Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 536
Filtrar
1.
Eur J Pharmacol ; 895: 173870, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33476653

RESUMO

Fibromyalgia is a potentially disabling chronic disease, characterized by widespread pain and a range of comorbidities such as hypertension. Among the mechanisms involved in fibromyalgia-like pain symptoms are kinins and their B1 and B2 receptors. Moreover, angiotensin I converting enzyme (ACE) inhibitors, commonly used as antihypertensive drugs, can enhance pain by blocking the degradation of peptides such as substance P and bradykinin, besides enhancing kinin receptors signalling. We investigated the effect of ACE inhibitors on reserpine-induced fibromyalgia-like pain symptoms and the involvement of kinins in this effect in mice. Nociceptive parameters (mechanical and cold allodynia and overt nociception) were evaluated after ACE inhibitors administration in mice previously treated with reserpine. The role of kinin B1 and B2 receptors was investigated using pharmacological antagonism. Additionally, bradykinin levels, as well as the activity of ACE and kininase I, were measured in the sciatic nerve, spinal cord and cerebral cortex of the mice. The ACE inhibitors enalapril and captopril enhanced reserpine-induced mechanical allodynia, and this increase was prevented by kinin B1 and B2 receptor antagonists. Substance P and bradykinin caused overt nociception and increased mechanical allodynia in animals treated with reserpine. Reserpine plus ACE inhibitors increased bradykinin-related peptide levels and inhibited ACE activity in pain modulation structures. Since hypertension is a frequent comorbidity affecting fibromyalgia patients, hypertension treatment with ACE inhibitors in these patients should be reviewed once this could enhance fibromyalgia-like pain symptoms. Thus, the treatment of hypertensive patients with fibromyalgia could include other classes of antihypertensive drugs, different from ACE inhibitors.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/toxicidade , Fibromialgia/induzido quimicamente , Sistema Nervoso/efeitos dos fármacos , Dor Nociceptiva/induzido quimicamente , Limiar da Dor/efeitos dos fármacos , Peptidil Dipeptidase A/metabolismo , Receptores da Bradicinina/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Captopril/toxicidade , Modelos Animais de Doenças , Enalapril/toxicidade , Fibromialgia/enzimologia , Fibromialgia/fisiopatologia , Masculino , Camundongos , Sistema Nervoso/enzimologia , Sistema Nervoso/fisiopatologia , Dor Nociceptiva/enzimologia , Dor Nociceptiva/fisiopatologia , Reserpina , Transdução de Sinais
2.
Environ Toxicol ; 35(10): 1091-1099, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32485069

RESUMO

Various pollutants co-exist in the aquatic environment such as carbamazepine (CBZ) and copper (Cu), which can cause complex effects on inhabiting organisms. The toxic impacts of the single substance have been studied extensively. However, the studies about their combined adverse impacts are not enough. In the present study, zebrafish were exposed to environmental relevant concentrations of CBZ (1, 10, and 100 µg/L), Cu (0.5, 5, and 10 µg/L) and the mixtures (1 µg/L CBZ + 0.5 µg/L Cu, 10 µg/L CBZ + 5 µg/L Cu, 100 µg/L CBZ + 10 µg/L Cu) for 45 days, the effects on nervous and antioxidant systems of zebrafish were investigated. The results demonstrated that, in comparison with single exposure group, the combined presence of CBZ and Cu exacerbated the effect of antioxidant system (the ability of inhibition of hydroxyl radicals (IHR), superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST)) but not nervous system (Acetylcholinesterase [AChE]). The qPCR results supported the changes of corresponding enzymes activities. Hepatic histopathological analysis verified the results of biomarkers. Our work illustrated that the toxicity of mixed pollutants is very complicated, which cannot simply be inferred from the toxicity of single pollutant, and calls for more co-exposure experiments to better understanding of the co-effects of pollutants on aquatic organisms.


Assuntos
Antioxidantes/metabolismo , Carbamazepina/toxicidade , Cobre/toxicidade , Sistema Nervoso/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Animais , Biomarcadores/metabolismo , Catalase/genética , Catalase/metabolismo , Relação Dose-Resposta a Droga , Regulação para Baixo , Sinergismo Farmacológico , Expressão Gênica/efeitos dos fármacos , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Sistema Nervoso/enzimologia , Sistema Nervoso/metabolismo , Estresse Oxidativo/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
3.
Mol Neurobiol ; 57(1): 372-392, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31364025

RESUMO

Autotaxin (ATX) is a soluble extracellular enzyme that is abundant in mammalian plasma and cerebrospinal fluid (CSF). It has two known enzymatic activities, acting as both a phosphodiesterase and a phospholipase. The majority of its biological effects have been associated with its ability to liberate lysophosphatidic acid (LPA) from its substrate, lysophosphatidylcholine (LPC). LPA has diverse pleiotropic effects in the central nervous system (CNS) and other tissues via the activation of a family of six cognate G protein-coupled receptors. These LPA receptors (LPARs) are expressed in some combination in all known cell types in the CNS where they mediate such fundamental cellular processes as proliferation, differentiation, migration, chronic inflammation, and cytoskeletal organization. As a result, dysregulation of LPA content may contribute to many CNS and PNS disorders such as chronic inflammatory or neuropathic pain, glioblastoma multiforme (GBM), hemorrhagic hydrocephalus, schizophrenia, multiple sclerosis, Alzheimer's disease, metabolic syndrome-induced brain damage, traumatic brain injury, hepatic encephalopathy-induced cerebral edema, macular edema, major depressive disorder, stress-induced psychiatric disorder, alcohol-induced brain damage, HIV-induced brain injury, pruritus, and peripheral nerve injury. ATX activity is now known to be the primary biological source of this bioactive signaling lipid, and as such, represents a potentially high-value drug target. There is currently one ATX inhibitor entering phase III clinical trials, with several additional preclinical compounds under investigation. This review discusses the physiological and pathological significance of the ATX-LPA-LPA receptor signaling axis and summarizes the evidence for targeting this pathway for the treatment of CNS diseases.


Assuntos
Desenvolvimento de Medicamentos , Terapia de Alvo Molecular , Doenças do Sistema Nervoso/enzimologia , Doenças do Sistema Nervoso/terapia , Sistema Nervoso/enzimologia , Sistema Nervoso/patologia , Diester Fosfórico Hidrolases/metabolismo , Animais , Humanos , Transdução de Sinais
4.
Dev Growth Differ ; 61(6): 365-377, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31270814

RESUMO

Neural induction and patterning in vertebrates are regulated during early development by several morphogens, such as bone morphogenetic proteins (BMPs) and fibroblast growth factors (FGFs). Ventral ectoderm differentiates into epidermis in response to BMPs, whereas BMP signaling is tightly inhibited in the dorsal ectoderm which develops into neural tissues. Here, we show that Cdc2-like kinase 2 (Clk2) promotes early neural development and inhibits epidermis differentiation in Xenopus embryos. clk2 is specifically expressed in neural tissues along the anterior-posterior axis during early Xenopus embryogenesis. When overexpressed in ectodermal explants, Clk2 induces the expression of both anterior and posterior neural marker genes. In agreement with this observation, overexpression of Clk2 in whole embryos expands the neural plate at the expense of epidermal ectoderm. Interestingly, the neural-inducing activity of Clk2 is increased following BMP inhibition and activation of the FGF signaling pathway in ectodermal explants. Clk2 also downregulates the level of p-Smad1/5/8 in cooperation with BMP inhibition, in addition to increasing the level of activated MAPK together with FGF. These results suggest that Clk2 plays a role in early neural development of Xenopus possibly via modulation of morphogen signals such as the BMP and FGF pathways.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Ectoderma/embriologia , Ectoderma/enzimologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/enzimologia , Sistema Nervoso/embriologia , Sistema Nervoso/enzimologia , Placa Neural/embriologia , Placa Neural/enzimologia , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Transdução de Sinais
5.
Invert Neurosci ; 19(2): 6, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31263964

RESUMO

Amines function as neuromodulators throughout the animal kingdom. In decapod crustaceans, the amines serving neuromodulatory roles include dopamine, octopamine, serotonin and histamine. While much work has focused on examining the physiological effects of amines on decapod nervous systems, the identity of the native enzymes involved in their biosynthesis remains largely unknown. In an attempt to help fill this void, a transcriptome generated from multiple portions of the crab, Cancer borealis, nervous system, a species that has long served as a model species for investigating the neuromodulatory control of rhythmically active neural networks, was used to identify putative amine biosynthetic enzyme-encoding transcripts, and by proxy, proteins. Transcripts encoding full complements of the enzymes involved in the production of dopamine, octopamine, serotonin, and histamine were deduced from the C. borealis assembly, i.e., tryptophan-phenylalanine hydroxylase, tyrosine hydroxylase, DOPA decarboxylase, tyrosine decarboxylase, tyramine ß-hydroxylase, tryptophan hydroxylase, and histidine decarboxylase. All proteins deduced from the C. borealis transcripts appear to be full-length sequences, with reciprocal BLAST and structural domain analyses supporting the protein family annotations ascribed to them. These data provide the first descriptions of the native amine biosynthetic enzymes of C. borealis, and as such, serve as a resource for initiating gene-based studies of aminergic control of physiology and behavior at the level of biosynthesis in this important biomedical model.


Assuntos
Aminas , Braquiúros/enzimologia , Sistema Nervoso/enzimologia , Animais
6.
Int J Mol Sci ; 20(6)2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30934641

RESUMO

One of the fundamental steps during development of the nervous system is the formation of proper connections between neurons and their target cells-a process called neural wiring, failure of which causes neurological disorders ranging from autism to Down's syndrome. Axons navigate through the complex environment of a developing embryo toward their targets, which can be far away from their cell bodies. Successful implementation of neuronal wiring, which is crucial for fulfillment of all behavioral functions, is achieved through an intimate interplay between axon guidance and neural activity. In this review, our focus will be on axon pathfinding and the implication of some of its downstream molecular components in neurological disorders. More precisely, we will talk about axon guidance and the molecules implicated in this process. After, we will briefly review the Rho family of small GTPases, their regulators, and their involvement in downstream signaling pathways of the axon guidance cues/receptor complexes. We will then proceed to the final and main part of this review, where we will thoroughly comment on the implication of the regulators for Rho GTPases-GEFs (Guanine nucleotide Exchange Factors) and GAPs (GTPase-activating Proteins)-in neurological diseases and disorders.


Assuntos
Orientação de Axônios , Doenças do Sistema Nervoso/enzimologia , Sistema Nervoso/enzimologia , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Humanos , Modelos Biológicos
8.
Biochem Biophys Res Commun ; 498(1): 171-177, 2018 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-29408508

RESUMO

Overexposure to manganese (Mn) leads to manganism and neurotoxicity induced by Mn is the focus of recent research. Microglia play a vital role in Mn-induced neurotoxicity, and our previous studies firstly showed that Mn could stimulate activation of microglia, leading to the neuroinflammation, and inhibition of microglial inflammation effectively attenuated Mn-induced death of dopamine neurons. However, the detailed mechanism of manganese-induced neuroinflammation is still unclear. Leucine rich repeat kinase 2 (LRRK2) is a key molecule in the pathogenesis of many neurodegenerative disorders. Recent studies have indicated that LRRK2, which is highly expressed in microglia, plays a specific role in microglia and autophagy process. In this paper, we try to find the effect of LRRK2 on Mn-triggered neuroinflammation and its possible mechanism in vivo and in vitro. By establishing a Mn exposure animal model, our studies found that Mn exposure could induce dopaminergic neurons damage and activate microglia. Activated microglia triggered neuroinflammation by releasing multiple inflammatory cytokines, and the expression of LRRK2 was upregulated in vivo and in vitro. We also found that Mn exposure induced autophagy dysfunction in vivo and in vitro. Next, we used LRRK2 siRNA and LRRK2-IN-1 to inhibit the expression of LRRK2, and found that inhibition of LRRK2 could not only decrease the expression of inflammatory cytokines, but also recover autophagic function of microglia. Our investigation not only reveals the role of LRRK2 in Mn-induced neuroinflammation but also sheds light on the prevention and protection of manganism.


Assuntos
Autofagia/efeitos dos fármacos , Inflamação/enzimologia , Inflamação/patologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Manganês/toxicidade , Microglia/enzimologia , Microglia/patologia , Sistema Nervoso/patologia , Animais , Benzodiazepinonas/farmacologia , Modelos Animais de Doenças , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Masculino , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Sistema Nervoso/enzimologia , Pirimidinas/farmacologia , RNA Interferente Pequeno/metabolismo , Regulação para Cima/efeitos dos fármacos
9.
Exp Neurol ; 302: 196-204, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29374568

RESUMO

Tyrosine phosphorylation is a common means of regulating protein functions and signal transduction in multiple cells. Protein tyrosine phosphatases (PTPs) are a large family of signaling enzymes that remove phosphate groups from tyrosine residues of target proteins and change their functions. Among them, receptor-type PTPs (RPTPs) exhibit a distinct spatial pattern of expression and play essential roles in regulating neurite outgrowth, axon guidance, and synaptic organization in developmental nervous system. Some RPTPs function as essential receptors for chondroitin sulfate proteoglycans that inhibit axon regeneration following CNS injury. Interestingly, certain RPTPs are also important to regulate functions of immune cells and development of autoimmune diseases. PTPσ, a RPTP in the LAR subfamily, is expressed in various immune cells and regulates their differentiation, production of various cytokines and immune responses. In this review, we highlight the physiological and pathological significance of PTPσ and related molecules in both nervous and immune systems.


Assuntos
Sistema Imunitário/enzimologia , Sistema Nervoso/enzimologia , Proteínas Tirosina Fosfatases/metabolismo , Animais , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Citocinas/metabolismo , Humanos , Fosforilação
10.
Arch Toxicol ; 92(3): 1161-1176, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29167930

RESUMO

The asexual freshwater planarian Dugesia japonica has emerged as a medium-throughput alternative animal model for neurotoxicology. We have previously shown that D. japonica are sensitive to organophosphorus pesticides (OPs) and characterized the in vitro inhibition profile of planarian cholinesterase (DjChE) activity using irreversible and reversible inhibitors. We found that DjChE has intermediate features of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Here, we identify two candidate genes (Djche1 and Djche2) responsible for DjChE activity. Sequence alignment and structural homology modeling with representative vertebrate AChE and BChE sequences confirmed our structural predictions, and show that both DjChE enzymes have intermediate sized catalytic gorges and disrupted peripheral binding sites. Djche1 and Djche2 were both expressed in the planarian nervous system, as anticipated from previous activity staining, but with distinct expression profiles. To dissect how DjChE inhibition affects planarian behavior, we acutely inhibited DjChE activity by exposing animals to either an OP (diazinon) or carbamate (physostigmine) at 1 µM for 4 days. Both inhibitors delayed the reaction of planarians to heat stress. Simultaneous knockdown of both Djche genes by RNAi similarly resulted in a delayed heat stress response. Furthermore, chemical inhibition of DjChE activity increased the worms' ability to adhere to a substrate. However, increased substrate adhesion was not observed in Djche1/Djche2 (RNAi) animals or in inhibitor-treated day 11 regenerates, suggesting this phenotype may be modulated by other mechanisms besides ChE inhibition. Together, our study characterizes DjChE expression and function, providing the basis for future studies in this system to dissect alternative mechanisms of OP toxicity.


Assuntos
Colinesterases/genética , Colinesterases/metabolismo , Resposta ao Choque Térmico/fisiologia , Planárias/fisiologia , Animais , Inibidores da Colinesterase/farmacologia , Colinesterases/química , Diazinon/farmacologia , Evolução Molecular , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Resposta ao Choque Térmico/efeitos dos fármacos , Sistema Nervoso/enzimologia , Fisostigmina/farmacologia , Planárias/efeitos dos fármacos , Conformação Proteica
11.
RNA Biol ; 15(4-5): 623-634, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28534666

RESUMO

Aminoacyl-tRNA synthetases (AaRSs) are ubiquitously expressed enzymes that ensure accurate translation of the genetic information into functional proteins. These enzymes also execute a variety of non-canonical functions that are significant for regulation of diverse cellular processes and that reside outside the realm of protein synthesis. Associations between faults in AaRS-mediated processes and human diseases have been long recognized. Most recent research findings strongly argue that 10 cytosolic and 14 mitochondrial AaRSs are implicated in some form of pathology of the human nervous system. The advent of modern whole-exome sequencing makes it all but certain that similar associations between the remaining 15 ARS genes and neurologic illnesses will be defined in future. It is not surprising that an intense scientific debate about the role of translational machinery, in general, and AaRSs, in particular, in the development and maintenance of the healthy human neural cell types and the brain is sparked. Herein, we summarize the current knowledge about causative links between mutations in human AaRSs and diseases of the nervous system and briefly discuss future directions.


Assuntos
Aminoacil-tRNA Sintetases/genética , Encefalopatias/genética , Doenças Cerebelares/genética , Doenças dos Nervos Cranianos/genética , Mutação , RNA de Transferência/genética , Aminoacil-tRNA Sintetases/metabolismo , Encefalopatias/enzimologia , Encefalopatias/patologia , Doenças Cerebelares/enzimologia , Doenças Cerebelares/patologia , Doenças dos Nervos Cranianos/enzimologia , Doenças dos Nervos Cranianos/patologia , Citosol/metabolismo , Expressão Gênica , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Sistema Nervoso/enzimologia , Sistema Nervoso/patologia , RNA de Transferência/metabolismo
12.
Exp Gerontol ; 101: 80-94, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29146475

RESUMO

Synapses loss during aging has been related to decreased neuronal excitability and reduced electrophysiological activity in the nervous system, as well as to increased brain damage. Those physiological and biochemical alterations have been related to the oxidative stress increase associated with old age. The main substrate of lipid peroxidation (LPX) in the central and peripheral nervous systems are the myelin sheaths, and their damage generates a delayed nerve conduction velocity. However, studies in which the neural conduction velocity is related to changes in the redox state are still lacking. Therefore, our aim was to correlate the sensory neural pathways delay in healthy geriatric Rhesus monkeys (Macaca mulatta) with the oxidative stress associated with physiological aging. Twenty-four monkeys were divided into four groups according to age and gender. Auditory, visual, and somatosensory evoked potentials were obtained. Superoxide dismutase, catalase, and glutathione peroxidase enzymatic activity, as well as LPX, were determined from blood samples. Our results showed significant differences between the older and younger age groups in all neural generators of the different sensory pathways evaluated, along with an increase in LPX and the antioxidant enzymatic activities. It suggests that, even though the enzymatic activity was found to be higher in older monkeys, probably as a compensatory effect, it was not enough to avoid LPX damage and the declined electric activity associated with age.


Assuntos
Envelhecimento/fisiologia , Potenciais Evocados Auditivos/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Potenciais Evocados Visuais/fisiologia , Peroxidação de Lipídeos/fisiologia , Sistema Nervoso , Animais , Feminino , Glutationa Peroxidase/metabolismo , Macaca mulatta , Masculino , Sistema Nervoso/enzimologia , Sistema Nervoso/metabolismo , Sistema Nervoso/fisiopatologia , Condução Nervosa/fisiologia , Oxirredução , Estresse Oxidativo , Sensação/fisiologia , Superóxido Dismutase/metabolismo
13.
Sci Rep ; 7(1): 12483, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28970561

RESUMO

Evolution of resistance among insects to action of pesticides has led to the discovery of several insecticides (neonicotinoids and organophosphates) with new targets in insect nervous system. Present study evaluates the mode of inhibition of acetylchlonesterase (AChE), biochemical efficacy, and molecular docking of 2,3-dimethylmaleic anhydride, against Periplaneta americana and Sitophilus oryzae. The knockdown activity of 2,3-dimethylmaleic anhydride was associated with in vivo inhibition of AChE. At KD99 dosage, the 2,3-dimethylmaleic anhydride showed more than 90% inhibition of AChE activity in test insects. A significant impairment in antioxidant system was observed, characterized by alteration in superoxide dismutase and catalase activities along with increase in reduced glutathione levels. Computational docking programs provided insights in to the possible interaction between 2,3-dimethylmaleic anhydride and AChE of P. americana. Our study reveals that 2,3-dimethylmaeic anhydride elicits toxicity in S. oryzae and P. americana primarily by AChE inhibition along with oxidative stress.


Assuntos
Acetilcolinesterase/química , Inibidores da Colinesterase/farmacologia , Proteínas de Insetos/antagonistas & inibidores , Inseticidas/farmacologia , Anidridos Maleicos/farmacologia , Periplaneta/efeitos dos fármacos , Gorgulhos/efeitos dos fármacos , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Sequência de Aminoácidos , Animais , Catalase/antagonistas & inibidores , Catalase/metabolismo , Domínio Catalítico , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Expressão Gênica , Glutationa/antagonistas & inibidores , Glutationa/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Inseticidas/química , Cinética , Anidridos Maleicos/química , Simulação de Acoplamento Molecular , Sistema Nervoso/efeitos dos fármacos , Sistema Nervoso/enzimologia , Oryza/parasitologia , Estresse Oxidativo/efeitos dos fármacos , Periplaneta/enzimologia , Periplaneta/genética , Periplaneta/crescimento & desenvolvimento , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Superóxido Dismutase/antagonistas & inibidores , Superóxido Dismutase/metabolismo , Termodinâmica , Gorgulhos/enzimologia , Gorgulhos/genética , Gorgulhos/crescimento & desenvolvimento
14.
Alcohol Clin Exp Res ; 41(12): 2015-2024, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28940624

RESUMO

BACKGROUND: Long-lasting transcriptional changes underlie a number of adaptations that contribute to alcohol use disorders (AUD). Chromatin remodeling, including histone methylation, can confer distinct, long-lasting transcriptional changes, and histone methylases are known to play a role in the development of addiction. Conversely, little is known about the relevance of Jumonji (JmjC) domain-containing demethylases in AUDs. We systematically surveyed the alcohol-induced phenotypes of null mutations in all 13 Drosophila JmjC genes. METHODS: We used a collection of JmjC mutants, the majority of which we generated by homologous recombination, and assayed them in the Booze-o-mat to determine their naïve sensitivity to sedation and their tolerance (change in sensitivity upon repeat exposure). Mutants with reproducible phenotypes had their phenotypes rescued with tagged genomic transgenes, and/or phenocopied by nervous system-specific knockdown using RNA interference (RNAi). RESULTS: Four of the 13 JmjC genes (KDM3, lid, NO66, and HSPBAP1) showed reproducible ethanol (EtOH) sensitivity phenotypes. Some of the phenotypes were observed across doses, for example, the enhanced EtOH sensitivity of KDM3KO and NO66KO , but others were dose dependent, such as the reduced EtOH sensitivity of HSPBAP1KO , or the enhanced EtOH tolerance of NO66KO . These phenotypes were rescued by their respective genomic transgenes in KDM3KO and NO66KO mutants. While we were unable to rescue lidk mutants, knockdown of lid in the nervous system recapitulated the lidk phenotype, as was observed for KDM3KO and NO66KO RNAi-mediated knockdown. CONCLUSIONS: Our study reveals that the Drosophila JmjC-domain histone demethylases Lid, KDM3, NO66, and HSPBAP1 are required for normal EtOH-induced sedation and tolerance. Three of 3 tested of those 4 JmjC genes are required in the nervous system for normal alcohol-induced behavioral responses, suggesting that this gene family is an intriguing avenue for future research.


Assuntos
Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/enzimologia , Etanol/farmacologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Sistema Nervoso/efeitos dos fármacos , Sistema Nervoso/enzimologia , Animais , Animais Geneticamente Modificados , Relação Dose-Resposta a Droga , Drosophila melanogaster/genética , Tolerância a Medicamentos/genética , Técnicas de Silenciamento de Genes , Hipnóticos e Sedativos/farmacologia , Histona Desmetilases com o Domínio Jumonji/genética , Mutação com Perda de Função , Reparo Gênico Alvo-Dirigido
15.
Cell Death Differ ; 24(8): 1411-1421, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28644437

RESUMO

Nervous systems are arguably the most fascinating and complex structures in the known universe. How they are built, changed by experience and then degenerate are some of the biggest questions in biology. Regressive phenomena, such as neuron pruning and programmed cell death, have a key role in the building and maintenance of the nervous systems. Both of these cellular mechanisms deploy the caspase family of protease enzymes. In this review, we highlight the non-apoptotic function of caspases during nervous system development, plasticity and disease, particularly focussing on their role in structural remodelling. We have classified pruning as either macropruning, where complete branches are removed, or micropruning, where individual synapses or dendritic spines are eliminated. Finally we discuss open questions and possible future directions within the field.


Assuntos
Caspases/genética , Sistema Nervoso/enzimologia , Doenças Neurodegenerativas/genética , Neurogênese/genética , Neurônios/enzimologia , Animais , Apoptose/genética , Caspases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Sistema Nervoso/citologia , Sistema Nervoso/crescimento & desenvolvimento , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Plasticidade Neuronal/genética , Neurônios/citologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Sinapses/genética
16.
Gene ; 605: 20-31, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28007610

RESUMO

PAKs, p21-activated kinases, play central roles and act as converging junctions for discrete signals elicited on the cell surface and for a number of intracellular signaling cascades. PAKs phosphorylate a vast number of substrates and act by remodeling cytoskeleton, employing scaffolding, and relocating to distinct subcellular compartments. PAKs affect wide range of processes that are crucial to the cell from regulation of cell motility, survival, redox, metabolism, cell cycle, proliferation, transformation, stress, inflammation, to gene expression. Understandably, their dysregulation disrupts cellular homeostasis and severely impacts key cell functions, and many of those are implicated in a number of human diseases including cancers, neurological disorders, and cardiac disorders. Here we provide an overview of the members of the PAK family and their current status. We give special emphasis to PAK1 and PAK4, the prototypes of groups I and II, for their profound roles in cancer, the nervous system, and the heart. We also highlight other family members. We provide our perspective on the current advancements, their growing importance as strategic therapeutic targets, and our vision on the future of PAKs.


Assuntos
Processamento Alternativo , Citoesqueleto/metabolismo , Miocárdio/enzimologia , Sistema Nervoso/enzimologia , Quinases Ativadas por p21/genética , Doenças Cardiovasculares/enzimologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Citoesqueleto/química , Citoesqueleto/ultraestrutura , Humanos , Miocárdio/patologia , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Sistema Nervoso/patologia , Doenças do Sistema Nervoso/enzimologia , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia , Fosforilação , Domínios Proteicos , Transporte Proteico , Transdução de Sinais , Especificidade por Substrato , Quinases Ativadas por p21/química , Quinases Ativadas por p21/metabolismo
17.
Autophagy ; 12(12): 2374-2385, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27754761

RESUMO

Although the PINK1-PARK2 pathway contributes to the pathogenesis of Parkinson disease, its roles in sepsis (a major challenge for critical care) were previously unknown. Here, we show that pink1-/- and park2-/- mice are more sensitive to polymicrobial sepsis-induced multiple organ failure and death. The decrease in the circulating level of the neurotransmitter dopamine in pink1-/- and park2-/- mice accelerates the release of a late sepsis mediator, HMGB1, via HIF1A-dependent anaerobic glycolysis and subsequent NLRP3-dependent inflammasome activation. Genetic depletion of Nlrp3 or Hif1a in pink1-/- and park2-/- mice confers protection against lethal polymicrobial sepsis. Moreover, pharmacological administration of dopamine agonist (e.g., pramipexole), HMGB1-inhibitor (e.g., neutralizing antibody or glycyrrhizin), or NLRP3-inhibitor (e.g., MCC950) reduces septic death in pink1-/- and park2-/- mice. The mRNA expression of HIF1A and NLRP3 is upregulated, whereas the mRNA expression of PINK1 and PARK2 is downregulated in peripheral blood mononuclear cells of patients with sepsis. Thus, an impaired PINK1-PARK2-mediated neuroimmunology pathway contributes to septic death and may represent a novel therapeutic target in critical care medicine.


Assuntos
Sistema Nervoso/enzimologia , Sistema Nervoso/imunologia , Proteínas Quinases/metabolismo , Sepse/enzimologia , Sepse/patologia , Ubiquitina-Proteína Ligases/metabolismo , Aerobiose , Animais , Dopamina/metabolismo , Glicólise , Proteína HMGB1/metabolismo , Humanos , Inflamassomos/metabolismo , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Quinases/deficiência , Sepse/microbiologia , Ubiquitina-Proteína Ligases/deficiência
18.
Chem Biol Interact ; 259(Pt B): 352-357, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27475862

RESUMO

Neuropathy Target Esterase (NTE) is a membrane protein codified by gene PNPLA6. NTE was initially discovered as a target of the so-called organophosphorus-induced delayed polyneuropathy triggered by the inhibition of the NTE-associated esterase center by neuropathic organophosphorus compounds (OPs). The physiological role of NTE might be related to membrane lipid homeostasis and seems to be involved in adult organisms in maintaining nervous system integrity. However, NTE is also involved in cell differentiation and embryonic development. NTE is expressed in embryonic and adult stem cells, and the silencing of Pnpla6 by interference RNA in D3 mouse cells causes significant alterations in several genetic pathways related to respiratory tube and nervous system formation, and in vasculogenesis and angiogenesis. The silencing of gene PNPLA6 in human NT2 cells at the beginning of neurodifferentiation causes severe phenotypic alterations in neuron-like differentiated cells; e.g. reduced electrical activity and the virtual disappearance of markers of neural tissue, synapsis and glia. These phenotypic effects were not reproduced when NTE esterase activity was inhibited by neuropathic OP mipafox instead of being silenced at the genetic level. Neuropathic OP chlorpyrifos seems able to induce neurodevelopmental alterations in animals. However, the effects of chlorpyrifos in the expression of biomarker genes of differentiation in D3 cells differ considerably from the effects induced by Pnpla6 silencing. In conclusion, available information suggests that PNPLA6 and/or the NTE protein play a role in early neurodifferentiation stages, although this role is not dependent upon the esterase NTE center. Therefore, impairments caused by OPs, such as chlorpyrifos, on neurodevelopment are not due to inhibition of NTE esterase enzymatic activity.


Assuntos
Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Sistema Nervoso/enzimologia , Sistema Nervoso/crescimento & desenvolvimento , Neurotoxinas/toxicidade , Animais , Biomarcadores/metabolismo , Humanos , Modelos Biológicos , Sistema Nervoso/efeitos dos fármacos
19.
Neurobiol Dis ; 85: 35-48, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26476142

RESUMO

Pantothenate Kinase Associated Neurodegeneration (PKAN) is an autosomal recessive disorder with mutations in the pantothenate kinase 2 gene (PANK2), encoding an essential enzyme for Coenzyme A (CoA) biosynthesis. The molecular connection between defects in this enzyme and the neurodegenerative phenotype observed in PKAN patients is still poorly understood. We exploited the zebrafish model to study the role played by the pank2 gene during embryonic development and get new insight into PKAN pathogenesis. The zebrafish orthologue of hPANK2 lies on chromosome 13, is a maternal gene expressed in all development stages and, in adult animals, is highly abundant in CNS, dorsal aorta and caudal vein. The injection of a splice-inhibiting morpholino induced a clear phenotype with perturbed brain morphology and hydrocephalus; edema was present in the heart region and caudal plexus, where hemorrhages with reduction of blood circulation velocity were detected. We characterized the CNS phenotype by studying the expression pattern of wnt1 and neurog1 neural markers and by use of the Tg(neurod:EGFP/sox10:dsRed) transgenic line. The results evidenced that downregulation of pank2 severely impairs neuronal development, particularly in the anterior part of CNS (telencephalon). Whole-mount in situ hybridization analysis of the endothelial markers cadherin-5 and fli1a, and use of Tg(fli1a:EGFP/gata1a:dsRed) transgenic line, confirmed the essential role of pank2 in the formation of the vascular system. The specificity of the morpholino-induced phenotype was proved by the restoration of a normal development in a high percentage of embryos co-injected with pank2 mRNA. Also, addition of pantethine or CoA, but not of vitamin B5, to pank2 morpholino-injected embryos rescued the phenotype with high efficiency. The zebrafish model indicates the relevance of pank2 activity and CoA homeostasis for normal neuronal development and functioning and provides evidence of an unsuspected role for this enzyme and its product in vascular development.


Assuntos
Sistema Cardiovascular/enzimologia , Sistema Cardiovascular/crescimento & desenvolvimento , Sistema Nervoso/enzimologia , Sistema Nervoso/crescimento & desenvolvimento , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Células COS , Sistema Cardiovascular/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Dados de Sequência Molecular , Sistema Nervoso/patologia , Neurodegeneração Associada a Pantotenato-Quinase/patologia , Neurodegeneração Associada a Pantotenato-Quinase/fisiopatologia , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Homologia de Sequência de Aminoácidos , Peixe-Zebra
20.
J Biol Chem ; 291(2): 913-23, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26565024

RESUMO

Monoglyceride lipase (MGL) is required for efficient hydrolysis of the endocannabinoid 2-arachidonoylglyerol (2-AG) in the brain generating arachidonic acid (AA) and glycerol. This metabolic function makes MGL an interesting target for the treatment of neuroinflammation, since 2-AG exhibits anti-inflammatory properties and AA is a precursor for pro-inflammatory prostaglandins. Astrocytes are an important source of AA and 2-AG, and highly express MGL. In the present study, we dissected the distinct contribution of MGL in astrocytes on brain 2-AG and AA metabolism by generating a mouse model with genetic deletion of MGL specifically in astrocytes (MKO(GFAP)). MKO(GFAP) mice exhibit moderately increased 2-AG and reduced AA levels in brain. Minor accumulation of 2-AG in the brain of MKO(GFAP) mice does not cause cannabinoid receptor desensitization as previously observed in mice globally lacking MGL. Importantly, MKO(GFAP) mice exhibit reduced brain prostaglandin E2 and pro-inflammatory cytokine levels upon peripheral lipopolysaccharide (LPS) administration. These observations indicate that MGL-mediated degradation of 2-AG in astrocytes provides AA for prostaglandin synthesis promoting LPS-induced neuroinflammation. The beneficial effect of astrocyte-specific MGL-deficiency is not fully abrogated by the inverse cannabinoid receptor 1 agonist SR141716 (Rimonabant) suggesting that the anti-inflammatory effects are rather caused by reduced prostaglandin synthesis than by activation of cannabinoid receptors. In conclusion, our data demonstrate that MGL in astrocytes is an important regulator of 2-AG levels, AA availability, and neuroinflammation.


Assuntos
Astrócitos/enzimologia , Deleção de Genes , Inflamação/enzimologia , Inflamação/patologia , Monoacilglicerol Lipases/metabolismo , Sistema Nervoso/enzimologia , Sistema Nervoso/patologia , Animais , Ácidos Araquidônicos/metabolismo , Astrócitos/patologia , Comportamento Animal , Encéfalo/enzimologia , Citocinas/metabolismo , Endocanabinoides/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Glicerídeos/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Especificidade de Órgãos , Receptor CB1 de Canabinoide/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA