Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Sci Rep ; 14(1): 19289, 2024 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164381

RESUMO

Plants are affected by many environmental factors during their various stages of growth, among which salt stress is a key factor. WRKY transcription factors play important roles in the response to stress in plants. In this study, SmWRKY40 from eggplant (Solanum melongena L.) was found to belong to the subfamily of WRKY transcription factor group II, closely related to the evolution of wild tomato ScWRKY40 (Solanum chilense). The expression of SmWRKY40 could be induced by several abiotic stresses (drought, salt, and high temperature) and ABA to different degrees, with salt stress being the most significant. In Arabidopsis thaliana, the seed germination rate of SmWRKY40 overexpression seedlings was significantly higher than those of the wild type under high concentrations of NaCl and ABA, and root elongation of overexpression lines was also longer than wild type under NaCl treatments. SmWRKY40 overexpression lines were found to enhance Arabidopsis tolerance to salt with lower ROS, MDA, higher soluble protein, proline accumulation, and more active antioxidant enzymes. The expression level of genes related to stress and ABA signaling displayed significant differences in SmWRKY40 overexpression line than that of WT. These results indicate that SmWRKY40 regulates ABA and salt stress responses in Arabidopsis.


Assuntos
Ácido Abscísico , Arabidopsis , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Estresse Salino , Solanum melongena , Fatores de Transcrição , Solanum melongena/genética , Solanum melongena/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Plantas Geneticamente Modificadas , Estresse Fisiológico , Tolerância ao Sal/genética , Germinação/genética , Filogenia , Plântula/genética , Plântula/metabolismo , Plântula/crescimento & desenvolvimento
2.
Sci Rep ; 14(1): 17972, 2024 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095446

RESUMO

This study is the first to investigate the presence and movement of the novel Liberibacter species 'Candidatus Liberibacter brunswickensis' (CLbr) in eggplant, Solanum melongena. The psyllid, Acizzia solanicola can transmit CLbr to eggplant and CLbr can be acquired by CLbr-negative A. solanicola individuals from CLbr-positive eggplants. In planta, CLbr can replicate, move and persist. Investigation into the early development of eggplants showed that CLbr titres had increased at the inoculation site at 14 days post inoculation access period (DPIAP). CLbr had become systemic in the majority of plants tested by 28 DPIAP. The highest bacterial titres were recorded at 35 DPIAP in all samples of the inoculated leaf, the roots, stems and the midrib and petiole samples of the newest leaf (the top leaf). This finding strongly suggests that CLbr movement in planta follows the source to sink relationship as previously described for 'Ca. Liberibacter asiaticus' (CLas) and 'Ca. Liberibacter solanacearum' (CLso). No symptoms consistent with Liberibacter-associated diseases were noted for plants colonised by CLbr during this study, consistent with the hypothesis that CLbr does not cause disease of eggplant during the early stages of host colonisation. In addition, no significant differences in biomass were found between eggplant colonised with CLbr, compared to those that were exposed to CLbr-negative A. solanicola, and to control plants.


Assuntos
Doenças das Plantas , Solanum melongena , Solanum melongena/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Rhizobiaceae/fisiologia , Liberibacter , Hemípteros/microbiologia , Hemípteros/crescimento & desenvolvimento , Animais , Raízes de Plantas/microbiologia
3.
BMC Plant Biol ; 24(1): 742, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39095745

RESUMO

In this study, various constraints of Cd toxicity on growth, morpho-anatomical characters along with physiological and biochemical metabolic processes of Solanum melongena L. plants were analyzed. Conversely, ameliorative role of iron oxide nanoparticles (FeONPs) was examined against Cd stress. For this purpose, the following treatments were applied in completely randomized fashion; 3 mM CdCl2 solution applied with irrigation water, 40 and 80 ppm solutions of FeONPs applied via foliar spray. Regarding the results, Cd caused oxidative damage to plants' photosynthetic machinery, resulting in elevated levels of stress-markers like malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolytic leakage (EL) along with slight increase in antioxidants activities, including glutathione (GsH), ascorbate (AsA), catalases (CAT), peroxidases (POD), superoxide dismutase (SOD), and ascorbate peroxidases (APX). Also, high Cd level in plants disturb ions homeostasis and reduced essential minerals uptake, including Ca and K. This ultimately reduced growth and development of S. melongena plants. In contrast, FeONPs supplementations improved antioxidants (enzymatic and non-enzymatic) defenses which in turn limited ROS generation and lowered the oxidative damage to photosynthetic machinery. Furthermore, it maintained ionic balance resulting in enhanced uptake of Ca and K nutrients which are necessary for photosynthesis, hence also improved photosynthesis rate of S. melongena plants. Overall, FeONPs foliar spray effectively mitigated Cd toxicity imposed on S. melongena plants.


Assuntos
Antioxidantes , Cádmio , Estresse Oxidativo , Solanum melongena , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/metabolismo , Cádmio/toxicidade , Solanum melongena/efeitos dos fármacos , Solanum melongena/metabolismo , Fotossíntese/efeitos dos fármacos , Malondialdeído/metabolismo
4.
Microbiol Spectr ; 12(8): e0046424, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39016604

RESUMO

The present study aimed to investigate the effects of the initial microbiota on microbial succession and metabolite transition during eggplant fermentation. Samples of traditional Japanese eggplant pickles, shibazuke, which were spontaneously fermented by plant-associated microbiota, were used for the analysis. Microbiota analysis indicated two successional patterns: early dominance of lactic acid bacteria superseded by aerobic bacteria and early dominance of lactic acid bacteria maintained to the end of the production process. Next, shibazuke production was modeled using filter-sterilized eggplant juice, fermenting the average composition of the initial shibazuke microbiota, which was artificially constructed from six major species identified during shibazuke production. In contrast to shibazuke production, all batches of eggplant juice fermentation showed almost identical microbial succession and complete dominance of Lactiplantibacillus plantarum in the final microbiota. These findings revealed the fate of initial microbiota under shibazuke production conditions: the early dominance of lactic acid bacteria that was maintained throughout, with L. plantarum ultimately predominating the microbiota. Furthermore, a comparison of the results between shibazuke production and eggplant juice fermentation suggested that L. plantarum is involved in the production of lactic acid, alanine, and glutamic acid during eggplant fermentation regardless of the final microbiota. IMPORTANCE: The findings shown in this study provide insight into the microbial succession during spontaneous pickle fermentation and the role of Lactiplantibacillus plantarum in eggplant pickle production. Moreover, the novel method of using filter-sterilized vegetable juice with an artificial microbiota to emulate spontaneous fermentation can be applied to other spontaneously fermented products. This approach allows for the evaluation of the effect of specific initial microbiota in the absence of plant-associated bacteria from raw materials potentially promoting a greater understanding of microbial behavior in complex microbial ecosystems during vegetable fermentation.


Assuntos
Fermentação , Sucos de Frutas e Vegetais , Microbiota , Solanum melongena , Solanum melongena/microbiologia , Microbiota/fisiologia , Sucos de Frutas e Vegetais/microbiologia , Microbiologia de Alimentos/métodos , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/isolamento & purificação , Ácido Láctico/metabolismo
5.
PeerJ ; 12: e17620, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952982

RESUMO

Background: This study examined the effects of microbial agents on the enzyme activity, microbial community construction and potential functions of inter-root soil of aubergine (Fragaria × ananassa Duch.). This study also sought to clarify the adaptability of inter-root microorganisms to environmental factors to provide a theoretical basis for the stability of the microbiology of inter-root soil of aubergine and for the ecological preservation of farmland soil. Methods: Eggplant inter-root soils treated with Bacillus subtilis (QZ_T1), Bacillus subtilis (QZ_T2), Bacillus amyloliquefaciens (QZ_T3), Verticillium thuringiensis (QZ_T4) and Verticillium purpureum (QZ_T5) were used to analyse the effects of different microbial agents on the inter-root soils of aubergine compared to the untreated control group (QZ_CK). The effects of different microbial agents on the characteristics and functions of inter-root soil microbial communities were analysed using 16S rRNA and ITS (internal transcribed spacer region) high-throughput sequencing techniques. Results: The bacterial diversity index and fungal diversity index of the aubergine inter-root soil increased significantly with the application of microbial fungicides; gas exchange parameters and soil enzyme activities also increased. The structural and functional composition of the bacterial and fungal communities in the aubergine inter-root soil changed after fungicide treatment compared to the control, with a decrease in the abundance of phytopathogenic fungi and an increase in the abundance of beneficial fungi in the soil. Enhancement of key community functions, reduction of pathogenic fungi, modulation of environmental factors and improved functional stability of microbial communities were important factors contributing to the microbial stability of fungicide-treated aubergine inter-root soils.


Assuntos
Fungicidas Industriais , Fotossíntese , Microbiologia do Solo , Fungicidas Industriais/farmacologia , Fotossíntese/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Solanum melongena/microbiologia , Raízes de Plantas/microbiologia , Solo/química , RNA Ribossômico 16S/genética
6.
BMC Plant Biol ; 24(1): 702, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054439

RESUMO

BACKGROUND: Climate change exacerbates abiotic stresses, which are expected to intensify their impact on crop plants. Drought, the most prevalent abiotic stress, significantly affects agricultural production worldwide. Improving eggplant varieties to withstand abiotic stress is vital due to rising drought from climate change. Despite the diversity of wild eggplant species that thrive under harsh conditions, the understanding of their drought tolerance mechanisms remains limited. In the present study, we used chlorophyll fluorescence (ChlaF) imaging, which reveals a plant's photosynthetic health, to investigate desiccation tolerance in eggplant and its wild relatives. Conventional fluorescence measurements lack spatial heterogeneity, whereas ChlaF imaging offers comprehensive insights into plant responses to environmental stresses. Hence, employing noninvasive imaging techniques is essential for understanding this heterogeneity. RESULTS: Desiccation significantly reduced the leaf tissue moisture content (TMC) across species. ChlaF and TMC displayed greater photosystem II (PSII) efficiency after 54 h of desiccation in S. macrocarpum, S. torvum, and S. indicum, with S. macrocarpum demonstrating superior efficiency due to sustained fluorescence. PSII functions declined gradually in S. macrocarpum and S. torvum, unlike those in other species, which exhibited abrupt declines after 54 h of desiccation. However, after 54 h, PSII efficiency remained above 50% of its initial quantum yield in S. macrocarpum at 35% leaf RWC (relative water content), while S. torvum and S. indicum displayed 50% decreases at 31% and 33% RWC, respectively. Conversely, the susceptible species S. gilo and S. sisymbriifolium exhibited a 50% reduction in PSII function at an early stage of 50% RWC, whereas in S. melongena, this reduction occurred at 40% RWC. CONCLUSION: Overall, our study revealed notably greater leaf desiccation tolerance, especially in S. macrocarpum, S. torvum, and S. indicum, attributed to sustained PSII efficiency at low TMC levels, indicating that these species are promising sources of drought tolerance.


Assuntos
Clorofila , Solanum melongena , Clorofila/metabolismo , Fluorescência , Solanum melongena/fisiologia , Solanum melongena/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Dessecação , Complexo de Proteína do Fotossistema II/metabolismo , Fotossíntese/fisiologia , Estresse Fisiológico , Secas , Desidratação , Especificidade da Espécie
7.
PLoS Pathog ; 20(7): e1012380, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39028765

RESUMO

Plant pathogenic bacteria often have a narrow host range, which can vary among different isolates within a population. Here, we investigated the host range of the tomato pathogen Clavibacter michiganensis (Cm). We determined the genome sequences of 40 tomato Cm isolates and screened them for pathogenicity on tomato and eggplant. Our screen revealed that out of the tested isolates, five were unable to cause disease on any of the hosts, 33 were exclusively pathogenic on tomato, and two were capable of infecting both tomato and eggplant. Through comparative genomic analyses, we identified that the five non-pathogenic isolates lacked the chp/tomA pathogenicity island, which has previously been associated with virulence in tomato. In addition, we found that the two eggplant-pathogenic isolates encode a unique allelic variant of the putative serine hydrolase chpG (chpGC), an effector that is recognized in eggplant. Introduction of chpGC into a chpG inactivation mutant in the eggplant-non-pathogenic strain Cm101, failed to complement the mutant, which retained its ability to cause disease in eggplant and failed to elicit hypersensitive response (HR). Conversely, introduction of the chpG variant from Cm101 into an eggplant pathogenic Cm isolate (C48), eliminated its pathogenicity on eggplant, and enabled C48 to elicit HR. Our study demonstrates that allelic variation in the chpG effector gene is a key determinant of host range plasticity within Cm populations.


Assuntos
Alelos , Clavibacter , Especificidade de Hospedeiro , Doenças das Plantas , Solanum lycopersicum , Doenças das Plantas/microbiologia , Solanum lycopersicum/microbiologia , Clavibacter/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Solanum melongena/microbiologia , Solanum melongena/genética , Virulência/genética , Variação Genética
8.
PeerJ ; 12: e17341, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827281

RESUMO

Phosphorus is one of the lowest elements absorbed and utilized by plants in the soil. SPX domain-containing genes family play an important role in plant response to phosphate deficiency signaling pathway, and related to seed development, disease resistance, absorption and transport of other nutrients. However, there are no reports on the mechanism of SPX domain-containing genes in response to phosphorus deficiency in eggplant. In this study, the whole genome identification and functional analysis of SPX domain-containing genes family in eggplant were carried out. Sixteen eggplant SPX domain-containing genes were identified and divided into four categories. Subcellular localization showed that these proteins were located in different cell compartments, including nucleus and membrane system. The expression patterns of these genes in different tissues as well as under phosphate deficiency with auxin were explored. The results showed that SmSPX1, SmSPX5 and SmSPX12 were highest expressed in roots. SmSPX1, SmSPX4, SmSPX5 and SmSPX14 were significantly induced by phosphate deficiency and may be the key candidate genes in response to phosphate starvation in eggplant. Among them, SmSPX1 and SmSPX5 can be induced by auxin under phosphate deficiency. In conclusion, our study preliminary identified the SPX domain genes in eggplant, and the relationship between SPX domain-containing genes and auxin was first analyzed in response to phosphate deficiency, which will provide theoretical basis for improving the absorption of phosphorus in eggplants through molecular breeding technology.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Solanum melongena , Solanum melongena/genética , Solanum melongena/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Genoma de Planta/genética , Família Multigênica , Fósforo/metabolismo , Fósforo/deficiência , Genes de Plantas , Fosfatos/metabolismo , Fosfatos/deficiência
9.
BMC Plant Biol ; 24(1): 576, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890568

RESUMO

BACKGROUND: Little leaf disease caused by phytoplasma infection is a significant threat to eggplant (also known as brinjal) cultivation in India. This study focused on the molecular characterisation of the phytoplasma strains and insect vectors responsible for its transmission and screening of brinjal germplasm for resistance to little leaf disease. RESULTS: Surveys conducted across districts in the Tamil Nadu state of India during 2021-2022 showed a higher incidence of phytoplasma during the Zaid (March to June), followed by Kharif (June to November) and Rabi (November to March) seasons with mean incidence ranging from 22 to 27%. As the name indicates, phytoplasma infection results in little leaf (reduction in leaf size), excessive growth of axillary shoots, virescence, phyllody, stunted growth, leaf chlorosis and witches' broom symptoms. PCR amplification with phytoplasma-specific primers confirmed the presence of this pathogen in all symptomatic brinjal plants and in Hishimonus phycitis (leafhopper), providing valuable insights into the role of leafhoppers in disease transmission. BLAST search and phylogenetic analysis revealed the phytoplasma strain as "Candidatus Phytoplasma trifolii". Insect population and disease dynamics are highly influenced by environmental factors such as temperature, relative humidity and rainfall. Further, the evaluation of 22 eggplant accessions revealed immune to highly susceptible responses where over 50% of the entries were highly susceptible. Finally, additive main effect and multiplicative interaction (AMMI) and won-where biplot analyses identified G18 as a best-performing accession for little leaf resistance due to its consistent responses across multiple environments. CONCLUSIONS: This research contributes essential information on little leaf incidence, symptoms, transmission and resistance profiles of different brinjal genotypes, which together ensure effective and sustainable management of this important disease of eggplants.


Assuntos
Resistência à Doença , Phytoplasma , Doenças das Plantas , Folhas de Planta , Solanum melongena , Solanum melongena/microbiologia , Solanum melongena/genética , Doenças das Plantas/microbiologia , Phytoplasma/fisiologia , Resistência à Doença/genética , Folhas de Planta/microbiologia , Índia , Filogenia , Animais , Hemípteros/microbiologia , Incidência , Insetos Vetores/microbiologia
10.
Sci Rep ; 14(1): 14903, 2024 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942825

RESUMO

Remote sensing has been increasingly used in precision agriculture. Buoyed by the developments in the miniaturization of sensors and platforms, contemporary remote sensing offers data at resolutions finer enough to respond to within-farm variations. LiDAR point cloud, offers features amenable to modelling structural parameters of crops. Early prediction of crop growth parameters helps farmers and other stakeholders dynamically manage farming activities. The objective of this work is the development and application of a deep learning framework to predict plant-level crop height and crown area at different growth stages for vegetable crops. LiDAR point clouds were acquired using a terrestrial laser scanner on five dates during the growth cycles of tomato, eggplant and cabbage on the experimental research farms of the University of Agricultural Sciences, Bengaluru, India. We implemented a hybrid deep learning framework combining distinct features of long-term short memory (LSTM) and Gated Recurrent Unit (GRU) for the predictions of plant height and crown area. The predictions are validated with reference ground truth measurements. These predictions were validated against ground truth measurements. The findings demonstrate that plant-level structural parameters can be predicted well ahead of crop growth stages with around 80% accuracy. Notably, the LSTM and the GRU models exhibited limitations in capturing variations in structural parameters. Conversely, the hybrid model offered significantly improved predictions, particularly for crown area, with error rates for height prediction ranging from 5 to 12%, with deviations exhibiting a more balanced distribution between overestimation and underestimation This approach effectively captured the inherent temporal growth pattern of the crops, highlighting the potential of deep learning for precision agriculture applications. However, the prediction quality is relatively low at the advanced growth stage, closer to the harvest. In contrast, the prediction quality is stable across the three different crops. The results indicate the presence of a robust relationship between the features of the LiDAR point cloud and the auto-feature map of the deep learning methods adapted for plant-level crop structural characterization. This approach effectively captured the inherent temporal growth pattern of the crops, highlighting the potential of deep learning for precision agriculture applications.


Assuntos
Produtos Agrícolas , Aprendizado Profundo , Produtos Agrícolas/crescimento & desenvolvimento , Tecnologia de Sensoriamento Remoto/métodos , Verduras/crescimento & desenvolvimento , Índia , Agricultura/métodos , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/anatomia & histologia , Solanum melongena/crescimento & desenvolvimento , Solanum melongena/anatomia & histologia
11.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928516

RESUMO

Anthocyanins are a large group of water-soluble flavonoid pigments. These specialized metabolites are ubiquitous in the plant kingdom and play an essential role not only in plant reproduction and dispersal but also in responses to biotic and abiotic stresses. Anthocyanins are recognized as important health-promoting and chronic-disease-preventing components in the human diet. Therefore, interest in developing food crops with improved levels and compositions of these important nutraceuticals is growing. This review focuses on work conducted to elucidate the genetic control of the anthocyanin pathway and modulate anthocyanin content in eggplant (Solanum melongena L.) and tomato (Solanum lycopersicum L.), two solanaceous fruit vegetables of worldwide relevance. While anthocyanin levels in eggplant fruit have always been an important quality trait, anthocyanin-based, purple-fruited tomato cultivars are currently a novelty. As detailed in this review, this difference in the anthocyanin content of the cultivated germplasm has largely influenced genetic studies as well as breeding and transgenic approaches to improve the anthocyanin content/profile of these two important solanaceous crops. The information provided should be of help to researchers and breeders in devising strategies to address the increasing consumer demand for nutraceutical foods.


Assuntos
Antocianinas , Frutas , Solanum lycopersicum , Solanum melongena , Antocianinas/análise , Antocianinas/metabolismo , Solanum melongena/genética , Solanum melongena/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Frutas/genética , Frutas/metabolismo , Frutas/química , Biotecnologia/métodos , Plantas Geneticamente Modificadas/genética , Melhoramento Vegetal/métodos , Regulação da Expressão Gênica de Plantas , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo
12.
BMC Plant Biol ; 24(1): 560, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877388

RESUMO

BACKGROUND: The generation of new eggplant (Solanum melongena L.) cultivars with drought tolerance is a main challenge in the current context of climate change. In this study, the eight parents (seven of S. melongena and one of the wild relative S. incanum L.) of the first eggplant MAGIC (Multiparent Advanced Generation Intercrossing) population, together with four F1 hybrids amongst them, five S5 MAGIC recombinant inbred lines selected for their genetic diversity, and one commercial hybrid were evaluated in young plant stage under water stress conditions (30% field capacity; FC) and control conditions (100% FC). After a 21-day treatment period, growth and biomass traits, photosynthetic pigments, oxidative stress markers, antioxidant compounds, and proline content were evaluated. RESULTS: Significant effects (p < 0.05) were observed for genotype, water treatments and their interaction in most of the traits analyzed. The eight MAGIC population parental genotypes displayed a wide variation in their responses to water stress, with some of them exhibiting enhanced root development and reduced foliar biomass. The commercial hybrid had greater aerial growth compared to root growth. The four F1 hybrids among MAGIC parents differed in their performance, with some having significant positive or negative heterosis in several traits. The subset of five MAGIC lines displayed a wide diversity in their response to water stress. CONCLUSION: The results show that a large diversity for tolerance to drought is available among the eggplant MAGIC materials, which can contribute to developing drought-tolerant eggplant cultivars.


Assuntos
Antioxidantes , Desidratação , Solanum melongena , Solanum melongena/genética , Solanum melongena/crescimento & desenvolvimento , Solanum melongena/fisiologia , Solanum melongena/metabolismo , Antioxidantes/metabolismo , Hibridização Genética , Genótipo , Secas , Vigor Híbrido/genética , Prolina/metabolismo , Biomassa
13.
Plant Cell Rep ; 43(7): 178, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907748

RESUMO

KEY MESSAGE: The study demonstrates the successful management of Meloidogyne incognita in eggplant using Mi-flp14 RNA interference, showing reduced nematode penetration and reproduction without off-target effects across multiple generations. Root-knot nematode, Meloidogyne incognita, causes huge yield losses worldwide. Neuromotor function in M. incognita governed by 19 neuropeptides is vital for parasitism and parasite biology. The present study establishes the utility of Mi-flp14 for managing M. incognita in eggplant in continuation of our earlier proof of concept in tobacco (US patent US2015/0361445A1). Mi-flp14 hairpin RNA construct was used for generating 19 independent transgenic eggplant events. PCR and Southern hybridization analysis confirmed transgene integration and its orientation, while RT-qPCR and Northern hybridization established the generation of dsRNA and siRNA of Mi-flp14. In vitro and in vivo bio-efficacy analysis of single-copy events against M. incognita showed reduced nematode penetration and development at various intervals that negatively impacted reproduction. Interestingly, M. incognita preferred wild-type plants over the transgenics even when unbiased equal opportunity was provided for the infection. A significant reduction in disease parameters was observed in transgenic plants viz., galls (40-48%), females (40-50%), egg masses (35-40%), eggs/egg mass (50-55%), and derived multiplication factor (60-65%) compared to wild type. A unique demonstration of perturbed expression of Mi-flp14 in partially penetrated juveniles and female nematodes established successful host-mediated RNAi both at the time of penetration even before the nematodes started withdrawing plant nutrients and later stage, respectively. The absence of off-target effects in transgenic plants was supported by the normal growth phenotype of the plants and T-DNA integration loci. Stability in the bio-efficacy against M. incognita across T1- to T4-generation transgenic plants established the utility of silencing Mi-flp14 for nematode management. This study demonstrates the significance of targeting Mi-flp14 in eggplant for nematode management, particularly to address global agricultural challenges posed by M. incognita.


Assuntos
Doenças das Plantas , Plantas Geneticamente Modificadas , Interferência de RNA , Solanum melongena , Tylenchoidea , Animais , Tylenchoidea/patogenicidade , Tylenchoidea/fisiologia , Solanum melongena/genética , Solanum melongena/parasitologia , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Interações Hospedeiro-Parasita/genética
14.
Food Chem ; 457: 140057, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38908248

RESUMO

The shelf life of perishable foods is estimated through expensive and imprecise analyses that do not account for improper storage. Smart packaging, obtained by agile manufacturing of nanofibers functionalized with natural pigments from agri-food residues, presents promising potential for real-time food quality monitoring. This study employed the solution blow spinning (SBS) technique for the rapid production of smart nanofiber mats based on polycaprolactone (PCL), incorporating extracts of agricultural residues rich in anthocyanins from eggplant (EE) or purple cabbage (CE) for monitoring food quality. The addition of EE or CE to the PCL matrix increased the viscosity of the solution and the diameter of the nanofibers from 156 nm to 261-370 nm. The addition of extracts also improved the mechanical and water-related properties of the nanofibers, although it reduced the thermal stability. Attenuated total reflectance Fourier-transform infrared spectroscopy confirmed the incorporation of anthocyanins into PCL nanofibers. Nanofiber mats incorporated with EE or CE exhibited visible color changes (ΔE ≥ 3) in response to buffer solutions (pH between 3 and 10), and ammonia vapor. Smart nanofibers have demonstrated the ability to monitor fish fillet spoilage through visible color changes (ΔE ≥ 3) during storage. Consequently, smart nanofibers produced by the SBS technique, using PCL and anthocyanins from agro-industrial waste, reveal potential as smart packaging materials for food.


Assuntos
Antocianinas , Embalagem de Alimentos , Nanofibras , Poliésteres , Nanofibras/química , Poliésteres/química , Antocianinas/química , Antocianinas/análise , Embalagem de Alimentos/instrumentação , Qualidade dos Alimentos , Solanum melongena/química , Brassica/química , Animais
15.
Int J Mol Sci ; 25(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38791283

RESUMO

Fruit color is an intuitive quality of horticultural crops that can be used as an evaluation criterion for fruit ripening and is an important factor affecting consumers' purchase choices. In this study, a genetic population from the cross of green peel 'Qidong' and purple peel '8 guo' revealed that the purple to green color of eggplant peel is dominant and controlled by a pair of alleles. Bulked segregant analysis (BSA), SNP haplotyping, and fine genetic mapping delimited candidate genes to a 350 kb region of eggplant chromosome 10 flanked by markers KA2381 and CA8828. One ANS gene (EGP22363) was predicted to be a candidate gene based on gene annotation and sequence alignment of the 350-kb region. Sequence analysis revealed that a single base mutation of 'T' to 'C' on the exon green peel, which caused hydrophobicity to become hydrophilic serine, led to a change in the three-level spatial structure. Additionally, EGP22363 was more highly expressed in purple peels than in green peels. Collectively, EGP22363 is a strong candidate gene for anthocyanin biosynthesis in purple eggplant peels. These results provide important information for molecular marker-assisted selection in eggplants, and a basis for analyzing the regulatory pathways responsible for anthocyanin biosynthesis in eggplants.


Assuntos
Antocianinas , Mapeamento Cromossômico , Frutas , Solanum melongena , Solanum melongena/genética , Solanum melongena/metabolismo , Antocianinas/biossíntese , Antocianinas/genética , Frutas/genética , Frutas/metabolismo , Pigmentação/genética , Polimorfismo de Nucleotídeo Único , Genes de Plantas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
Curr Genet ; 70(1): 7, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743270

RESUMO

Fermented eggplant is a traditional fermented food, however lactic acid bacteria capable of producing exopolysaccharide (EPS) have not yet been exploited. The present study focused on the production and protective effects against oxidative stress of an EPS produced by Lacticaseibacillus paracasei NC4 (NC4-EPS), in addition to deciphering its genomic features and EPS biosynthesis pathway. Among 54 isolates tested, strain NC4 showed the highest EPS yield and antioxidant activity. The maximum EPS production (2.04 ± 0.11 g/L) was achieved by culturing in MRS medium containing 60 g/L sucrose at 37 °C for 48 h. Under 2 mM H2O2 stress, the survival of a yeast model Saccharomyces cerevisiae treated with 0.4 mg/mL NC4-EPS was 2.4-fold better than non-treated cells, which was in agreement with the catalase and superoxide dismutase activities measured from cell lysates. The complete genome of NC4 composed of a circular chromosome of 2,888,896 bp and 3 circular plasmids. The NC4 genome comprises more genes with annotated function in nitrogen metabolism, phosphorus metabolism, cell division and cell cycle, and iron acquisition and metabolism as compared to other reported L. paracasei. Of note, the eps gene cluster is not conserved across L. paracasei. Pathways of sugar metabolism for EPS biosynthesis were proposed for the first time, in which gdp pathway only present in few plant-derived bacteria was identified. These findings shed new light on the cell-protective activity and biosynthesis of EPS produced by L. paracasei, paving the way for future efforts to enhance yield and tailor-made EPS production for food and pharmaceutical industries.


Assuntos
Fermentação , Lacticaseibacillus paracasei , Estresse Oxidativo , Polissacarídeos Bacterianos , Solanum melongena , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/metabolismo , Solanum melongena/microbiologia , Solanum melongena/genética , Solanum melongena/metabolismo , Lacticaseibacillus paracasei/metabolismo , Lacticaseibacillus paracasei/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Genoma Bacteriano , Alimentos Fermentados/microbiologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética
19.
Plant Physiol Biochem ; 211: 108678, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38714126

RESUMO

The consistently increasing use of zinc oxide nanoparticles (ZnONPs) in crop optimization practices and their persistence in agro-environment necessitate expounding their influence on sustainable agro-environment. Attempts have been made to understand nanoparticle-plant beneficial bacteria (PBB)- plant interactions; the knowledge of toxic impact of nanomaterials on soil-PBB-vegetable systems and alleviating nanotoxicity using PBB is scarce and inconsistent. This study aims at bio-fabrication of ZnONPs from Rosa indica petal extracts and investigates the impact of PBB on growth and biochemical responses of biofertilized eggplants exposed to phyto-synthesized nano-ZnO. Microscopic and spectroscopic techniques revealed nanostructure, triangular shape, size 32.5 nm, and different functional groups of ZnONPs and petal extracts. Inoculation of Pseudomonas fluorescens and Azotobacter chroococcum improved germination efficiency by 22% and 18% and vegetative growth of eggplants by 14% and 15% under NPs stress. Bio-inoculation enhanced total chlorophyll content by 36% and 14 %, increasing further with higher ZnONP concentrations. Superoxide dismutase and catalase activity in nano-ZnO and P. fluorescens inoculated eggplant shoots reduced by 15-23% and 9-11%. Moreover, in situ experiment unveiled distortion and accumulation of NPs in roots revealed by scanning electron microscope and confocal laser microscope. The present study highlights the phytotoxicity of biosynthesized ZnONPs to eggplants and demonstrates that PBB improved agronomic traits of eggplants while declining phytochemicals and antioxidant levels. These findings suggest that P. fluorescens and A. chroococcum, with NPs ameliorative activity, can be cost-effective and environment-friendly strategy for alleviating NPs toxicity and promoting eggplant production under abiotic stress, fulfilling vegetable demands.


Assuntos
Nanopartículas Metálicas , Solanum melongena , Óxido de Zinco , Óxido de Zinco/farmacologia , Solanum melongena/efeitos dos fármacos , Solanum melongena/metabolismo , Solanum melongena/crescimento & desenvolvimento , Solanum melongena/microbiologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Pseudomonas fluorescens/efeitos dos fármacos , Pseudomonas fluorescens/metabolismo , Azotobacter/efeitos dos fármacos , Azotobacter/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Clorofila/metabolismo , Nanopartículas/química
20.
Environ Entomol ; 53(3): 326-337, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38717091

RESUMO

It is essential to correctly identify and keep track of the abundance of thrips species on infested host crops to understand their population dynamics and implement control measures promptly. The current study was conducted to evaluate the performance of sticky traps in monitoring thrips species in exporters' eggplant and chili farms and to assess the impact of weather factors on thrips population dynamics. Thrips species were monitored using blue, yellow, and white sticky traps on chili and eggplant farms in Tuba, respectively, in 2020 and 2021. Each field was divided into 8 blocks, and in each replicate, all colors representing 3 treatments were randomly tied to stakes at the center of the respective crop. Data loggers were installed to record hourly weather variables. Three thrips species [Thrips parvispinus Karny (Thysanoptera: Thripidae), Franklinella schultzei Trybom (Thysanoptera: Thripidae), and Thrips tabaci Lindeman (Thysanoptera: Thripidae)] were identified from both farms and the different species showed varied attractiveness to trap color for both seasons, with white proving more attractive to T. parvispinus. The population dynamics of the species varied significantly with the season and weather but not with the crop. Optimum temperatures (28-31 °C) and relative humidity (60%-78%) showed a positive linear relationship between the trapped insects with temperature and RH, while extreme temperatures (35 °C) negatively affected their abundance. All sticky trap colors attracted several nontarget organisms; however, yellow colors had higher populations, including the predator, Orius insidiosus. White sticky traps are recommended for inclusion in the country-wide monitoring for thrips, especially T. parvispinus.


Assuntos
Cor , Controle de Insetos , Dinâmica Populacional , Solanum melongena , Tisanópteros , Tempo (Meteorologia) , Animais , Tisanópteros/fisiologia , Gana , Capsicum , Estações do Ano , Produtos Agrícolas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA