The observed variations after SF treatments suggest that the pump function of lymphatic vessel draining the joint could be directly compromised in OA and thus might present a new therapeutic target.


Assuntos
Vasos Linfáticos , Osteoartrite , Animais , Células Endoteliais , Humanos , Sistema Linfático/metabolismo , Vasos Linfáticos/metabolismo , Ratos , Líquido Sinovial/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA