Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.757
Filtrar
1.
CNS Neurosci Ther ; 30(5): e14749, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38739004

RESUMO

AIMS: A bone-invasive pituitary adenoma exhibits aggressive behavior, leading to a worse prognosis. We have found that TNF-α promotes bone invasion by facilitating the differentiation of osteoclasts, however, before bone-invasive pituitary adenoma invades bone tissue, it needs to penetrate the dura mater, and this mechanism is not yet clear. METHODS: We performed transcriptome microarrays on specimens of bone-invasive pituitary adenomas (BIPAs) and noninvasive pituitary adenomas (NIPAs) and conducted differential expressed gene analysis and enrichment analysis. We altered the expression of TNF-α through plasmids, then validated the effects of TNF-α on GH3 cells and verified the efficacy of the TNF-α inhibitor SPD304. Finally, the effects of TNF-α were validated in in vivo experiments. RESULTS: Pathway act work showed that the MAPK pathway was significantly implicated in the pathway network. The expression of TNF-α, MMP9, and p-p38 is higher in BIPAs than in NIPAs. Overexpression of TNF-α elevated the expression of MAPK pathway proteins and MMP9 in GH3 cells, as well as promoted proliferation, migration, and invasion of GH3 cells. Flow cytometry indicated that TNF-α overexpression increased the G2 phase ratio in GH3 cells and inhibited apoptosis. The expression of MMP9 was reduced after blocking the P38 MAPK pathway; overexpression of MMP9 promoted invasion of GH3 cells. In vivo experiments confirm that the TNF-α overexpression group has larger tumor volumes. SPD304 was able to suppress the effects caused by TNF-α overexpression. CONCLUSION: Bone-invasive pituitary adenoma secretes higher levels of TNF-α, which then acts on itself in an autocrine manner, activating the MAPK pathway and promoting the expression of MMP9, thereby accelerating the membrane invasion process. SPD304 significantly inhibits the effect of TNF-α and may be applied in the clinical treatment of bone-invasive pituitary adenoma.


Assuntos
Adenoma , Sistema de Sinalização das MAP Quinases , Metaloproteinase 9 da Matriz , Invasividade Neoplásica , Neoplasias Hipofisárias , Fator de Necrose Tumoral alfa , Fator de Necrose Tumoral alfa/metabolismo , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/patologia , Humanos , Adenoma/patologia , Adenoma/metabolismo , Animais , Metaloproteinase 9 da Matriz/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Nus , Comunicação Autócrina/fisiologia , Comunicação Autócrina/efeitos dos fármacos , Pessoa de Meia-Idade , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Adulto , Ratos , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos dos fármacos
2.
Braz J Med Biol Res ; 57: e13474, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716985

RESUMO

Coenzyme Q10 (CoQ10) is a potent antioxidant that is implicated in the inhibition of osteoclastogenesis, but the underlying mechanism has not been determined. We explored the underlying molecular mechanisms involved in this process. RAW264.7 cells received receptor activator of NF-κB ligand (RANKL) and CoQ10, after which the differentiation and viability of osteoclasts were assessed. After the cells were treated with CoQ10 and/or H2O2 and RANKL, the levels of reactive oxygen species (ROS) and proteins involved in the PI3K/AKT/mTOR and MAPK pathways and autophagy were tested. Moreover, after the cells were pretreated with or without inhibitors of the two pathways or with the mitophagy agonist, the levels of autophagy-related proteins and osteoclast markers were measured. CoQ10 significantly decreased the number of TRAP-positive cells and the level of ROS but had no significant impact on cell viability. The relative phosphorylation levels of PI3K, AKT, mTOR, ERK, and p38 were significantly reduced, but the levels of FOXO3/LC3/Beclin1 were significantly augmented. Moreover, the levels of FOXO3/LC3/Beclin1 were significantly increased by the inhibitors and mitophagy agonist, while the levels of osteoclast markers showed the opposite results. Our data showed that CoQ10 prevented RANKL-induced osteoclastogenesis by promoting autophagy via inactivation of the PI3K/AKT/mTOR and MAPK pathways in RAW264.7 cells.


Assuntos
Autofagia , Osteoclastos , Osteogênese , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ligante RANK , Serina-Treonina Quinases TOR , Ubiquinona , Animais , Camundongos , Autofagia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ligante RANK/metabolismo , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia
3.
Biochem Pharmacol ; 224: 116247, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697311

RESUMO

Current therapeutic options for renal cell carcinoma (RCC) are very limited, which is largely due to inadequate comprehension of molecular pathological mechanisms as well as RCC's resistance to chemotherapy. Dual-specificity phosphatase 6 (DUSP6) has been associated with numerous human diseases. However, its role in RCC is not well understood. Here, we show that diminished DUSP6 expression is linked to RCC progression and unfavorable prognosis. Mechanistically, DUSP6 serves as a tumor suppressor in RCC by intervening the TAF10 and BSCL2 via the ERK-AKT pathway. Further, DUSP6 is also transcriptionally regulated by HNF-4a. Moreover, docking experiments have indicated that DUSP6 expression is enhanced when bound by Calcium saccharate, which also inhibits RCC cell proliferation, metabolic rewiring, and sunitinib resistance. In conclusion, our study identifies Calcium saccharate as a prospective pharmacological therapeutic approach for RCC.


Assuntos
Antineoplásicos , Carcinoma de Células Renais , Fosfatase 6 de Especificidade Dupla , Glicólise , Neoplasias Renais , Proteínas Proto-Oncogênicas c-akt , Sunitinibe , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Sunitinibe/farmacologia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Glicólise/efeitos dos fármacos , Glicólise/fisiologia , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Fosfatase 6 de Especificidade Dupla/metabolismo , Fosfatase 6 de Especificidade Dupla/genética , Antineoplásicos/farmacologia , Camundongos , Camundongos Nus , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino
4.
World J Urol ; 42(1): 333, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761255

RESUMO

PURPOSE: Benign prostatic hyperplasia (BPH) is one of the most prevalent diseases affecting aging males. However, approximately, 8% of the BPH patients under 50-year-old experience remarkably early progression, for reasons that remain elusive. Among the various factors implicated in promoting BPH advancement, the activation of fibroblasts and autophagy hold particular importance. Our research endeavors to explore the mechanisms behind the accelerated progression in these patients. METHODS: Immunohistochemistry and immunofluorescence were performed to detect the expression levels of LC3, p62, PDE5, and α-SMA in diverse BPH tissues and prostate stromal cells. The autophagy activator rapamycin, the autophagy suppressor chloroquine, and siRNA transfection were used to identify the impact of autophagy on fibroblast activation. RESULTS: Prostatic stromal fibroblasts in early progressive BPH tissues displayed activation of autophagy with an upregulation of LC3 and a concurrent downregulation of p62. After starvation or rapamycin treatment to a heightened level of autophagy, fibroblasts exhibited activation. Conversely, chloroquine treatment and ATG-7-knockdown effectively suppressed the level of autophagy and fibroblast activation. High expression of PDE5 was found in early progressive BPH stromal cells. The administration of PDE5 inhibitors (PDE5Is) hindered fibroblast activation through suppressing autophagy by inhibiting the ERK signaling pathway. CONCLUSION: Our findings suggest that autophagy plays a pivotal role in promoting BPH progression through fibroblast activation, while PDE5Is effectively suppress autophagy and fibroblast activation via the ERK signaling pathway. Nevertheless, further investigations are warranted to comprehensively elucidate the role of autophagy in BPH progression.


Assuntos
Autofagia , Progressão da Doença , Regulação para Baixo , Fibroblastos , Sistema de Sinalização das MAP Quinases , Inibidores da Fosfodiesterase 5 , Hiperplasia Prostática , Masculino , Humanos , Autofagia/fisiologia , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patologia , Fibroblastos/metabolismo , Inibidores da Fosfodiesterase 5/farmacologia , Sistema de Sinalização das MAP Quinases/fisiologia , Pessoa de Meia-Idade , GMP Cíclico/metabolismo , Idoso , Transdução de Sinais
5.
Respir Res ; 25(1): 210, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755610

RESUMO

BACKGROUND: Mitogen-activated protein kinase (MAPK)signaling-mediated smoking-associated pulmonary vascular remodeling (PVR) plays an important role in the pathogenesis of group 3 pulmonary hypertension (PH). And G protein pathway suppressor 2 (GPS2) could suppress G-protein signaling such as Ras and MAPK, but its role in cigarette smoking -induced PVR (CS-PVR) is unclear. METHODS: An in vivo model of smoke-exposed rats was constructed to assess the role of GPS2 in smoking-induced PH and PVR. In vitro, the effects of GPS2 overexpression and silencing on the function of human pulmonary arterial smooth cells (HPASMCs) and the underlying mechanisms were explored. RESULTS: GPS2 expression was downregulated in rat pulmonary arteries (PAs) and HPASMCs after CS exposure. More importantly, CS-exposed rats with GPS2 overexpression had lower right ventricular systolic pressure (RVSP), right ventricular hypertrophy index (RVHI), and wall thickness (WT%) than those without. And enhanced proliferation and migration of HPASMCs induced by cigarette smoking extract (CSE) can be evidently inhibited by overexpressed GPS2. Besides, GPS2siRNA significantly enhanced the proliferation, and migration of HPASMCs as well as activated Ras and Raf/ERK signaling, while these effects were inhibited by zoledronic acid (ZOL). In addition, GPS2 promoter methylation level in rat PAs and HPASMCs was increased after CS exposure, and 5-aza-2-deoxycytidine (5-aza) inhibited CSE-induced GPS2 hypermethylation and downregulation in vitro. CONCLUSIONS: GPS2 overexpression could improve the CS-PVR, suggesting that GPS2 might serve as a novel therapeutic target for PH-COPD in the future.


Assuntos
Fumar Cigarros , Sistema de Sinalização das MAP Quinases , Ratos Sprague-Dawley , Remodelação Vascular , Animais , Remodelação Vascular/efeitos dos fármacos , Remodelação Vascular/fisiologia , Ratos , Masculino , Humanos , Fumar Cigarros/efeitos adversos , Sistema de Sinalização das MAP Quinases/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células Cultivadas , Proteínas ras/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Quinases raf/metabolismo , Quinases raf/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/induzido quimicamente , MAP Quinases Reguladas por Sinal Extracelular/metabolismo
6.
Pathol Res Pract ; 257: 155323, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38653091

RESUMO

PURPOSE: Esophageal squamous cell carcinoma (ESCC) is a dominant pathological type in China. NUPR1 is a complex molecule implicated in various physiological and biological functions whose expression is upregulated in response to stress. Furthermore, autophagy is a vital physiological mechanism in the onset and metastasis of malignancies. This study aims to uncover the influence of NUPR1 on ESCC occurrence and development by regulating autophagy while also exploring its association with the MAPK signaling pathway. METHODS: First, the differences in NUPR1 between ESCC and normal tissues were analyzed through online databases. Subsequently, the pathological tissues of clinical samples were stained and scored using immunohistochemistry. And NUPR1 expression in ESCC cells was investigated, as was the function of NUPR1 in the modulation of ESCC's malignant behavior. Furthermore, a nude mouse ESCC xenograft model was developed. Finally, RNA sequencing was performed on NUPR1-downregulated ESCC cells, which was verified using WB. RESULTS: Our findings initially uncovered differences in the expression of NUPR1 in ESCC and normal tissues. In vitro experiments demonstrated that NUPR1 downregulation significantly inhibited ESCC cell proliferation, invasion, and migration, as well as promoted their apoptosis. Our xenograft model exhibited significant inhibition of ESCC tumors upon NUPR1 downregulation. Subsequently, RNA sequencing uncovered that NUPR1 regulates its malignant biological behavior through MAPK-mTOR signaling pathway. Finally, we found that NUPR1 downregulation can inhibit autophagic flux in ESCC. CONCLUSION: Collectively, our findings show that NUPR1 enhances the progression of ESCC by triggering autophagy and is associated with the MAPK-mTOR signaling pathway.


Assuntos
Autofagia , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Progressão da Doença , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Camundongos Nus , Proteínas de Neoplasias , Serina-Treonina Quinases TOR , Humanos , Autofagia/fisiologia , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Serina-Treonina Quinases TOR/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Camundongos , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Proliferação de Células/fisiologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais/fisiologia , Masculino , Feminino , Apoptose/fisiologia , Camundongos Endogâmicos BALB C , Movimento Celular
7.
Brain Res ; 1834: 148907, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570153

RESUMO

BACKGROUND: Traumatic brain injury (TBI), as a major public health problem, is characterized by high incidence rate, disability rate, and mortality rate. Neuroinflammation plays a crucial role in the pathogenesis of TBI. Triggering receptor expressed on myeloid cells-1 (TREM-1) is recognized as an amplifier of the inflammation in diseases of the central nervous system (CNS). However, the function of TREM-1 remains unclear post-TBI. This study aimed to investigate the function of TREM-1 in neuroinflammation induced by TBI. METHODS: Brain water content (BWC), modified neurological severity score (mNSS), and Morris Water Maze (MWM) were measured to evaluate the effect of TREM-1 inhibition on nervous system function and outcome after TBI. TREM-1 expression in vivo was evaluated by Western blotting. The cellular localization of TREM-1 in the damaged region was observed via immunofluorescence staining. We also conducted Western blotting to examine expression of SYK, p-SYK and other downstream proteins. RESULTS: We found that inhibition of TREM-1 reduced brain edema, decreased mNSS and improved neurobehavioral outcomes after TBI. It was further determined that TREM-1 was expressed on microglia and modulated subtype transition of microglia. Inhibition of TREM-1 alleviated neuroinflammation, which was associated with SYK/p38MAPK signaling pathway. CONCLUSIONS: These findings suggest that TREM-1 can be a potential clinical therapeutic target for alleviating neuroinflammation after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Microglia , Doenças Neuroinflamatórias , Quinase Syk , Receptor Gatilho 1 Expresso em Células Mieloides , Proteínas Quinases p38 Ativadas por Mitógeno , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Animais , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/antagonistas & inibidores , Microglia/metabolismo , Microglia/efeitos dos fármacos , Quinase Syk/metabolismo , Quinase Syk/antagonistas & inibidores , Masculino , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Edema Encefálico/metabolismo , Edema Encefálico/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos Endogâmicos C57BL
8.
J Cancer Res Clin Oncol ; 150(4): 218, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678126

RESUMO

BACKGROUND: Targeting ferroptosis mediated by autophagy presents a novel therapeutic approach to breast cancer, a mortal neoplasm on the global scale. Pyruvate dehydrogenase kinase isozyme 4 (PDK4) has been denoted as a determinant of breast cancer metabolism. The target of this study was to untangle the functional mechanism of PDK4 in ferroptosis dependent on autophagy in breast cancer. METHODS: RT-qPCR and western blotting examined PDK4 mRNA and protein levels in breast cancer cells. Immunofluorescence staining appraised light chain 3 (LC3) expression. Fe (2 +) assay estimated total iron level. Relevant assay kits and C11-BODIPY (591/581) staining evaluated lipid peroxidation level. DCFH-DA staining assayed intracellular reactive oxygen species (ROS) content. Western blotting analyzed the protein levels of autophagy, ferroptosis and apoptosis-signal-regulating kinase 1 (ASK1)/c-Jun N-terminal kinase (JNK) pathway-associated proteins. RESULTS: PDK4 was highly expressed in breast cancer cells. Knockdown of PDK4 induced the autophagy of breast cancer cells and 3-methyladenine (3-MA), an autophagy inhibitor, countervailed the promoting role of PDK4 interference in ferroptosis in breast cancer cells. Furthermore, PDK4 knockdown activated ASK1/JNK pathway and ASK1 inhibitor (GS-4997) partially abrogated the impacts of PDK4 absence on the autophagy and ferroptosis in breast cancer cells. CONCLUSION: To sum up, deficiency of PDK4 activated ASK1/JNK pathway to stimulate autophagy-dependent ferroptosis in breast cancer.


Assuntos
Autofagia , Neoplasias da Mama , Ferroptose , MAP Quinase Quinase Quinase 5 , Humanos , Ferroptose/fisiologia , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Feminino , Autofagia/fisiologia , MAP Quinase Quinase Quinase 5/metabolismo , MAP Quinase Quinase Quinase 5/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Animais , Linhagem Celular Tumoral , Camundongos , Espécies Reativas de Oxigênio/metabolismo
9.
J Cell Physiol ; 239(5): e31226, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591363

RESUMO

Understanding how skeletal muscle fiber proportions are regulated is essential for understanding muscle function and improving the quality of mutton. While circular RNA (circRNA) has a critical function in myofiber type transformation, the specific mechanisms are not yet fully understood. Prior evidence indicates that circular ubiquitin-specific peptidase 13 (circUSP13) can promote myoblast differentiation by acting as a ceRNA, but its potential role in myofiber switching is still unknown. Herein, we found that circUSP13 enhanced slow myosin heavy chain (MyHC-slow) and suppressed MyHC-fast expression in goat primary myoblasts (GPMs). Meanwhile, circUSP13 evidently enhanced the remodeling of the mitochondrial network while inhibiting the autophagy of GPMs. We obtained fast-dominated myofibers, via treatment with rotenone, and further demonstrated the positive role of circUSP13 in the fast-to-slow transition. Mechanistically, activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway significantly impaired the slow-to-fast shift in fully differentiated myotubes, which was restored by circUSP13 or IGF1 overexpression. In conclusion, circUSP13 promoted the fast-to-slow myofiber type transition through MAPK/ERK signaling in goat skeletal muscle. These findings provide novel insights into the role of circUSP13 in myofiber type transition and contribute to a better understanding of the genetic mechanisms underlying meat quality.


Assuntos
Cabras , Sistema de Sinalização das MAP Quinases , Cadeias Pesadas de Miosina , Animais , Sistema de Sinalização das MAP Quinases/fisiologia , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Diferenciação Celular , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Músculo Esquelético/metabolismo , Autofagia/fisiologia , Mioblastos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , Células Cultivadas , Fibras Musculares Esqueléticas/metabolismo , Desenvolvimento Muscular/genética
10.
Aging (Albany NY) ; 16(7): 6588-6612, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38604156

RESUMO

BACKGROUND: Liver progenitor cells (LPCs) are a subpopulation of cells that contribute to liver regeneration, fibrosis and liver cancer initiation under different circumstances. RESULTS: By performing adenoviral-mediated transfection, CCK-8 analyses, F-actin staining, transwell analyses, luciferase reporter analyses and Western blotting, we observed that TGF-ß promoted cytostasis and partial epithelial-mesenchymal transition (EMT) in LPCs. In addition, we confirmed that TGF-ß activated the Smad and MAPK pathways, including the Erk, JNK and p38 MAPK signaling pathways, and revealed that TGFß-Smad signaling induced growth inhibition and partial EMT, whereas TGFß-MAPK signaling had the opposite effects on LPCs. We further found that the activity of Smad and MAPK signaling downstream of TGF-ß was mutually restricted in LPCs. Mechanistically, we found that TGF-ß activated Smad signaling through serine phosphorylation of both the C-terminal and linker regions of Smad2 and 3 in LPCs. Additionally, TGFß-MAPK signaling inhibited the phosphorylation of Smad3 but not Smad2 at the C-terminus, and it reinforced the linker phosphorylation of Smad3 at T179 and S213. We then found that overexpression of mutated Smad3 at linker phosphorylation sites intensifies TGF-ß-induced cytostasis and EMT, mimicking the effects of MAPK inhibition in LPCs, whereas mutation of Smad3 at the C-terminus caused LPCs to blunt TGF-ß-induced cytostasis and partial EMT. CONCLUSION: These results suggested that TGF-ß downstream of Smad3 and MAPK signaling were mutually antagonistic in regulating the viability and partial EMT of LPCs. This antagonism may help LPCs overcome the cytostatic effect of TGF-ß under fibrotic conditions and maintain partial EMT and progenitor phenotypes.


Assuntos
Transição Epitelial-Mesenquimal , Fígado , Sistema de Sinalização das MAP Quinases , Proteína Smad3 , Células-Tronco , Fator de Crescimento Transformador beta , Proteína Smad3/metabolismo , Células-Tronco/metabolismo , Animais , Fator de Crescimento Transformador beta/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Fígado/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Fosforilação , Camundongos , Transdução de Sinais
11.
J Neuroinflammation ; 21(1): 105, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649885

RESUMO

BACKGROUND: NADPH oxidase (NOX), a primary source of endothelial reactive oxygen species (ROS), is considered a key event in disrupting the integrity of the blood-retinal barrier. Abnormalities in neurovascular-coupled immune signaling herald the loss of ganglion cells in glaucoma. Persistent microglia-driven inflammation and cellular innate immune system dysregulation often lead to deteriorating retinal degeneration. However, the crosstalk between NOX and the retinal immune environment remains unresolved. Here, we investigate the interaction between oxidative stress and neuroinflammation in glaucoma by genetic defects of NOX2 or its regulation via gp91ds-tat. METHODS: Ex vivo cultures of retinal explants from wildtype C57BL/6J and Nox2 -/- mice were subjected to normal and high hydrostatic pressure (Pressure 60 mmHg) for 24 h. In vivo, high intraocular pressure (H-IOP) was induced in C57BL/6J mice for two weeks. Both Pressure 60 mmHg retinas and H-IOP mice were treated with either gp91ds-tat (a NOX2-specific inhibitor). Proteomic analysis was performed on control, H-IOP, and treatment with gp91ds-tat retinas to identify differentially expressed proteins (DEPs). The study also evaluated various glaucoma phenotypes, including IOP, retinal ganglion cell (RGC) functionality, and optic nerve (ON) degeneration. The superoxide (O2-) levels assay, blood-retinal barrier degradation, gliosis, neuroinflammation, enzyme-linked immunosorbent assay (ELISA), western blotting, and quantitative PCR were performed in this study. RESULTS: We found that NOX2-specific deletion or activity inhibition effectively attenuated retinal oxidative stress, immune dysregulation, the internal blood-retinal barrier (iBRB) injury, neurovascular unit (NVU) dysfunction, RGC loss, and ON axonal degeneration following H-IOP. Mechanistically, we unveiled for the first time that NOX2-dependent ROS-driven pro-inflammatory signaling, where NOX2/ROS induces endothelium-derived endothelin-1 (ET-1) overexpression, which activates the ERK1/2 signaling pathway and mediates the shift of microglia activation to a pro-inflammatory M1 phenotype, thereby triggering a neuroinflammatory outburst. CONCLUSIONS: Collectively, we demonstrate for the first time that NOX2 deletion or gp91ds-tat inhibition attenuates iBRB injury and NVU dysfunction to rescue glaucomatous RGC loss and ON axon degeneration, which is associated with inhibition of the ET-1/ERK1/2-transduced shift of microglial cell activation toward a pro-inflammatory M1 phenotype, highlighting NOX2 as a potential target for novel neuroprotective therapies in glaucoma management.


Assuntos
Barreira Hematorretiniana , Pressão Intraocular , Camundongos Endogâmicos C57BL , NADPH Oxidase 2 , Doenças Neuroinflamatórias , Animais , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , Camundongos , Barreira Hematorretiniana/patologia , Barreira Hematorretiniana/metabolismo , Pressão Intraocular/fisiologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Camundongos Knockout , Proliferação de Células/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Neuroglia/metabolismo , Neuroglia/patologia , Hipertensão Ocular/patologia , Hipertensão Ocular/metabolismo , Glaucoma/patologia , Glaucoma/metabolismo , Estresse Oxidativo/fisiologia
12.
Neurogastroenterol Motil ; 36(5): e14779, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488234

RESUMO

BACKGROUND: Gastric motility disorder is an increasingly common problem among people with diabetes. Neurotransmitters have been recognized as critical regulators in the process of gastric motility. Previous study has shown that herb pair huanglian-banxia (HL-BX) can improve gastric motility, but the underlying mechanism is still unclear. The aim of this study was to further investigate the role of HL-BX in modulating brain-gut neurotransmission to promote gastric motility in diabetic rats, and to explore its possible mechanism. METHODS: The diabetic rats were divided into five groups. Gastric emptying rate, intestinal propulsion rate, body weight, and average food intake were determined. Substance P (SP), 5- hydroxytryptamine (5-HT), and glucagon-like peptide -1 (GLP-1) in the serum were measured by enzyme-linked immunosorbent assay. Dopamine (DA) and norepinephrine (NE) in the brain were analyzed by high-pressure liquid chromatography with a fluorescence detector. Protein expression of the tissues in the stomach and brain was determined by Western blot. KEY RESULTS: HL-BX reduced average food intake significantly, increased body weight, and improved gastric emptying rate and intestinal propulsion rate. HL-BX administration caused a significant increase in SP, GLP-1, and 5-HT, but a significant decrease in DA and NE. Interestingly, HL-BX regulated simultaneously the different expressions of MAPK and its downstream p70S6K/S6 signaling pathway in the stomach and brain. Moreover, berberine exhibited a similar effect to HL-BX. CONCLUSIONS: These results indicated that HL-BX promoted gastric motility by regulating brain-gut neurotransmitters through the MAPK signaling pathway. HL-BX and MAPK provide a potential therapeutic option for the treatment of gastroparesis.


Assuntos
Diabetes Mellitus Experimental , Medicamentos de Ervas Chinesas , Motilidade Gastrointestinal , Sistema de Sinalização das MAP Quinases , Animais , Masculino , Ratos , Encéfalo/metabolismo , Eixo Encéfalo-Intestino/fisiologia , Diabetes Mellitus Experimental/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Motilidade Gastrointestinal/fisiologia , Motilidade Gastrointestinal/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Neurotransmissores/metabolismo
13.
J Neurosci ; 44(17)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38471782

RESUMO

Cytoplasmic protein tyrosine phosphatase nonreceptor type 11 (PTPN11) and Drosophila homolog Corkscrew (Csw) regulate the mitogen-activated protein kinase (MAPK) pathway via a conserved autoinhibitory mechanism. Disease-causing loss-of-function (LoF) and gain-of-function (GoF) mutations both disrupt this autoinhibition to potentiate MAPK signaling. At the Drosophila neuromuscular junction glutamatergic synapse, LoF/GoF mutations elevate transmission strength and reduce activity-dependent synaptic depression. In both sexes of LoF/GoF mutations, the synaptic vesicles (SV)-colocalized synapsin phosphoprotein tether is highly elevated at rest, but quickly reduced with stimulation, suggesting a larger SV reserve pool with greatly heightened activity-dependent recruitment. Transmission electron microscopy of mutants reveals an elevated number of SVs clustered at the presynaptic active zones, suggesting that the increased vesicle availability is causative for the elevated neurotransmission. Direct neuron-targeted extracellular signal-regulated kinase (ERK) GoF phenocopies both increased local presynaptic MAPK/ERK signaling and synaptic transmission strength in mutants, confirming the presynaptic regulatory mechanism. Synapsin loss blocks this elevation in both presynaptic PTPN11 and ERK mutants. However, csw null mutants cannot be rescued by wild-type Csw in neurons: neurotransmission is only rescued by expressing Csw in both neurons and glia simultaneously. Nevertheless, targeted LoF/GoF mutations in either neurons or glia alone recapitulate the elevated neurotransmission. Thus, PTPN11/Csw mutations in either cell type are sufficient to upregulate presynaptic function, but a dual requirement in neurons and glia is necessary for neurotransmission. Taken together, we conclude that PTPN11/Csw acts in both neurons and glia, with LoF and GoF similarly upregulating MAPK/ERK signaling to enhance presynaptic Synapsin-mediated SV trafficking.


Assuntos
Proteínas de Drosophila , Sistema de Sinalização das MAP Quinases , Neuroglia , Neurônios , Terminações Pré-Sinápticas , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Sinapsinas , Transmissão Sináptica , Vesículas Sinápticas , Animais , Feminino , Masculino , Animais Geneticamente Modificados , Drosophila , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Mutação , Neuroglia/metabolismo , Neuroglia/fisiologia , Junção Neuromuscular/metabolismo , Junção Neuromuscular/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Sinapsinas/metabolismo , Sinapsinas/genética , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo
14.
J Agric Food Chem ; 72(14): 7832-7844, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38544357

RESUMO

Lycopene has been proven to alleviate nonalcoholic steatohepatitis (NASH), but the precise mechanisms are inadequately elucidated. In this study, we found a previously unknown regulatory effect of lycopene on the apoptosis signal-regulating kinase 1 (ASK1) signaling pathway in both in vivo and in vitro models. Lycopene supplementation (3 and 6 mg/kg/day) exhibited a significant reduction in lipid accumulation, inflammation, and fibrosis of the liver in mice fed with a high-fat/high-cholesterol diet or a methionine-choline-deficient diet. RNA sequencing uncovered that the mitogen-activated protein kinases signaling pathway, which is closely associated with inflammation and endoplasmic reticulum (ER) stress, was significantly downregulated by lycopene. Furthermore, we found lycopene ameliorated ER swelling and decreased the expression levels of ER stress markers (i.e., immunoglobulin heavy chain binding protein, C/EBP homologous protein, and X-box binding protein 1s). Especially, the inositol-requiring enzyme 1α involved in the ASK1 phosphorylation was inhibited by lycopene, resulting in the decline of the subsequent c-Jun N-terminal kinase (JNK) signaling cascade. ASK1 inhibitor DQOP-1 eliminated the lycopene-induced inhibition of the ASK1-JNK pathway in oleic acid and palmitic acid-induced HepG2 cells. Molecular docking further indicated hydrophobic interactions between lycopene and ASK1. Collectively, our research indicates that lycopene can alleviate ER stress and attenuate inflammation cascades and lipid accumulation by inhibiting the ASK1-JNK pathway.


Assuntos
Sistema de Sinalização das MAP Quinases , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Sistema de Sinalização das MAP Quinases/fisiologia , Licopeno/metabolismo , MAP Quinase Quinase Quinase 5/genética , MAP Quinase Quinase Quinase 5/metabolismo , MAP Quinase Quinase Quinase 5/farmacologia , Simulação de Acoplamento Molecular , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Inflamação/tratamento farmacológico , Inflamação/genética , Estresse do Retículo Endoplasmático , Lipídeos/farmacologia , Apoptose
15.
J Neurosci ; 44(18)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548338

RESUMO

Hearing loss is a major disability in everyday life and therapeutic interventions to protect hearing would benefit a large portion of the world population. Here we found that mice devoid of the protein kinase suppressor of RAS 1 (KSR1) in their tissues (germline KO mice) exhibit resistance to both cisplatin- and noise-induced permanent hearing loss compared with their wild-type KSR1 littermates. KSR1 is a scaffold protein that brings in proximity the mitogen-activated protein kinase (MAPK) proteins BRAF, MEK1/2 and ERK1/2 and assists in their activation through a phosphorylation cascade induced by both cisplatin and noise insults in the cochlear cells. KSR1, BRAF, MEK1/2, and ERK1/2 are all ubiquitously expressed in the cochlea. Deleting the KSR1 protein tempered down the MAPK phosphorylation cascade in the cochlear cells following both cisplatin and noise insults and conferred hearing protection of up to 30 dB SPL in three tested frequencies in male and female mice. Treatment with dabrafenib, an FDA-approved oral BRAF inhibitor, protected male and female KSR1 wild-type mice from both cisplatin- and noise-induced hearing loss. Dabrafenib treatment did not enhance the protection of KO KSR1 mice, providing evidence dabrafenib works primarily through the MAPK pathway. Thus, either elimination of the KSR1 gene expression or drug inhibition of the MAPK cellular pathway in mice resulted in profound protection from both cisplatin- and noise-induced hearing loss. Inhibition of the MAPK pathway, a cellular pathway that responds to damage in the cochlear cells, can prove a valuable strategy to protect and treat hearing loss.


Assuntos
Cisplatino , Perda Auditiva Provocada por Ruído , Sistema de Sinalização das MAP Quinases , Camundongos Knockout , Proteínas Quinases , Animais , Cisplatino/toxicidade , Camundongos , Feminino , Perda Auditiva Provocada por Ruído/metabolismo , Perda Auditiva Provocada por Ruído/genética , Masculino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Camundongos Endogâmicos C57BL
16.
Sci Rep ; 14(1): 3167, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326365

RESUMO

Different exogenous electric fields (EF) can guide cell migration, disrupt proliferation, and program cell development. Studies have shown that many of these processes were initiated at the cell membrane, but the mechanism has been unclear, especially for conventionally non-excitable cells. In this study, we focus on the electrostatic aspects of EF coupling with the cell membrane by eliminating Faradaic processes using dielectric-coated microelectrodes. Our data unveil a distinctive biphasic response of the ERK signaling pathway of epithelial cells (MCF10A) to alternate current (AC) EF. The ERK signal exhibits both inhibition and activation phases, with the former triggered by a lower threshold of AC EF, featuring a swifter peaking time and briefer refractory periods than the later-occurring activation phase, induced at a higher threshold. Interestingly, the biphasic ERK responses are sensitive to the waveform and timing of EF stimulation pulses, depicting the characteristics of electrostatic and dissipative interactions. Blocker tests and correlated changes of active Ras on the cell membrane with ERK signals indicated that both EGFR and Ras were involved in the rich ERK dynamics induced by EF. We propose that the frequency-dependent dielectric relaxation process could be an important mechanism to couple EF energy to the cell membrane region and modulate membrane protein-initiated signaling pathways, which can be further explored to precisely control cell behavior and fate with high temporal and spatial resolution.


Assuntos
Sistema de Sinalização das MAP Quinases , Transdução de Sinais , Sistema de Sinalização das MAP Quinases/fisiologia , Diferenciação Celular , Células Epiteliais , Membrana Celular
17.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338990

RESUMO

The MAPK p38α was proposed to be a prominent promoter of skeletal muscle aging. The skeletal muscle tissue is composed of various muscle types, and it is not known if p38α is associated with aging in all of them. It is also not known if p38α is associated with aging of other tissues. JNK and ERK were also proposed to be associated with aging of several tissues. Nevertheless, the pattern of p38α, JNK, and ERK activity during aging was not documented. Here, we documented the levels of phosphorylated/active p38α, Erk1/2, and JNKs in several organs as well as the soleus, tibialis anterior, quadriceps, gastrocnemius, and EDL muscles of 1-, 3-, 6-, 13-, 18-, and 24-month-old mice. We report that in most tissues and skeletal muscles, the MAPKs' activity does not change in the course of aging. In most tissues and muscles, p38α is in fact active at younger ages. The quadriceps and the lungs are exceptions, where p38α is significantly active only in mice 13 months old or older. Curiously, levels of active JNK and ERKs are also elevated in aged lungs and quadriceps. RNA-seq analysis of the quadriceps during aging revealed downregulation of proteins related to the extra-cellular matrix (ECM) and ERK signaling. A panel of mRNAs encoding cell cycle inhibitors and senescence-associated proteins, considered to be aging markers, was not found to be elevated. It seems that the pattern of MAPKs' activation in aging, as well as expression of known 'aging' components, are tissue- and muscle type-specific, supporting a notion that the process of aging is tissue- and even cell-specific.


Assuntos
Sistema de Sinalização das MAP Quinases , Músculo Esquelético , Camundongos , Animais , Fosforilação , Sistema de Sinalização das MAP Quinases/fisiologia , Transdução de Sinais , Envelhecimento/genética
18.
Cells ; 13(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38391903

RESUMO

The development and growth of the eye depends on normal lens morphogenesis and its growth. This growth, in turn, is dependent on coordinated proliferation of the lens epithelial cells and their subsequent differentiation into fiber cells. These cellular processes are tightly regulated to maintain the precise cellular structure and size of the lens, critical for its transparency and refractive properties. Growth factor-mediated MAPK signaling driven by ERK1/2 has been reported as essential for regulating cellular processes of the lens, with ERK1/2 signaling tightly regulated by endogenous antagonists, including members of the Sprouty and related Spred families. Our previous studies have demonstrated the importance of both these inhibitory molecules in lens and eye development. In this study, we build on these findings to highlight the importance of Spreds in regulating early lens morphogenesis by modulating ERK1/2-mediated lens epithelial cell proliferation and fiber differentiation. Conditional loss of both Spred1 and Spred2 in early lens morphogenesis results in elevated ERK1/2 phosphorylation, hyperproliferation of lens epithelia, and an associated increase in the rate of fiber differentiation. This results in transient microphakia and microphthalmia, which disappears, owing potentially to compensatory Sprouty expression. Our data support an important temporal role for Spreds in the early stages of lens morphogenesis and highlight how negative regulation of ERK1/2 signaling is critical for maintaining lens proliferation and fiber differentiation in situ throughout life.


Assuntos
Cristalino , Sistema de Sinalização das MAP Quinases , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Cristalino/metabolismo , Diferenciação Celular/fisiologia , Transdução de Sinais/fisiologia , Proliferação de Células/fisiologia
19.
Environ Int ; 184: 108477, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38340406

RESUMO

Nickel, a common environmental hazard, is a risk factor for craniosynostosis. However, the underlying biological mechanism remains unclear. Here, we found that early-life nickel exposure induced craniosynostosis in mice. In vitro, nickel promoted the osteogenic differentiation of human mesenchymal stem cells (hMSCs), and its osteogenic ability in vivo was confirmed by an ectopic osteogenesis model. Further mRNA sequencing showed that ERK1/2 signaling and FGFR2 were aberrantly activated. FGFR2 was identified as a key regulator of ERK1/2 signaling. By promoter methylation prediction and methylation-specific PCR (MSP) assays, we found that nickel induced hypomethylation in the promoter of FGFR2, which increased its binding affinity to the transcription factor Sp1. During pregnancy and postnatal stages, AZD4547 rescued nickel-induced craniosynostosis by inhibiting FGFR2 and ERK1/2. Compared with normal individuals, nickel levels were increased in the serum of individuals with craniosynostosis. Further logistic and RCS analyses showed that nickel was an independent risk factor for craniosynostosis with a nonlinear correlation. Mediated analysis showed that FGFR2 mediated 30.13% of the association between nickel and craniosynostosis risk. Collectively, we demonstrate that early-life nickel exposure triggers the hypomethylation of FGFR2 and its binding to Sp1, thereby promoting the osteogenic differentiation of hMSCs by ERK1/2 signaling, leading to craniosynostosis.


Assuntos
Craniossinostoses , Sistema de Sinalização das MAP Quinases , Feminino , Gravidez , Camundongos , Humanos , Animais , Sistema de Sinalização das MAP Quinases/fisiologia , Níquel/toxicidade , Osteogênese , Craniossinostoses/genética , Transdução de Sinais , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos
20.
Neurochem Res ; 49(6): 1577-1587, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38276990

RESUMO

Parkinson's disease (PD) is characterized by oxidative stress and neuroinflammation as key pathological features. Emerging evidence suggests that nuclear factor erythroid 2 related factor 2-antioxidant response element (Nrf2-ARE), phosphatidylinositol 3­kinase-protein kinase B (PI3K-Akt), c-Jun N-terminal kinase-extracellular signal-regulated kinase 1/2 (JNK-ERK1/2), and toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-kB) pathways play pivotal roles in PD pathogenesis. Orientin, a phenolic phytoconstituent, has demonstrated modulatory potential on these pathways in various experimental conditions other than PD. In this study, we aimed to evaluate the neuroprotective effects of Orientin against rotenone-induced neurodegeneration in SH-SY5Y cell lines and the Swiss albino mice model of PD. Orientin was administered at doses 10 and 20 µM in cell lines and 10 and 20 mg/kg in mice, and its effects on rotenone-induced neurodegeneration were investigated. Oxidative stress markers including mitochondrial membrane potential (ΔΨm), reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), as well as inflammatory markers including interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), were measured. The expression levels of genes related to Nrf2-ARE (Nrf2), PI3K/Akt (Akt), JNK-ERK1/2 (TNF-α), and TLR4/NF-kB (TNF-α) pathways were measured to understand the modulatory effect of Orientin on these pathways. Additionally, behavioral studies assessing locomotor activity, muscle coordination, and muscle rigidity were conducted with mice. Our results indicate that Orientin dose-dependently attenuated rotenone-induced changes in oxidative stress markers, inflammatory markers, gene expression levels, and behavioral parameters. Therefore, our study concludes that Orientin exhibits significant neuroprotective benefits against rotenone-induced PD by modulating Nrf2-ARE, PI3K-Akt, JNK-ERK1/2, and TLR4/NF-kB pathways.


Assuntos
Flavonoides , Glucosídeos , Fator 2 Relacionado a NF-E2 , NF-kappa B , Fármacos Neuroprotetores , Proteínas Proto-Oncogênicas c-akt , Rotenona , Receptor 4 Toll-Like , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Camundongos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rotenona/toxicidade , Humanos , NF-kappa B/metabolismo , Masculino , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA