RESUMO
BACKGROUND: Potato virus Y (PVY) is among the economically most damaging viral pathogen in production of potato (Solanum tuberosum) worldwide. The gene Rysto derived from the wild potato relative Solanum stoloniferum confers extreme resistance to PVY. RESULTS: The presence and diversity of Rysto were investigated in wild relatives of potato (298 genotypes representing 29 accessions of 26 tuber-bearing Solanum species) using PacBio amplicon sequencing. A total of 55 unique Rysto-like sequences were identified in 72 genotypes representing 12 accessions of 10 Solanum species and six resistant controls (potato cultivars Alicja, Bzura, Hinga, Nimfy, White Lady and breeding line PW363). The 55 Rysto-like sequences showed 89.87 to 99.98% nucleotide identity to the Rysto reference gene, and these encoded in total 45 unique protein sequences. While Rysto-like26 identified in Alicja, Bzura, White Lady and Rysto-like16 in PW363 encode a protein identical to the Rysto reference, the remaining 44 predicted Rysto-like proteins were 65.93 to 99.92% identical to the reference. Higher levels of diversity of the Rysto-like sequences were found in the wild relatives of potato than in the resistant control cultivars. The TIR and NB-ARC domains were the most conserved within the Rysto-like proteins, while the LRR and C-JID domains were more variable. Several Solanum species, including S. antipoviczii and S. hougasii, showed resistance to PVY. This study demonstrated Hyoscyamus niger, a Solanaceae species distantly related to Solanum, as a host of PVY. CONCLUSIONS: The new Rysto-like variants and the identified PVY resistant potato genotypes are potential resistance sources against PVY in potato breeding. Identification of H. niger as a host for PVY is important for cultivation of this plant, studies on the PVY management, its ecology, and migrations. The amplicon sequencing based on PacBio SMRT and the following data analysis pipeline described in our work may be applied to obtain the nucleotide sequences and analyze any full-length genes from any, even polyploid, organisms.
Assuntos
Resistência à Doença , Variação Genética , Doenças das Plantas , Potyvirus , Solanum tuberosum , Solanum , Potyvirus/fisiologia , Resistência à Doença/genética , Doenças das Plantas/virologia , Doenças das Plantas/genética , Solanum/genética , Solanum/virologia , Solanum tuberosum/genética , Solanum tuberosum/virologia , Genes de Plantas , Genótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
We identified a novel plant rhabdovirus infecting native joá (Solanum aculeatissimum) plants in Brazil. Infected plants showed yellow blotches on the leaves, and typical enveloped bacilliform rhabdovirus particles associated with the nucleus were seen in thin sections by electron microscopy. The virus could be graft-transmitted to healthy joá and tomato plants but was not mechanically transmissible. RT-PCR using degenerate plant rhabdovirus L gene primers yielded an amplicon from extracted total RNA, the sequence of which was similar to those of alphanucleorhabdoviruses. Based on close sequence matches, especially with the type member potato yellow dwarf virus (PYDV), we adopted a degenerate-primer-walking strategy towards both genome ends. The complete genome of joá yellow blotch-associated virus (JYBaV) is comprised of 12,965 nucleotides, is less than 75% identical to that of its closest relative PYDV, and clusters with PYDV and other alphanucleorhabdoviruses in L protein phylogenetic trees, suggesting that it should be taxonomically classified in a new species in the genus Alphanucleorhabdovirus, family Rhabdoviridae. The genome organization of JYBaV is typical of the 'PYDV-like' subgroup of alphanucleorhabdoviruses, with seven genes (N-X-P-Y-M-G-L) separated by conserved intergenic regions and flanked by partly complementary 3' leader and 5' trailer regions.
Assuntos
Doenças das Plantas/virologia , Rhabdoviridae/isolamento & purificação , Solanum/virologia , Brasil , Genoma Viral , Filogenia , Folhas de Planta/virologia , Vírus de Plantas , Rhabdoviridae/genéticaRESUMO
Potato late blight, caused by the oomycete pathogen Phytophthora infestans, significantly hampers potato production. Recently, a new Resistance to Phytophthora infestans (Rpi) gene, Rpi-amr1, was cloned from a wild Solanum species, Solanum americanum. Identification of the corresponding recognized effector (Avirulence or Avr) genes from P. infestans is key to elucidating their naturally occurring sequence variation, which in turn informs the potential durability of the cognate late blight resistance. To identify the P. infestans effector recognized by Rpi-amr1, we screened available RXLR effector libraries and used long read and cDNA pathogen-enrichment sequencing (PenSeq) on four P. infestans isolates to explore the untested effectors. Using single-molecule real-time sequencing (SMRT) and cDNA PenSeq, we identified 47 highly expressed effectors from P. infestans, including PITG_07569, which triggers a highly specific cell death response when transiently coexpressed with Rpi-amr1 in Nicotiana benthamiana, suggesting that PITG_07569 is Avramr1. Here we demonstrate that long read and cDNA PenSeq enables the identification of full-length RXLR effector families and their expression profile. This study has revealed key insights into the evolution and polymorphism of a complex RXLR effector family that is associated with the recognition by Rpi-amr1.
Assuntos
Phytophthora infestans/genética , Doenças das Plantas/parasitologia , Polimorfismo Genético/genética , Solanum tuberosum/parasitologia , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Morte Celular , DNA Complementar/genética , Phytophthora infestans/patogenicidade , Solanum/virologia , Nicotiana/virologiaRESUMO
Wild plants and weeds growing close to crops constitute a potential reservoir for future epidemies or for the emergence of novel viruses but the frequency and directionality of viral flow between cultivated and wild plants remains poorly documented in many cases. Here, we studied the diversity of viral populations between tomato (Solanum lycopersicum) and neighboring european black nightshade (Solanum nigrum) using high throughput sequencing (HTS) based metagenomics. A large variability in virome richness with only 17.9% shared Operational Taxonomy Units between tomato and nightshade, but this richness could not be linked to a particular host or to local conditions. A detailed population analysis based on assembled contigs for potato virus Y (PVY), broad wilt bean virus 1 and a new ilarvirus tentatively named Solanum nigrum ilarvirus 1 provides information on the circulation of these viruses between these two Solanum species and enriches our knowledge of the tomato virome.
Assuntos
Metagenoma , Metagenômica , Vírus de Plantas/genética , Solanum nigrum/virologia , Solanum/virologia , Biologia Computacional/métodos , Vírus de DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala , Solanum lycopersicum/virologia , Metagenômica/métodos , Filogenia , Doenças das Plantas/virologia , RNA de Cadeia DuplaRESUMO
Naranjilla (Solanum quitoense Lam.) and tamarillo (S. betaceum Cav.) are two important perennial solanaceous crops grown in Ecuador for the fresh market and juice production. Viruses infecting tamarillo and naranjilla are currently poorly studied, and no clean stock program exists in Ecuador. Here, we report a new virus, provisionally named as naranjilla mild mosaic virus (NarMMV) (genus Tymovirus, family Tymoviridae), isolated from naranjilla grown in an orchard in Pichincha Province, Ecuador. The complete genome of the virus consists of 6,348 nucleotides and encodes three open reading frames typical for members of the genus Tymovirus. Phylogenetically, Chiltepin yellow mosaic virus, Eggplant mosaic virus, and the recently characterized naranjilla chlorotic mosaic virus (NarCMV) were found to be the closest relatives of NarMMV. Unlike NarCMV, the new virus induced mild mosaic in naranjilla and more severe symptoms in tamarillo. Similar to NarCMV, NarMMV was unable to systemically infect potato. Virus surveys found NarMMV prevalent in naranjilla production areas of two provinces of Ecuador, especially where hybrid cultivars of naranjilla were cultivated. NarMMV was also found in field-grown tamarillo. The new virus cross-reacted with antibodies developed against NarCMV. Hence, this antibody will be useful for its field diagnosis using enzyme-linked immunosorbent assay or immunocapture reverse transcription polymerase chain reaction in future virus-free certification programs.
Assuntos
Solanum , Tymovirus , Equador , Genoma Viral/genética , Filogenia , Prevalência , Solanum/virologia , Tymovirus/classificação , Tymovirus/genética , Tymovirus/fisiologiaRESUMO
BACKGROUND: Infectious cDNA clones are a powerful tool for studies on RNA viruses using reverse genetics. Potato virus S (PVS) is a carlavirus with a worldwide distribution. Although the complete genome sequences of many PVS isolates have been reported, the construction of an infectious cDNA clone of PVS is yet to be reported. The aim of this study is the development and molecular characterization of an infectious cDNA clone of PVS. METHODS: A full-length cDNA clone pPVS-H-FL-AB was constructed by connecting eight cDNA clones of PVS isolate H95. Capped RNA transcripts from pPVS-H-FL-AB and a modified clone pPVS-H-FL-H, containing the consensus genome sequence of PVS-H95, proved to be non-infectious. Therefore, a full-length cDNA clone pPVS-H-FL-ß was reconstructed from PVS-H00, isolated from PVS-H95 populations by repeating a single local lesion isolation in Chenopodium quinoa three times; PVS-H00 appeared to be a selected variant that survived genetic bottlenecks. The sequence of cDNA clone pPVS-H-FL-ß was determined as the genome sequence of PVS-H00 and compared with the consensus sequence of PVS-H95 genome. RESULTS: All Nicotiana occidentalis plants inoculated with ≥0.2 µg capped RNA transcripts from pPVS-H-FL-ß developed symptoms on upper leaves, as observed with PVS-H00 inoculation. Similar levels of viral genomic and subgenomic RNAs and coat protein were detected in systemically infected leaves. Sequence comparison of PVS-H95 and PVS-H00 revealed 370 nucleotide polymorphisms (4.4% of the entire genome sequence), causing 91 amino acid substitutions in six open reading frames (ORFs). The infectivity of chimeric RNAs derived from recombinants between the two cDNA clones revealed that the lack of infectivity of pPVS-H-FL-H transcripts was due to ORF1, which encodes replicase and harbors 80 amino acid substitutions compared with pPVS-H-FL-ß. Approximately 71.3% amino acid substitutions in replicase were located within the variable region of unknown function between the putative methyltransferase and ovarian tumor-like protease domains. CONCLUSIONS: This is the first report of the development of an infectious cDNA clone of PVS. Our analyses suggest that PVS population within a plant exists as quasispecies and the replicase sequence diversity of PVS obstruct the construction of a full-length infectious cDNA clone.
Assuntos
Carlavirus/genética , DNA Complementar , Solanum/virologia , Clonagem Molecular , Genoma Viral , Doenças das Plantas/virologia , Quase-Espécies , RNA Viral/genética , Nicotiana/virologiaRESUMO
Translational readthrough of the stop codon of the capsid protein (CP) open reading frame (ORF) is used by members of the Luteoviridae to produce their minor capsid protein as a readthrough protein (RTP). The elements regulating RTP expression are not well understood, but they involve long-distance interactions between RNA domains. Using high-resolution mass spectrometry, glutamine and tyrosine were identified as the primary amino acids inserted at the stop codon of Potato leafroll virus (PLRV) CP ORF. We characterized the contributions of a cytidine-rich domain immediately downstream and a branched stem-loop structure 600 to 700 nucleotides downstream of the CP stop codon. Mutations predicted to disrupt and restore the base of the distal stem-loop structure prevented and restored stop codon readthrough. Motifs in the downstream readthrough element (DRTE) are predicted to base pair to a site within 27 nucleotides (nt) of the CP ORF stop codon. Consistent with a requirement for this base pairing, the DRTE of Cereal yellow dwarf virus was not compatible with the stop codon-proximal element of PLRV in facilitating readthrough. Moreover, deletion of the complementary tract of bases from the stop codon-proximal region or the DRTE of PLRV prevented readthrough. In contrast, the distance and sequence composition between the two domains was flexible. Mutants deficient in RTP translation moved long distances in plants, but fewer infection foci developed in systemically infected leaves. Selective 2'-hydroxyl acylation and primer extension (SHAPE) probing to determine the secondary structure of the mutant DRTEs revealed that the functional mutants were more likely to have bases accessible for long-distance base pairing than the nonfunctional mutants. This study reveals a heretofore unknown combination of RNA structure and sequence that reduces stop codon efficiency, allowing translation of a key viral protein.IMPORTANCE Programmed stop codon readthrough is used by many animal and plant viruses to produce key viral proteins. Moreover, such "leaky" stop codons are used in host mRNAs or can arise from mutations that cause genetic disease. Thus, it is important to understand the mechanism(s) of stop codon readthrough. Here, we shed light on the mechanism of readthrough of the stop codon of the coat protein ORFs of viruses in the Luteoviridae by identifying the amino acids inserted at the stop codon and RNA structures that facilitate this "leakiness" of the stop codon. Members of the Luteoviridae encode a C-terminal extension to the capsid protein known as the readthrough protein (RTP). We characterized two RNA domains in Potato leafroll virus (PLRV), located 600 to 700 nucleotides apart, that are essential for efficient RTP translation. We further determined that the PLRV readthrough process involves both local structures and long-range RNA-RNA interactions. Genetic manipulation of the RNA structure altered the ability of PLRV to translate RTP and systemically infect the plant. This demonstrates that plant virus RNA contains multiple layers of information beyond the primary sequence and extends our understanding of stop codon readthrough. Strategic targets that can be exploited to disrupt the virus life cycle and reduce its ability to move within and between plant hosts were revealed.
Assuntos
Proteínas do Capsídeo/biossíntese , Códon de Terminação/genética , Sequências Repetidas Invertidas/genética , Luteoviridae/genética , Conformação de Ácido Nucleico , RNA Viral/metabolismo , Sequência de Aminoácidos/genética , Sequência de Bases , Proteínas do Capsídeo/genética , Fases de Leitura Aberta/genética , Doenças das Plantas/virologia , Biossíntese de Proteínas/genética , Deleção de Sequência/genética , Solanum/virologia , Nicotiana/virologiaRESUMO
In plants, RNA silencing-based antiviral defense generates viral small RNAs (sRNAs) faithfully representing the viral genomes. We employed sRNA sequencing and bioinformatics (sRNA-omics) to characterize antiviral defense and to reconstruct the full genomic sequences and their variants in the evolving viral quasispecies in cultivated solanaceous plants carrying mixed infections. In naturally infected Solanum tuberosum (potato), one case study revealed a virome comprising Potato virus Y (genus Potyvirus) and Potato virus X (genus Potexvirus), which was reconstructed by de novo-assembling separate genome-size sRNA contigs. Another case study revealed a virome comprising NTN and O strains of Potato virus Y, whose sRNAs assembled in chimeric contigs, which could be disentangled on the basis of reference genome sequences. Both viromes were stable in vegetative potato progeny. In a cross-protection trial of Solanum lycopersicum (tomato), the supposedly protective mild strain CH2 of Pepino mosaic virus (genus Potexvirus) was tested for protection against strain LP of the same virus. Reciprocal mechanical inoculations eventually resulted in co-infection of all individual plants with CH2 and LP strains, reconstructed as separate sRNA contigs. LP invasions into CH2-preinfected plants and vice versa were accompanied by alterations of consensus genome sequences in viral quasispecies, indicating a potential risk of cross-protection measures. Additionally, the study also revealed, by reconstruction from sRNAs, the presence of the mechanically nontransmissible Southern tomato virus (genus Amalgavirus) in some plants. Our in-depth analysis of sRNA sizes, 5'-nucleotide frequencies and hotspot maps revealed similarities in sRNA-generating mechanisms in potato and tomato, differential silencing responses to virome components and potential for sRNA-directed cross-targeting between viral strains which could not, however, prevent the formation of stable viromes.
Assuntos
Genoma Viral , Doenças das Plantas/virologia , Potexvirus/genética , Potyvirus/genética , Solanum , Coinfecção , Potexvirus/isolamento & purificação , Potyvirus/isolamento & purificação , Interferência de RNA , RNA Viral , Solanum/virologiaRESUMO
Tomato leaf curl Palampur virus (ToLCPalV) is a whitefly-transmitted, bipartite begomovirus. Here, we demonstrated that ectopic expression of AV2 from a Potato virus X (PVX)-based vector accelerated systemic necrosis and reactive oxygen species (ROS) accumulation in Nicotiana benthamiana. Furthermore, 10 amino acids from N-terminal region of AV2 were found to be associated with the systemic necrosis symptom/phenotype. Mutational studies of ToLCPalV infectious clones lacking the AV2 revealed that AV2 is essential for the systemic movement of DNA-A, symptom severity and viral DNA accumulation. In a yeast two-hybrid assay, Catalase2 (Cat2) was found to associate with AV2 protein. Further, silencing of Cat2 resulted in appearance of necrotic lesions on N. benthamiana and these plants were highly susceptible to ToLCPalV infection in comparison to control plants. Infection ToLCPalV on Solanum lycopersicum resulted in downregulation of Cat2 transcripts, followed by accumulation of ROS and stress marker transcripts. The AV2 protein also suppressed virus-induced gene silencing (VIGS) of the Phytoene desaturase (PDS) gene. Our results show that AV2 is essential for the pathogenicity, systemic movement and suppression of gene silencing in the host. Altogether, our findings suggest that interactions between AV2 and Cat2 might play a crucial role in the establishment of ToLCPalV infection.
Assuntos
Begomovirus/patogenicidade , Catalase/metabolismo , Nicotiana/virologia , Proteínas de Plantas/metabolismo , Proteínas Virais/metabolismo , Catalase/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas de Plantas/genética , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Solanum/metabolismo , Solanum/virologia , Nicotiana/metabolismoRESUMO
Naranjilla ("little orange"), also known as lulo (Solanum quitoense Lam.), is a perennial shrub species cultivated in the Andes for fresh fruit and juice production. In 2015, a naranjilla plant exhibiting stunting, mosaic, and chlorotic spots was sampled in the Pastaza province of Ecuador and maintained under greenhouse conditions. An infectious agent was mechanically transmitted to indicator plants and was subjected to biological and molecular characterization. Spherical particles approximately 30 nm in diameter, composed of a single 20-kDa capsid protein, were observed under an electron microscope in infected naranjilla plants. High-throughput sequencing conducted on inoculated Nicotiana benthamiana plants produced a single sequence contig sharing the closest relationship with several tymoviruses. The entire 6,245-nucleotide genome of a new tymovirus was amplified using reverse-transcription polymerase chain reaction and resequenced with the Sanger methodology. The genome had three open reading frames typical of tymoviruses, and displayed a whole-genome nucleotide identity level with the closest tymovirus, Eggplant mosaic virus, at 71% (90% coverage). This tymovirus from naranjilla was able to systemically infect eggplant, tamarillo, N. benthamiana, and naranjilla. In naranjilla, it produced mosaic, chlorotic spots, and stunting, similar to the symptoms observed in the original plant. The virus was unable to infect potato and tobacco and unable to systemically infect pepper plants, replicating only in inoculated leaves. We concluded that this virus represented a new tymovirus infecting naranjilla, and proposed the tentative name Naranjilla chlorotic mosaic virus (NarCMV).
Assuntos
Doenças das Plantas/virologia , Folhas de Planta/virologia , Solanum/virologia , Tymovirus/genética , Genoma Viral , FilogeniaRESUMO
Solanum nodiflorum mottle virus (SNMoV) was isolated from a small-flowered nightshade (Solanum nodiflorum) in Queensland, Australia. It has been included in the genus Sobemovirus based on virion morphology and serological relationships. Here, we report the sequence of the complete genome of SNMoV. Sequence analysis confirmed that SNMoV has the characteristic genome organization of sobemoviruses. Phylogenetic analysis showed that it clusters most closely with velvet tobacco mottle virus (VTMoV), another sobemovirus native to Australia. Their genomes show 56.8 % sequence identity.
Assuntos
Genoma Viral , Doenças das Plantas/virologia , Vírus de Plantas/genética , Vírus de RNA/genética , Austrália , Sequência de Bases , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Vírus de Plantas/classificação , Vírus de Plantas/isolamento & purificação , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , RNA Viral/genética , Solanum/virologiaRESUMO
Deep sequencing analysis of the transcriptome of a Solanum phureja cv. Criolla Colombia plant with symptoms typical of a virus disease revealed an infection with potato virus V (PVV). The PVV-phureja genome comprises 9904 nt, exhibits 83% nucleotide identity with currently fully sequenced PVV isolates and contains one large ORF that codes for a polyprotein of 3065 residues flanked by 5' and 3' UTR of 217 and 448 nt, respectively. Phylogenetic analysis of the PVV-phureja polyprotein indicates that it is divergent with respect to most PVV isolates. This is the first complete PVV genome of an isolate infecting a host different to S. tuberosum and, to this date, the only one from the South American Andes.
Assuntos
Genoma Viral , Doenças das Plantas/virologia , Potyvirus/isolamento & purificação , Solanum/virologia , Sequência de Bases , Colômbia , Dados de Sequência Molecular , Filogenia , Potyvirus/classificação , Potyvirus/genéticaRESUMO
The complete genome of a tymovirus infecting Solanum violaefolium was sequenced. The genome comprised 6284 nt, with a 5'-UTR of 137 nt and a comparatively longer 3'-UTR of 121 nt. Sequence analysis confirmed three ORFs encoding a movement protein, a polyprotein, and a coat protein (CP). The isolate was considered to be the Tomato blistering mosaic virus (ToBMV) based on a CP amino acid sequence identity of 95.3 %. The nucleotide sequence of the complete genome of the S. violaefolium isolate, however, differed markedly from the other two reported ToBMV isolates, with identities of 76.6 and 76.3 %, below one of the demarcation criteria of the genus Tymovirus (overall genome identity of 80 %). No recombination signals were detected in the genome of this isolate. The high identity of the CP amino acid sequence and similar host responses suggest that the S. violaefolium isolate belongs to the same species as the Tomato blistering mosaic virus. The sequence analysis of this ToBMV isolate thus suggests that the demarcation criterion of 80 % overall genome sequence identity in the genus Tymovirus may require revision.
Assuntos
Solanum/virologia , Tymovirus/genética , Sequência de Aminoácidos , Sequência de Bases , Genoma Viral , Genômica , Conformação de Ácido Nucleico , Filogenia , RNA Viral , Análise de Sequência de DNA , Tymovirus/isolamento & purificaçãoRESUMO
Frangipani mosaic virus (FrMV) is known to infect frangipani tree (Plumeria rubra f. acutifolia) in India but the virus has not been characterized at genomic level and diagnosis is not available. In the present study, an isolate of FrMV (FrMV-Ind-1) showing greenish mosaic and vein-banding symptoms in P. rubra f. acutifolia in New Delhi was characterized based on host reactions, serology and genome sequence. The virus isolate induced local symptoms on several new experimental host species: Capsicum annuum (chilli), Nicotiana benthamiana, Solanum lycopersicum and S. melongena. N. benthamiana could be used as an efficient propagation host as it developed systemic mottle mosaic symptoms all round the year. The genome of FrMV-Ind-1 was 6643 (JN555602) nucleotides long with genome organization similar to tobamoviruses. The Indian isolate of FrMV shared a very close genome sequence identity (98.3 %) with the lone isolate of FrMV-P from Australia. FrMV-Ind-1 together with FrMV-P formed a new phylogenetic group i.e. Apocynaceae-infecting tobamovirus. The polyclonal antiserum generated through the purified virus preparation was successfully utilized to detect the virus in field samples of frangipani by ELISA. Of the eight different tobamoviruses tested, FrMV-Ind-1 shared distant serological relationships with only cucumber green mottle mosaic virus, tobacco mosaic virus, bell pepper mottle virus and kyuri green mottle mosaic virus. RT-PCR based on coat protein gene primer successfully detected the virus in frangipani plants. This study is the first comprehensive description of FrMV occurring in India.
Assuntos
Apocynaceae/virologia , Genoma Viral , Doenças das Plantas/virologia , RNA Viral/genética , Análise de Sequência de DNA , Tobamovirus/isolamento & purificação , Anticorpos Antivirais/imunologia , Capsicum/virologia , Análise por Conglomerados , Ensaio de Imunoadsorção Enzimática/métodos , Índia , Modelos Teóricos , Dados de Sequência Molecular , Filogenia , Homologia de Sequência , Solanum/virologia , Nicotiana/virologiaRESUMO
KEY MESSAGE: A chromosomal inversion associated with the tomato Ty - 2 gene for TYLCV resistance is the cause of severe suppression of recombination in a tomato Ty - 2 introgression line. Among tomato and its wild relatives inversions are often observed, which result in suppression of recombination. Such inversions hamper the transfer of important traits from a related species to the crop by introgression breeding. Suppression of recombination was reported for the TYLCV resistance gene, Ty-2, which has been introgressed in cultivated tomato (Solanum lycopersicum) from the wild relative S. habrochaites accession B6013. Ty-2 was mapped to a 300-kb region on the long arm of chromosome 11. The suppression of recombination in the Ty-2 region could be caused by chromosomal rearrangements in S. habrochaites compared with S. lycopersicum. With the aim of visualizing the genome structure of the Ty-2 region, we compared the draft de novo assembly of S. habrochaites accession LYC4 with the sequence of cultivated tomato ('Heinz'). Furthermore, using populations derived from intraspecific crosses of S. habrochaites accessions, the order of markers in the Ty-2 region was studied. Results showed the presence of an inversion of approximately 200 kb in the Ty-2 region when comparing S. lycopersicum and S. habrochaites. By sequencing a BAC clone from the Ty-2 introgression line, one inversion breakpoint was identified. Finally, the obtained results are discussed with respect to introgression breeding and the importance of a priori de novo sequencing of the species involved.
Assuntos
Inversão Cromossômica , Resistência à Doença/genética , Solanum lycopersicum/genética , Solanum/genética , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Cromossomos de Plantas , Clonagem Molecular , DNA de Plantas/genética , Marcadores Genéticos , Solanum lycopersicum/virologia , Vírus do Mosaico , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/virologia , Recombinação Genética , Alinhamento de Sequência , Análise de Sequência de DNA , Solanum/virologiaRESUMO
Based on the results of a deep sequencing transcriptome study of tamarillo (Solanum betaceum), we report the genome sequence of a virus from this host plant. Since this probably represents a new member of the genus Potyvirus, the name tamarillo leaf malformation virus (TaLMV) has been proposed. Phylogenetic analysis reveals that TaLMV is the closest relative of Colombian datura virus (CDV), followed by three other potyviruses: tobacco etch virus, potato virus A and tobacco vein mottling virus. This is the first sequence of a potyvirus infecting Solanum betaceum containing the complete polyprotein coding region.
Assuntos
Genoma Viral/genética , Potyvirus/genética , Solanum/virologia , Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , Sequência de Bases , Colômbia , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Doenças das Plantas/virologia , Potyvirus/classificação , Potyvirus/isolamento & purificação , RNA Viral/genética , Análise de Sequência de RNA , Proteínas Virais/genéticaRESUMO
Virus-induced gene silencing (VIGS) is an important tool for studying gene function. However, a number of factors highly restrict the application of VIGS, such as unstable efficiency and tissue-specific silencing. We developed a novel evaluation method for improving the applicability of VIGS vectors. In this method, 4 indexes were defined and utilized to evaluate VIGS efficiency by silencing the endogenous phytoene desaturase (PDS) gene with a tobacco rattle virus-based VIGS vector. To illustrate the reliability of this evaluation method, we assessed the silencing efficiency of SpPDS and SpMPK1 in Solanum pimpinellifolium. The silencing results of SpPDS showed that an optical density at 600 nm of 2.0 was more suitable than 1.0 for VIGS in S. pimpinellifolium. This suggests that the proposed evaluation method is a valid technique for optimizing the VIGS system of plants. Moreover, the SpMPK1 gene was highly silenced in the 4th-9th leaves with a 50-95% reduction in transcription levels, further demonstrating that this method can be used to select highly silenced candidates for further experiments, particularly when the target gene shows no phenotypic change after being silenced.
Assuntos
Inativação Gênica , Vírus de Plantas/fisiologia , Solanum/genética , Solanum/virologia , Oxirredutases/genética , Oxirredutases/metabolismo , Folhas de Planta/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Solanum/enzimologia , Transcrição GênicaRESUMO
BACKGROUND: A RIL population between Solanum lycopersicum cv. Moneymaker and S. pimpinellifolium G1.1554 was genotyped with a custom made SNP array. Additionally, a subset of the lines was genotyped by sequencing (GBS). RESULTS: A total of 1974 polymorphic SNPs were selected to develop a linkage map of 715 unique genetic loci. We generated plots for visualizing the recombination patterns of the population relating physical and genetic positions along the genome.This linkage map was used to identify two QTLs for TYLCV resistance which contained favourable alleles derived from S. pimpinellifolium. Further GBS was used to saturate regions of interest, and the mapping resolution of the two QTLs was improved. The analysis showed highest significance on Chromosome 11 close to the region of 51.3 Mb (qTy-p11) and another on Chromosome 3 near 46.5 Mb (qTy-p3). Furthermore, we explored the population using untargeted metabolic profiling, and the most significant differences between susceptible and resistant plants were mainly associated with sucrose and flavonoid glycosides. CONCLUSIONS: The SNP information obtained from an array allowed a first QTL screening of our RIL population. With additional SNP data of a RILs subset, obtained through GBS, we were able to perform an in silico mapping improvement to further confirm regions associated with our trait of interest. With the combination of different ~ omics platforms we provide valuable insight into the genetics of S. pimpinellifolium-derived TYLCV resistance.
Assuntos
Mapeamento Cromossômico , Resistência à Doença/genética , Técnicas de Genotipagem , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Solanum/genética , Solanum/virologia , Alelos , Simulação por Computador , Genoma de Planta/genética , Endogamia , Metaboloma , Doenças das Plantas/imunologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Análise de Sequência , Solanum/imunologia , Solanum/metabolismoRESUMO
BACKGROUND: Decades of intensive tomato breeding using wild-species germplasm have resulted in the genomes of domesticated germplasm (Solanum lycopersicum) being intertwined with introgressions from their wild relatives. Comparative analysis of genomes among cultivated tomatoes and wild species that have contributed genetic variation can help identify desirable genes, such as those conferring disease resistance. The ability to identify introgression position, borders, and contents can reveal ancestral origins and facilitate harnessing of wild variation in crop breeding. RESULTS: Here we present the whole-genome sequences of two tomato inbreds, Gh13 and BTI-87, both carrying the begomovirus resistance locus Ty-3 introgressed from wild tomato species. Introgressions of different sizes on chromosome 6 of Gh13 and BTI-87, both corresponding to the Ty-3 region, were identified as from a source close to the wild species S. chilense. Other introgressions were identified throughout the genomes of the inbreds and showed major differences in the breeding pedigrees of the two lines. Interestingly, additional large introgressions from the close tomato relative S. pimpinellifolium were identified in both lines. Some of the polymorphic regions were attributed to introgressions in the reference Heinz 1706 genome, indicating wild genome sequences in the reference tomato genome. CONCLUSIONS: The methods developed in this work can be used to delineate genome introgressions, and subsequently contribute to development of molecular markers to aid phenotypic selection, fine mapping and discovery of candidate genes for important phenotypes, and for identification of novel variation for tomato improvement. These universal methods can easily be applied to other crop plants.
Assuntos
Begomovirus/genética , Variação Genética , Genoma de Planta/genética , Solanum lycopersicum/genética , Solanum/genética , Sequência de Bases , Mapeamento Cromossômico , Resistência à Doença , Genótipo , Endogamia , Solanum lycopersicum/imunologia , Solanum lycopersicum/virologia , Dados de Sequência Molecular , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Solanum/imunologia , Solanum/virologiaRESUMO
Potato virus M (PVM, genus Carlavirus, family Betaflexviridae) is considered to be one of most economically important pathogens of pepino in China. However, the details and the mechanisms underlying PVM evolution are unknown. In this study, we determined and analyzed 40 TGB 1 gene sequences, 67 TGB 2 and TGB 3 gene sequences, and 88 CP and NABP gene sequences from viruses isolated from 19 samples of pepino (Solanum muricatum) and one sample of tomato (S. lycopersicum) collected from different areas of China. Recombination analysis identified only one clear recombinant in the TGB2-TGB3-CP region, but no recombinants were detected for each of the five individual genes. Phylogenetic analysis showed that all PVM isolates could be divided into at least two lineages in trees derived from the TGB 2, CP, and NABP gene sequences, and the lineages seemed to reflect geographical origin. The five PVM genes in this study were found to be under strong negative selection pressure. The PVM isolates examined showed frequent gene flow between the Chinese and European populations, and also within the Chinese population. Clear star phylogenies and the neutral equilibrium model test showed that pepino isolates of PVM appear to be experiencing a new expansion after a recent introduction into China, and these isolates display low levels of genetic diversity. To our knowledge, this study is the first report describing genetic structure, recombination, and gene flow in PVM populations, and it provides strong evolutionary evidence for the virus populations from different geographic regions of China.