Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 390
Filtrar
1.
Cell Host Microbe ; 32(10): 1639-1641, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39389024

RESUMO

Anti-phage defenses must rapidly sense and respond to diverse viruses. A recent pair of papers in Nature reveal via structural and functional assays how the PARIS defense system, a recently discovered toxin-antitoxin system, senses phage-associated molecular patterns (PhAMPs), thereby activating an endonuclease toxin that cleaves tRNA to block phage replication.


Assuntos
Bacteriófagos , RNA de Transferência , RNA de Transferência/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Bactérias/virologia , Bactérias/metabolismo , Bactérias/genética , Sistemas Toxina-Antitoxina , Replicação Viral , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Biossíntese de Proteínas
2.
Int J Mol Sci ; 25(19)2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39408779

RESUMO

Toxin-antitoxin (TA) systems in bacteria are key regulators of the cell cycle and can activate a death response under stress conditions. Like other bacterial elements, TA modules have been widely exploited for biotechnological purposes in diverse applications, such as molecular cloning and anti-cancer therapies. However, their use in plants has been limited, leaving room for the development of new approaches. In this study, we examined two TA systems previously tested in plants, MazEF and YefM-YoeB, and identified interesting differences between them, likely related to their modes of action. We engineered modifications to these specific modules to transform them into molecular switches that can be activated by a protease, inducing necrosis in the plant cells where they are expressed. Finally, we demonstrated the antiviral potential of the modified TA modules by using, as a proof-of-concept, the potyvirus plum pox virus as an activator of the death phenotype.


Assuntos
Biotecnologia , Sistemas Toxina-Antitoxina , Sistemas Toxina-Antitoxina/genética , Biotecnologia/métodos , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Plantas/metabolismo , Plantas/genética , Plantas/virologia
3.
Mol Biol Rep ; 51(1): 1060, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39419903

RESUMO

OBJECTIVES: The study investigates how antibiotics affect biofilm formation and toxin gene expression in Clostridium difficile, which is essential for its survival and persistence. METHODS: The study confirmed 25 strains of C. difficile and assessed biofilm formation. The MIC of metronidazole and vancomycin was determined through agar dilution, and the impact of sub-MIC levels on biofilm formation and eradication was investigated. Additionally, Real-time PCR was used to analyze the expression levels of target genes related to antibiotic treatment. RESULTS: We found that certain genes, such as the ImmA/IrrE system, were associated with increased biofilm formation in isolates. Sub-MIC antibiotic levels influenced gene expression related to biofilm activities, particularly emphasizing the importance of toxin-antitoxin systems. The results suggest that antibiotics at sub-MIC levels may play a signaling role in promoting biofilm formation and gene expression in C. difficile. CONCLUSION: Our study suggests that toxin and antitoxin genes may impact C. difficile biofilm formation, while antibiotics could signal biofilm strengthening and gene expression increase.


Assuntos
Antibacterianos , Biofilmes , Clostridioides difficile , Regulação Bacteriana da Expressão Gênica , Testes de Sensibilidade Microbiana , Sistemas Toxina-Antitoxina , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Clostridioides difficile/genética , Clostridioides difficile/efeitos dos fármacos , Antibacterianos/farmacologia , Sistemas Toxina-Antitoxina/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Toxinas Bacterianas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vancomicina/farmacologia , Metronidazol/farmacologia , Infecções por Clostridium/microbiologia , Infecções por Clostridium/genética
4.
Microb Pathog ; 196: 106991, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39369755

RESUMO

The Type VI secretory system (T6SS) is a key regulatory network in the bacterial system, which plays an important role in host-pathogen interactions and maintains cell homeostasis by regulating the release of effector proteins in specific competition. T6SS causes cell lysis or competitive inhibition by delivering effector molecules, such as toxic proteins and nucleic acids, directly from donor bacterial cells to eukaryotic or prokaryotic targets. Additionally, it orchestrates synthesis of immune effectors that counteract toxins thus preventing self-intoxication or antagonistic actions by competing microbes. Even so, the mechanism of toxin-antitoxin regulation in bacteria remains unclear. In response, this review discusses the bacterial T6SS's structure and function and the mechanism behind toxin-antitoxin secretion and the T6SS's expression in order to guide the further exploration of the pathogenic mechanism of the T6SS and the development of novel preparations for reducing and replacing toxins and antitoxins.


Assuntos
Antitoxinas , Toxinas Bacterianas , Sistemas de Secreção Tipo VI , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/imunologia , Antitoxinas/imunologia , Sistemas de Secreção Tipo VI/metabolismo , Sistemas de Secreção Tipo VI/genética , Sistemas Toxina-Antitoxina/genética , Bactérias/imunologia , Bactérias/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica
5.
Sci Rep ; 14(1): 22998, 2024 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-39362964

RESUMO

Bacterial dormancy is marked by reduced cellular activity and the suspension of growth. It represents a valuable strategy to survive stressful conditions, as exemplified by the long-term tolerance towards antibiotics that is attributable to a fraction of dormant cells, so-called persisters. Here, we investigate the membrane toxin TisB (29 amino acids) from the chromosomal toxin-antitoxin system tisB/istR-1 in Escherichia coli. TisB depolarizes the inner membrane in response to DNA damage, which eventually promotes a stress-tolerant state of dormancy within a small fraction of the population. Using a plasmid-based system for moderate tisB expression and single amino acid substitutions, we dissect the importance of charged and polar amino acids. We observe that the central amino acids lysine 12 and glutamine 19 are of major importance for TisB functionality, which is further validated for lysine 12 in the native context upon treatment with the DNA-damaging antibiotic ciprofloxacin. Finally, we apply a library-based approach to test additional TisB variants in higher throughput, revealing that at least one positive charge at the C-terminus (either lysine 26 or 29) is mandatory for TisB-mediated dormancy. Our study provides insights into the molecular basis for TisB functionality and extends our understanding of bacterial membrane toxins.


Assuntos
Aminoácidos , Toxinas Bacterianas , Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Aminoácidos/metabolismo , Sistemas Toxina-Antitoxina/genética , Membrana Celular/metabolismo , Antibacterianos/farmacologia , Dano ao DNA , Substituição de Aminoácidos , Ciprofloxacina/farmacologia
6.
Elife ; 132024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365286

RESUMO

Biofilms are complex bacterial communities characterized by a high persister prevalence, which contributes to chronic and relapsing infections. Historically, persister formation in biofilms has been linked to constraints imposed by their dense structures. However, we observed an elevated persister frequency accompanying the stage of cell adhesion, marking the onset of biofilm development. Subsequent mechanistic studies uncovered a comparable type of toxin-antitoxin (TA) module (TA-like system) triggered by cell adhesion, which is responsible for this elevation. In this module, the toxin HipH acts as a genotoxic deoxyribonuclease, inducing DNA double strand breaks and genome instability. While the second messenger c-di-GMP functions as the antitoxin, exerting control over HipH expression and activity. The dynamic interplay between c-di-GMP and HipH levels emerges as a crucial determinant governing genome stability and persister generation within biofilms. These findings unveil a unique TA system, where small molecules act as the antitoxin, outlining a biofilm-specific molecular mechanism influencing genome stability and antibiotic persistence, with potential implications for treating biofilm infections.


Assuntos
Antibacterianos , Biofilmes , GMP Cíclico , Instabilidade Genômica , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Antibacterianos/farmacologia , Genoma Bacteriano , Sistemas Toxina-Antitoxina/genética , Antitoxinas/metabolismo , Antitoxinas/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
7.
Commun Biol ; 7(1): 1417, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39478197

RESUMO

The expansion of VapBC TA systems in M. tuberculosis has been linked with its fitness and survival upon exposure to stress conditions. Here, we have functionally characterized VapBC13 and VapBC26 TA modules of M. tuberculosis. We report that overexpression of VapC13 and VapC26 toxins in M. tuberculosis results in growth inhibition and transcriptional reprogramming. We have also identified various regulatory proteins as hub nodes in the top response network of VapC13 and VapC26 overexpression strains. Further, analysis of RNA protection ratios revealed potential tRNA targets for VapC13 and VapC26. Using in vitro ribonuclease assays, we demonstrate that VapC13 and VapC26 degrade serT and leuW tRNA, respectively. However, no significant changes in rRNA cleavage profiles were observed upon overexpression of VapC13 and VapC26 in M. tuberculosis. In order to delineate the role of these TA systems in M. tuberculosis physiology, various mutant strains were constructed. We show that in comparison to the parental strain, ΔvapBC13 and ΔvapBC26 strains were mildly susceptible to oxidative stress. Surprisingly, the growth patterns of parental and mutant strains were comparable in aerosol-infected guinea pigs. These observations imply that significant functional redundancy exists for some TA systems from M. tuberculosis.


Assuntos
Proteínas de Bactérias , Mycobacterium tuberculosis , Sistemas Toxina-Antitoxina , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Animais , Cobaias , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Sistemas Toxina-Antitoxina/genética , Regulação Bacteriana da Expressão Gênica , Tuberculose/microbiologia , Tuberculose/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Estresse Oxidativo , RNA de Transferência/metabolismo , RNA de Transferência/genética
8.
Mol Biol Evol ; 41(10)2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39404847

RESUMO

Bacterial evolution through horizontal gene transfer (HGT) reflects their community interactions. In this way, HGT networks do well at mapping community interactions, but offer little toward controlling them-an important step in the translation of synthetic strains into natural contexts. Toxin-antitoxin (TA) systems serve as ubiquitous and diverse agents of selection; however, their utility is limited by their erratic distribution in hosts. Here we examine the heterogeneous distribution of TAs as a consequence of their mobility. By systematically mapping TA systems across a 10,000 plasmid network, we find HGT communities have unique and predictable TA signatures. We propose these TA signatures arise from plasmid competition and have further potential to signal the degree to which plasmids, hosts, and phage interact. To emphasize these relationships, we construct an HGT network based solely on TA similarity, framing specific selection markers in the broader context of bacterial communities. This work both clarifies the evolution of TA systems and unlocks a common framework for manipulating community interactions through TA compatibility.


Assuntos
Transferência Genética Horizontal , Plasmídeos , Sistemas Toxina-Antitoxina , Sistemas Toxina-Antitoxina/genética , Plasmídeos/genética , Bactérias/genética
9.
PLoS One ; 19(10): e0309292, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39446830

RESUMO

Type II toxin-antitoxin systems such as mazEF3, vapBC3, and relJK play a role in antibiotic resistance and tolerance. Among the different known TA systems, mazEF3, vapBC3, and relJK, which are type II systems, have specific roles in drug resistance. Therefore, the aim of this study was to investigate the mutations in these genes in sensitive and resistant isolates of Mycobacterium tuberculosis. Thirty-two rifampin-resistant and 121 rifampin-sensitive M. tuberculosis isolates were collected from various regions of Iran. Lineage typing was performed using the ASO-PCR method. Mutations in the rpoB gene were analyzed in all isolates by MAS-PCR. Furthermore, mutations in the mazEF3, relJK, and vapBC3 genes of the type II toxin system were assessed through PCR sequencing. These sequences were analyzed using COBALT and SnapGene 2017, and submitted to the GenBank database. Among the 153 M. tuberculosis samples, lineages 4, 3 and 2 were the most common. Lineage 2 had the highest rate of rifampin resistance. Mutations in rpoB531 were the most frequent in resistant isolates. Examination of the toxin-antitoxin system showed that rifampin-resistant isolates belonging to lineage 3 had mutations in either the toxin or antitoxin parts of all three TA systems. A mutation in nucleotide 195 (codon 65) of mazF3 leading to an amino acid change from threonine to isoleucine was detected in all rifampin-resistant isolates. M. tuberculosis isolates belonging to lineage 2 exhibited the highest rifampin resistance in our study. Identifying the mutation in mazF3 in all rifampin-resistant isolates can highlight the significance of this mutation in the development of drug resistance in M. tuberculosis. Expanding the sample size in future studies can help develop a new method for identifying resistant isolates.


Assuntos
Proteínas de Bactérias , Mutação , Mycobacterium tuberculosis , Rifampina , Sistemas Toxina-Antitoxina , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Sistemas Toxina-Antitoxina/genética , Rifampina/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética , Humanos , Irã (Geográfico) , Antituberculosos/farmacologia
10.
mBio ; 15(10): e0011124, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39287445

RESUMO

Bacteria and their viral predators (phages) are constantly evolving to subvert one another. Many bacterial immune systems that inhibit phages are encoded on mobile genetic elements that can be horizontally transmitted to diverse bacteria. Despite the pervasive appearance of immune systems in bacteria, it is not often known if these immune systems function against phages that the host encounters in nature. Additionally, there are limited examples demonstrating how these phages counter-adapt to such immune systems. Here, we identify clinical isolates of the global pathogen Vibrio cholerae harboring a novel genetic element encoding the bacterial immune system DarTG and reveal the immune system's impact on the co-circulating lytic phage ICP1. We show that DarTG inhibits ICP1 genome replication, thus preventing ICP1 plaquing. We further characterize the conflict between DarTG-mediated defense and ICP1 by identifying an ICP1-encoded protein that counters DarTG and allows ICP1 progeny production. Finally, we identify this protein, AdfB, as a functional antitoxin that abrogates the toxin DarT likely through direct interactions. Following the detection of the DarTG system in clinical V. cholerae isolates, we observed a rise in ICP1 isolates with the functional antitoxin. These data highlight the use of surveillance of V. cholerae and its lytic phages to understand the co-evolutionary arms race between bacteria and their phages in nature.IMPORTANCEThe global bacterial pathogen Vibrio cholerae causes an estimated 1 to 4 million cases of cholera each year. Thus, studying the factors that influence its persistence as a pathogen is of great importance. One such influence is the lytic phage ICP1, as once infected by ICP1, V. cholerae is destroyed. To date, we have observed that the phage ICP1 shapes V. cholerae evolution through the flux of anti-phage bacterial immune systems. Here, we probe clinical V. cholerae isolates for novel anti-phage immune systems that can inhibit ICP1 and discover the toxin-antitoxin system DarTG as a potent inhibitor. Our results underscore the importance of V. cholerae and ICP1 surveillance to elaborate novel means by which V. cholerae can persist in both the human host and aquatic reservoir in the face of ICP1.


Assuntos
Bacteriófagos , Cólera , Sistemas Toxina-Antitoxina , Vibrio cholerae , Vibrio cholerae/virologia , Vibrio cholerae/genética , Bacteriófagos/genética , Bacteriófagos/fisiologia , Sistemas Toxina-Antitoxina/genética , Cólera/microbiologia , Antitoxinas/genética , Antitoxinas/metabolismo , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
11.
Int J Mol Sci ; 25(17)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39273577

RESUMO

Tuberculosis is a worldwide plague caused by the pathogen Mycobacterium tuberculosis (M. tb). Toxin-antitoxin (TA) systems are genetic elements abundantly present in prokaryotic organisms and regulate important cellular processes. MazEF is a TA system implicated in the formation of "persisters cells" of M. tb, which contain more than 10 such members. However, the exact function and inhibition mode of each MazF are not fully understood. Here we report crystal structures of MazF-mt3 in its apo form and in complex with the C-terminal half of MazE-mt3. Structural analysis suggested that two long but disordered ß1-ß2 loops would interfere with the binding of the cognate MazE-mt3 antitoxin. Similar loops are also present in the MazF-mt1 and -mt9 but are sustainably shortened in other M. tb MazF members, and these TA pairs behave distinctly in terms of their binding modes and their RNase activities. Systematic crystallographic and biochemical studies further revealed that the biochemical activities of M. tb toxins were combined results between the interferences from the characteristic loops and the electrostatic interactions between the cognate TA pairs. This study provides structural insight into the binding mode and the inhibition mechanism of the MazE/F TA pairs, which facilitate the structure-based peptide designs.


Assuntos
Proteínas de Bactérias , Endorribonucleases , Mycobacterium tuberculosis , Sistemas Toxina-Antitoxina , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Sistemas Toxina-Antitoxina/genética , Endorribonucleases/química , Endorribonucleases/metabolismo , Endorribonucleases/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Ligação Proteica , Cristalografia por Raios X , Modelos Moleculares , Antitoxinas/química , Antitoxinas/metabolismo , Antitoxinas/genética , Sequência de Aminoácidos
12.
J Appl Microbiol ; 135(10)2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39304528

RESUMO

AIMS: Klebsiella michiganensis is a medically important bacterium that has been subject to relatively little attention in the literature. Interrogation of sequence data from K. michiganensis strains in our collection has revealed the presence of multiple large plasmids encoding type II toxin-antitoxin (TA) systems. Such TA systems are responsible for mediating a range of phenotypes, including plasmid stability ('addiction') and antibiotic persistence. In this work, we characterize the hipBA TA locus found within the Klebsiella oxytoca species complex (KoSC). METHODS AND RESULTS: The HipBA TA system is encoded on a plasmid carried by K. michiganensis PS_Koxy4, isolated from an infection outbreak. Employing viability and plasmid stability assays, we demonstrate that PS_Koxy4 HipA is a potent antibacterial toxin and that HipBA is a functional TA module contributing substantially to plasmid maintenance. Further, we provide in silico data comparing HipBA modules across the entire KoSC. CONCLUSIONS: We provide the first evidence of the role of a plasmid-encoded HipBA system in stability of mobile genetic elements and analyse the presence of HipBA across the KoSC. These results expand our knowledge of both a common enterobacterial TA system and a highly medically relevant group of bacteria.


Assuntos
Klebsiella , Óperon , Plasmídeos , Sistemas Toxina-Antitoxina , Plasmídeos/genética , Klebsiella/genética , Sistemas Toxina-Antitoxina/genética , Humanos , Klebsiella oxytoca/genética , Infecções por Klebsiella/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia
13.
Biochem Biophys Res Commun ; 733: 150688, 2024 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-39278090

RESUMO

The toxin-antitoxin (TA) system regulates many physiological processes in free-living bacteria. One such TA system in Escherichia coli comprises an RNA toxin SdsR and an antitoxin RyeA. An overabundance of SdsR is toxic to the cells. RyeA normalizes SdsR abundance and helps the cells to adapt to altered conditions. The current study showed that a novel small RNA (sRNA) regulator GcvB directly interacts with RyeA to maintain its abundance in the cells under normal or low pH conditions. The deletion of the gcvB allele in the E. coli chromosome resulted in a ∼3-fold decrease in intrabacterial RyeA accumulation. An ectopic expression of GcvB in ΔgcvB strain reinstated RyeA abundance to its normal level. Induction of GcvB in the cells upon exposure to low pH resulted in a simultaneous increase in intracellular RyeA. While GcvB increases RyeA abundance in the cells, SdsR accumulation is divergently regulated by GcvB. The absence of the gcvB gene in E. coli leads to upregulation of SdsR and vice versa. The GcvB-mediated decrease of SdsR accumulation stems from the increased RyeA-driven normalization of SdsR. This study delineates a novel mechanism for the regulation of the expression of an RNA toxin SdsR by another sRNA regulator GcvB through a feed-forward control.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Sistemas Toxina-Antitoxina , Escherichia coli/genética , Escherichia coli/metabolismo , Sistemas Toxina-Antitoxina/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Concentração de Íons de Hidrogênio , Antitoxinas/genética , Antitoxinas/metabolismo
14.
Biol Lett ; 20(9): 20240310, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39288812

RESUMO

Wolbachia bacteria encompass noteworthy reproductive manipulators of their arthropod hosts. which influence host reproduction to favour their own transmission, also exploiting toxin-antitoxin systems. Recently, multiple other bacterial symbionts of arthropods have been shown to display comparable manipulative capabilities. Here, we wonder whether such phenomena are truly restricted to arthropod hosts. We focused on protists, primary models for evolutionary investigations on eukaryotes due to their diversity and antiquity, but still overall under-investigated. After a thorough re-examination of the literature on bacterial-protist interactions with this question in mind, we conclude that such bacterial 'addictive manipulators' of protists do exist, are probably widespread, and have been overlooked until now as a consequence of the fact that investigations are commonly host-centred, thus ineffective to detect such behaviour. Additionally, we posit that toxin-antitoxin systems are crucial in these phenomena of addictive manipulation of protists, as a result of recurrent evolutionary repurposing. This indicates intriguing functional analogy and molecular homology with plasmid-bacterial interplays. Finally, we remark that multiple addictive manipulators are affiliated with specific bacterial lineages with ancient associations with diverse eukaryotes. This suggests a possible role of addictive manipulation of protists in paving the way to the evolution of bacteria associated with multicellular organisms.


Assuntos
Artrópodes , Evolução Biológica , Reprodução , Simbiose , Wolbachia , Animais , Artrópodes/microbiologia , Artrópodes/fisiologia , Simbiose/fisiologia , Sistemas Toxina-Antitoxina/genética , Wolbachia/fisiologia , Wolbachia/genética
15.
Nature ; 634(8033): 432-439, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39112702

RESUMO

Bacteria and their viruses (bacteriophages or phages) are engaged in an intense evolutionary arms race1-5. While the mechanisms of many bacterial antiphage defence systems are known1, how these systems avoid toxicity outside infection yet activate quickly after infection is less well understood. Here we show that the bacterial phage anti-restriction-induced system (PARIS) operates as a toxin-antitoxin system, in which the antitoxin AriA sequesters and inactivates the toxin AriB until triggered by the T7 phage counterdefence protein Ocr. Using cryo-electron microscopy, we show that AriA is related to SMC-family ATPases but assembles into a distinctive homohexameric complex through two oligomerization interfaces. In uninfected cells, the AriA hexamer binds to up to three monomers of AriB, maintaining them in an inactive state. After Ocr binding, the AriA hexamer undergoes a structural rearrangement, releasing AriB and allowing it to dimerize and activate. AriB is a toprim/OLD-family nuclease, the activation of which arrests cell growth and inhibits phage propagation by globally inhibiting protein translation through specific cleavage of a lysine tRNA. Collectively, our findings reveal the intricate molecular mechanisms of a bacterial defence system triggered by a phage counterdefence protein, and highlight how an SMC-family ATPase has been adapted as a bacterial infection sensor.


Assuntos
Toxinas Bacterianas , Bacteriófago T7 , Proteínas de Escherichia coli , Escherichia coli , Sistemas Toxina-Antitoxina , Proteínas Virais , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/ultraestrutura , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/química , Bacteriófago T7/química , Bacteriófago T7/fisiologia , Bacteriófago T7/ultraestrutura , Microscopia Crioeletrônica , Escherichia coli/química , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Escherichia coli/virologia , Modelos Moleculares , Ligação Proteica , Biossíntese de Proteínas , Multimerização Proteica , RNA de Transferência de Lisina , Sistemas Toxina-Antitoxina/fisiologia , Proteínas Virais/química , Proteínas Virais/metabolismo , Proteínas Virais/ultraestrutura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura
16.
Arch Microbiol ; 206(9): 381, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153128

RESUMO

The bacterial type II toxin-antitoxin (TA) system is a rich genetic element that participates in various physiological processes. Aeromonas veronii is the main bacterial pathogen threatening the freshwater aquaculture industry. However, the distribution of type II TA system in A. veronii was seldom documented and its roles in the life activities of A. veronii were still unexplored. In this study, a novel type II TA system AvtA-AvtT was predicted in a fish pathogen Aeromonas veronii biovar sobria with multi-drug resistance using TADB 2.0. Through an Escherichia coli host killing and rescue assay, we demonstrated that AvtA and AvtT worked as a genuine TA system, and the predicted toxin AvtT actually functioned as an antitoxin while the predicted antitoxin AvtA actually functioned as a toxin. The binding ability of AvtA with AvtT proteins were confirmed by dot blotting analysis and co-immunoprecipitation assay. Furthermore, we found that the toxin and antitoxin labelled with fluorescent proteins were co-localized. In addition, it was found that the transcription of AvtAT bicistronic operon was repressed by the AvtAT protein complex. Deletion of avtA gene and avtT gene had no obvious effect on the drug susceptibility. This study provides first characterization of type II TA system AvtA-AvtT in aquatic pathogen A. veronii.


Assuntos
Aeromonas veronii , Proteínas de Bactérias , Sistemas Toxina-Antitoxina , Aeromonas veronii/genética , Aeromonas veronii/metabolismo , Sistemas Toxina-Antitoxina/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Óperon , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Antitoxinas/genética , Antitoxinas/metabolismo , Regulação Bacteriana da Expressão Gênica
17.
G3 (Bethesda) ; 14(9)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39031590

RESUMO

Mycobacterium phage Adephagia is a cluster K phage that infects Mycobacterium smegmatis and some strains of Mycobacterium pathogens. Adephagia has a siphoviral virion morphology and is temperate. Its genome is 59,646 bp long and codes for one tRNA gene and 94 predicted protein-coding genes; most genes not associated with virion structure and assembly are functionally ill-defined. Here, we determined the Adephagia gene expression patterns in lytic and lysogenic growth and used structural predictions to assign additional gene functions. We characterized 66 nonstructural genes for their toxic phenotypes when expressed in M. smegmatis, and we show that 25 of these (38%) are either toxic or strongly inhibit growth, resulting in either reduced viability or small colony sizes. Some of these genes are predicted to be involved in DNA metabolism or regulation, but others are of unknown function. We also characterize the HicAB-like toxin-antitoxin (TA) system encoded by Adephagia (gp91 and gp90, respectively) and show that the gp90 antitoxin is lysogenically expressed, abrogates gp91 toxicity, and is required for normal lytic and lysogenic growth.


Assuntos
Micobacteriófagos , Mycobacterium smegmatis , Proteínas Virais , Regulação Viral da Expressão Gênica , Genoma Viral , Lisogenia , Micobacteriófagos/genética , Mycobacterium smegmatis/virologia , Mycobacterium smegmatis/genética , Sistemas Toxina-Antitoxina , Proteínas Virais/genética , Proteínas Virais/metabolismo
18.
Cell Host Microbe ; 32(7): 1039-1041, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38991498

RESUMO

Bacteria have evolved anti-viral defenses, but the mechanisms of sensing and stopping infection are still under investigation. In this issue of Cell Host & Microbe, Mets, Kurata, Ernits et al. describe how direct sensing of a phage protein by a bacterial toxin-antitoxin-associated chaperone unleashes toxin activity to prevent infection.


Assuntos
Bacteriófagos , Chaperonas Moleculares , Chaperonas Moleculares/metabolismo , Bacteriófagos/fisiologia , Sistemas Toxina-Antitoxina , Toxinas Bacterianas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Bactérias/virologia , Bactérias/metabolismo , Bactérias/genética
19.
Subcell Biochem ; 104: 245-267, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963490

RESUMO

Bacteria encode a wide range of survival and immunity systems, including CRISPR-Cas, restriction-modification systems, and toxin-antitoxin systems involved in defence against bacteriophages, as well as survival during challenging growth conditions or exposure to antibiotics. Toxin-antitoxin (TA) systems are small two- or three-gene cassettes consisting of a metabolic regulator (the "toxin") and its associated antidote (the "antitoxin"), which also often functions as a transcriptional regulator. TA systems are widespread in the genomes of pathogens but are also present in commensal bacterial species and on plasmids. For mobile elements such as plasmids, TA systems play a role in maintenance, and increasing evidence now points to roles of chromosomal toxin-antitoxin systems in anti-phage defence. Moreover, the widespread occurrence of toxin-antitoxin systems in the genomes of pathogens has been suggested to relate to survival during host infection as well as in persistence during antibiotic treatment. Upon repeated exposure to antibiotics, TA systems have been shown to acquire point mutations as well as more dramatic rearrangements such as in-frame deletions with potential relevance for bacterial survival and pathogenesis. In this review, we present an overview of the known functional and structural consequences of mutations and rearrangements arising in bacterial toxin-antitoxin systems and discuss their relevance for survival and persistence of pathogenic species.


Assuntos
Bactérias , Sistemas Toxina-Antitoxina , Sistemas Toxina-Antitoxina/genética , Bactérias/genética , Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
20.
J Biol Chem ; 300(8): 107600, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39059490

RESUMO

RNase R (encoded by the rnr gene) is a highly processive 3' → 5' exoribonuclease essential for the growth of the psychrotrophic bacterium Pseudomonas syringae Lz4W at low temperature. The cell death of a rnr deletion mutant at low temperature has been previously attributed to processing defects in 16S rRNA, defective ribosomal assembly, and inefficient protein synthesis. We recently showed that RNase R is required to protect P. syringae Lz4W from DNA damage and oxidative stress, independent of its exoribonuclease activity. Here, we show that the processing defect in 16S rRNA does not cause cell death of the rnr mutant of P. syringae at low temperature. Our results demonstrate that the rnr mutant of P. syringae Lz4W, complemented with a RNase R deficient in exoribonuclease function (RNase RD284A), is defective in 16S rRNA processing but can grow at 4 °C. This suggested that the processing defect in ribosomal RNAs is not a cause of the cold sensitivity of the rnr mutant. We further show that the rnr mutant accumulates copies of the indigenous plasmid pLz4W that bears a type II toxin-antitoxin (TA) system (P. syringae antitoxin-P. syringae toxin). This phenotype was rescued by overexpressing antitoxin psA in the rnr mutant, suggesting that activation of the type II TA system leads to cold sensitivity of the rnr mutant of P. syringae Lz4W. Here, we report a previously unknown functional relationship between the cold sensitivity of the rnr mutant and a type II TA system in P. syringae Lz4W.


Assuntos
Proteínas de Bactérias , Pseudomonas syringae , RNA Ribossômico 16S , Sistemas Toxina-Antitoxina , Pseudomonas syringae/metabolismo , Pseudomonas syringae/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Sistemas Toxina-Antitoxina/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Temperatura Baixa , Exorribonucleases/metabolismo , Exorribonucleases/genética , Mutação , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA