Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Carbohydr Polym ; 275: 118754, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34742448

RESUMO

Herein, environmentally benign chitin nanofiber (ChNF) membranes were fabricated by regulating suspension behavior. The introduction of zeolitic imidazole frameworks (ZIF-8) into the composite membranes led to the domain formation of ChNF derived by coordinative interaction, resulting in pore size-tunable membranes. Based on the rheological, morphological, and structural characterizations, the driving force of pore-size control was studied in the aqueous suspension of ChNF and ZIF-8 according to the relative concentration. At critical concentration, the 30-ChNF membrane presents superior water permeance (40 LMH h-1) while maintaining a high rejection rate (>80% for all organic dyes). Moreover, the molecular size cut-off of the composite membranes for dyes can be controlled in the range of less than 1 nm to 2 nm. The experimental results provide a simple strategy for the preparation of pore tunable ChNF membranes using MOF with high mechanical strength, good durability, high flux, dye rejection, and antifouling ability.


Assuntos
Quitina/química , Imidazóis/química , Estruturas Metalorgânicas/química , Nanofibras/química , Zeolitas/química , Animais , Incrustação Biológica/prevenção & controle , Bovinos , Quitina/farmacologia , Poluentes Ambientais/antagonistas & inibidores , Poluentes Ambientais/metabolismo , Imidazóis/farmacologia , Estruturas Metalorgânicas/farmacologia , Tamanho da Partícula , Soroalbumina Bovina/antagonistas & inibidores , Soroalbumina Bovina/metabolismo , Propriedades de Superfície , Zeolitas/farmacologia
2.
Inflammopharmacology ; 29(4): 1119-1129, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34224070

RESUMO

Rheumatoid arthritis (RA) is a slowly progressing inflammatory autoimmune disease. Several features are involved in the RA pathogenesis in addition to environmental and genetic factors. Previously it has been reported that acetyl cholinesterase (AChE) activity is enhanced in old age and may contribute in the progression of RA. The current experimental work was projected to assess the activity of physostigmine (a cholinesterase inhibitor) for treatment of RA. In vitro and in vivo approaches were used for such evaluation. However, enzyme linked immunosorbent assays (ELISA) was performed to determine the concentrations of Prostaglandins E2 (PGE2) and tumor necrosis factor-α in arthritic rats after treatment with physostigmine. Moreover, anti-oxidant assays were employed to calculate the level of super oxide dismutase (SOD) and catalase peroxidase (CAT) in tissue of treated animals. The results claimed the dose dependent protective and stabilizing effect of physostigmine on denaturation of albumin (egg and bovine serum) protein and human red blood cell membrane, respectively, through in vitro studies. Furthermore, the physostigmine (10 and 20 mg/kg) significantly (p < 0.001) reduced the swelling of paw after induction of arthritis with formaldehyde or complete Freund's adjuvant (CFA) as compared to arthritic control animals. Moreover, significant (p < 0.001) reduction in the levels of inflammatory markers (PGE2 and TNF-α) at doses of 10 and 20 mg/kg of physostigmine has been observed in ELISA test. Likewise, there was a prominent rise in levels of SOD and CAT in animals treated with physostigmine. These findings pharmacologically conclude the anti-arthritic effect of physostigmine.


Assuntos
Antirreumáticos/farmacologia , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Membrana Celular/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Fisostigmina/farmacologia , Animais , Antirreumáticos/uso terapêutico , Artrite Experimental/metabolismo , Membrana Celular/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Relação Dose-Resposta a Droga , Eritrócitos/metabolismo , Humanos , Masculino , Fisostigmina/uso terapêutico , Ratos , Ratos Sprague-Dawley , Soroalbumina Bovina/antagonistas & inibidores , Soroalbumina Bovina/metabolismo
3.
Bioorg Chem ; 111: 104844, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33798848

RESUMO

Ginseng (Panax ginseng and red ginseng) extract has been reported to inhibit the formation of advanced glycation end-products (AGEs); however, the potential inhibitory activity of its major constituents (ginsenosides) against AGE formation is still unknown. In the present study, we investigated the inhibitory effect of ginsenoside derivatives on AGE formation. Herein, we assessed the activity of 22 ginsenosides, most of which significantly inhibited fluorescent AGE formation. Notably, ginsenoside Rh2, ginsenoside Rh1, and compound K exhibited the most potent AGE inhibitory potential with IC50 values of 3.38, 8.42, and 10.85 µM, respectively. The structure- activity relationship revealed that the presence of sugar moieties, hydroxyl groups, and their linkages, and the stereostructure of the ginsenoside skeleton played an important role in the inhibition of AGE formation. Furthermore, the inhibitory activity of the most active ginsenoside Rh2 on fructose-glucose-mediated protein glycation and oxidation of bovine serum albumin (BSA) was explored. Rh2 (0.1-12.5 µM) inhibited the formation of fluorescent AGE and non-fluorescent AGE, as well as the level of fructosamine and prevented protein oxidation by decreasing protein carbonyl formation and protein thiol group modification. Rh2 also suppressed the formation of the ß-cross amyloid structure of BSA. Ginsenosides might be promising new anti-glycation agents for the prevention of diabetic complications via inhibition of AGE formation and oxidation-dependent protein damage.


Assuntos
Descoberta de Drogas , Ginsenosídeos/farmacologia , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Panax/química , Soroalbumina Bovina/antagonistas & inibidores , Animais , Bovinos , Relação Dose-Resposta a Droga , Frutose/metabolismo , Ginsenosídeos/química , Ginsenosídeos/isolamento & purificação , Glucose/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação/efeitos dos fármacos , Estrutura Molecular , Soroalbumina Bovina/metabolismo , Relação Estrutura-Atividade
4.
Chem Biodivers ; 18(6): e2100185, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33860977

RESUMO

The genus Rumex (Polygonaceae) is distributed worldwide and the different species belonging to it are used in traditional medicine. The present study aimed at the evaluation of the phytochemical profile and the biochemical properties of methanolic extracts from different parts (roots, stems, and leaves) of Rumex roseus, a wild local Tunisian plant traditionally used as food. The phytochemical analysis on the extracts was performed using standard colorimetric procedures, HPLC-DAD, and HPLC-DAD-ESI-MS; then, several in vitro cell-free assays have been used to estimate their antioxidant/free radical scavenging capability (TAC-PM, DPPH, TEAC, FRAP, ORAC, SOD-like activity, and HOCl-induced albumin degradation). Additionally, anti-inflammatory effect of these extracts was evaluated in an in vitro model of acute intestinal inflammation in differentiated Caco-2 cells. The results showed that the methanolic extracts from stems and, especially, leaves contain substantial amounts of flavones (apigenin and luteolin, together with their derivatives), while the extract from roots is characterized by the presence of tannins and quinic acid derivatives. All the extracts appeared endowed with excellent antioxidant/free radical scavenging properties. In particular, the extract from roots was characterized by a remarkable activity, probably due to its different and peculiar polyphenolic composition. Furthermore, both Rumex roseus roots and stems extracts demonstrated an anti-inflammatory effect in intestinal epithelial cells, reducing TNF-α-induced gene expression of IL-6 and IL-8. In conclusion, R. roseus methanolic extracts have shown to be potential sources of bioactive compounds to be used in the prevention and treatment of pathologies related to oxidative stress and inflammation.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Inflamação/tratamento farmacológico , Metanol/química , Compostos Fitoquímicos/farmacologia , Rumex/química , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Compostos de Bifenilo/antagonistas & inibidores , Células CACO-2 , Bovinos , Células Cultivadas , Humanos , Camundongos , Células NIH 3T3 , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Picratos/antagonistas & inibidores , Soroalbumina Bovina/antagonistas & inibidores
5.
ACS Appl Mater Interfaces ; 13(7): 8006-8014, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33590757

RESUMO

Hydrogels formed from peptide self-assembly are a class of materials that are being explored for their utility in tissue engineering, drug and cell delivery, two- and three-dimensional cell culture, and as adjuvants in surgical procedures. Most self-assembled peptide gels can be syringe-injected in vivo to facilitate the local delivery of payloads, including cells, directly to the targeted tissue. Herein, we report that highly positively charged peptide gels are inherently toxic to cells, which would seem to limit their utility. However, adding media containing fetal bovine serum, a common culture supplement, directly transforms these toxic gels into cytocompatible materials capable of sustaining cell viability even in the absence of added nutrients. Multistage mass spectrometry showed that at least 40 serum proteins can absorb to a gel's surface through electrostatic attraction ameliorating its toxicity. Further, cell-based studies employing model gels having only bovine serum albumin, fetuin-A, or vitronectin absorbed to the gel surface showed that single protein additives can also be effective depending on the identity of the cell line. Separate studies employing these model gels showed that the mechanism(s) responsible for mitigating apoptosis involve both the pacification of gel surface charge and adsorbed protein-mediated cell signaling events that activate both the PI3/Akt and MAPK/ERK pathways which are known to facilitate resistance to stress-induced apoptosis and overall cell survival.


Assuntos
Hidrogéis/farmacologia , Peptídeos/farmacologia , Soroalbumina Bovina/antagonistas & inibidores , Vitronectina/antagonistas & inibidores , alfa-2-Glicoproteína-HS/antagonistas & inibidores , Adsorção , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Géis/síntese química , Géis/química , Géis/farmacologia , Humanos , Hidrogéis/síntese química , Hidrogéis/química , Tamanho da Partícula , Peptídeos/síntese química , Peptídeos/química , Soroalbumina Bovina/química , Propriedades de Superfície , Vitronectina/química , alfa-2-Glicoproteína-HS/química , alfa-2-Glicoproteína-HS/isolamento & purificação
6.
Biometals ; 33(6): 353-364, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32997290

RESUMO

Age-related complications including protein alterations seen in diabetes and Alzheimer's disease are a major issue due to their accumulation and deleterious effects. This report aims to investigate the effect of zinc supplementation on the anti-glycoxidation activity of carnosine on the in vitro model of albumin-based protein modification. Besides, the therapeutic effect of this combination was tested through the addition of the molecules in tandem (co-treatment) or post initiation (post-treatment) of the protein modification process. Glycation was induced via the addition of glucose to which carnosine (5 mM) alone or with various zinc concentrations (125, 250, and 500 µM) were added either at 0 h or 24 h post-glycation induction. On the other hand, protein oxidation was induced using chloramine T (20 mM) and treated in the same way with carnosine and zinc. The different markers of glycation (advanced glycation end products (AGEs), dityrosine, and beta-sheet formation (aggregation)) and oxidation (AOPP, advanced oxidation protein products) were estimated via fluorescence and colorimetric assays. Zinc addition induced a significant enhancement of carnosine activity by reducing albumin modification that outperformed aminoguanidine both in the co- and post-treatment protocols. Zinc demonstrated a supplementary effect in combination with carnosine highlighting its potential in the protection against age-related protein modifications processes such as the ones found in diabetes.


Assuntos
Carnosina/farmacologia , Modelos Biológicos , Soroalbumina Bovina/antagonistas & inibidores , Zinco/farmacologia , Animais , Bovinos , Glicosilação , Oxirredução , Soroalbumina Bovina/metabolismo
7.
Chem Res Toxicol ; 33(9): 2351-2360, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32786540

RESUMO

2,4-Dichlorophenol (2,4-DCP), an environmental pollutant, was reported to cause hepatotoxicity. The biochemical mechanisms of 2,4-DCP induced liver injury remain unknown. The present study showed that 2,4-DCP is chemically reactive and spontaneously reacts with GSH and bovine serum albumin to form GSH conjugates and BSA adducts. The observed conjugation/adduction apparently involved the addition of GSH and departure of chloride via the ipso substitution pathway. Two biliary GSH conjugates and one urinary N-acetyl cysteine conjugate were observed in rats given 2,4-DCP. The N-acetyl cysteine conjugate was chemically synthesized and characterized by mass spectrometry and NMR. As expected, 2,4-DCP was found to modify hepatic protein at cysteine residues in vivo by the same chemistry. The observed protein adduction reached its peak at 15 min and revealed dose dependency. The new findings allowed us to better understand the mechanisms of the toxic action of 2,4-DCP.


Assuntos
Clorofenóis/farmacologia , Poluentes Ambientais/farmacologia , Glutationa/antagonistas & inibidores , Soroalbumina Bovina/antagonistas & inibidores , Animais , Bovinos , Clorofenóis/química , Cisteína/antagonistas & inibidores , Cisteína/química , Poluentes Ambientais/química , Glutationa/química , Masculino , Camundongos , Camundongos Endogâmicos , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Soroalbumina Bovina/química
8.
Biopolymers ; 111(8): e23383, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32604473

RESUMO

Amyloids are a group of proteins that are capable of forming aggregated amyloid fibrils, which is responsible for many neurodegenerative diseases including Alzheimer's disease (AD). In our previous study, synthesis and characterization of star-shaped poly(D,L-lactide)-b-gelatin (ss-pLG) have been reported. In the present work, we have extended our work to study ss-pLG against protein aggregation. To the best of our knowledge, this is the first report on the inhibition of amyloid fibrillation by protein grafted poly(D,L-lactide). Bovine serum albumin (BSA) was chosen as the model protein, which readily forms fibril under high temperature. We found that ss-pLG efficiently suppressed the fibril formation of BSA compared with gelatin (Gel), which was supported by Thioflavin T assay, circular dichroism (CD) spectroscopy and atomic force microscopy (AFM). In addition, ss-pLG significantly curtailed amyloid-induced hemolysis. We also found that incubation of ss-pLG with neuroblastoma cells (MC65) protected the cells from fibril-induced toxicity. The rescuing efficiency of ss-pLG was better than Gel, which could be attributed to the reduced lamella thickness in branched ss-pLG. These results suggest the significance of gelatin grafting, which probably allows gelatin to interact with the key residues of the amyloidogenic core of BSA effectively.


Assuntos
Amiloide/química , Gelatina/química , Neuroblastoma/tratamento farmacológico , Poliésteres/farmacologia , Agregados Proteicos/efeitos dos fármacos , Soroalbumina Bovina/antagonistas & inibidores , Animais , Bovinos , Humanos , Técnicas In Vitro , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Poliésteres/química , Soroalbumina Bovina/metabolismo , Células Tumorais Cultivadas
9.
Chem Res Toxicol ; 33(8): 2054-2071, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32600046

RESUMO

Understanding nanomaterial (NM)-protein interactions is a key issue in defining the bioreactivity of NMs with great impact for nanosafety. In the present work, the complex phenomena occurring at the bio/nano interface were evaluated in a simple case study focusing on NM-protein binding thermodynamics and protein stability for three representative metal oxide NMs, namely, zinc oxide (ZnO; NM-110), titanium dioxide (TiO2; NM-101), and silica (SiO2; NM-203). The thermodynamic signature associated with the NM interaction with an abundant protein occurring in most cell culture media, bovine serum albumin (BSA), has been investigated by isothermal titration and differential scanning calorimetry. Circular dichroism spectroscopy offers additional information concerning adsorption-induced protein conformational changes. The BSA adsorption onto NMs is enthalpy-controlled, with the enthalpic character (favorable interaction) decreasing as follows: ZnO (NM-110) > SiO2 (NM-203) > TiO2 (NM-101). The binding of BSA is spontaneous, as revealed by the negative free energy, ΔG, for all systems. The structural stability of the protein decreased as follows: TiO2 (NM-101) > SiO2 (NM-203) > ZnO (NM-110). As protein binding may alter NM reactivity and thus the toxicity, we furthermore assessed its putative influence on DNA damage, as well as on the expression of target genes for cell death (RIPK1, FAS) and oxidative stress (SOD1, SOD2, CAT, GSTK1) in the A549 human alveolar basal epithelial cell line. The enthalpic component of the BSA-NM interaction, corroborated with BSA structural stability, matched the ranking for the biological alterations, i.e., DNA strand breaks, oxidized DNA lesions, cell-death, and antioxidant gene expression in A549 cells. The relative and total content of BSA in the protein corona was determined using mass-spectrometry-based proteomics. For the present case study, the thermodynamic parameters at bio/nano interface emerge as key descriptors for the dominant contributions determining the adsorption processes and NMs toxicological effect.


Assuntos
Nanoestruturas/toxicidade , Soroalbumina Bovina/antagonistas & inibidores , Dióxido de Silício/toxicidade , Termodinâmica , Titânio/toxicidade , Óxido de Zinco/toxicidade , Células A549 , Adsorção , Animais , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Nanoestruturas/química , Soroalbumina Bovina/química , Dióxido de Silício/química , Titânio/química , Células Tumorais Cultivadas , Óxido de Zinco/química
10.
Biophys Chem ; 260: 106367, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32200213

RESUMO

This study was aimed to investigate the inhibition effect of thiol-type antioxidants on protein oxidative aggregation caused by free radicals and the underlying mechanisms using six different thiol-type antioxidants (N-acetyl-L-cysteine, methionine, taurine, alpha-lipoic acid, glutathione and thioproline), Cu2+-H2O2 as a free radical generator (mainly a hydroxyl radical generator) and bovine serum albumin as the model protein. The inhibition effect of these antioxidants on protein oxidative aggregation and protective effect against oxidative damage in mouse brain tissues were investigated using SDS-PAGE, intrinsic fluorescence, simultaneous fluorescence, thioflavin T fluorescence, Congo red absorbance and inverted microscope. The results showed that all six antioxidants could inhibit protein oxidative aggregation by scavenging free radicals. In addition, alpha-lipoic acid could also bind to proteins via hydrophobic interactions and thioproline could bind to proteins via hydrogen bonds and van der Waals forces, thereby showing much stronger inhibition effect than others. Moreover, alpha-lipoic acid and thioproline could effectively prevent oxidative damage of mouse brain tissues. These results suggest that alpha-lipoic acid and thioproline can effectively inhibit free radical-induced protein aggregation and brain damage, which are worth testing for further anti-Alzheimer properties.


Assuntos
Antioxidantes/farmacologia , Substâncias Protetoras/farmacologia , Soroalbumina Bovina/antagonistas & inibidores , Compostos de Sulfidrila/farmacologia , Animais , Antioxidantes/química , Encéfalo/efeitos dos fármacos , Bovinos , Radicais Livres/antagonistas & inibidores , Radicais Livres/química , Radicais Livres/farmacologia , Camundongos , Estrutura Molecular , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/química , Agregados Proteicos/efeitos dos fármacos , Soroalbumina Bovina/metabolismo , Compostos de Sulfidrila/química
11.
J Fluoresc ; 30(1): 193-204, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31925653

RESUMO

Binding strength of the anti-diabetic drugs chlorpropamide (CPM) and tolbutamide (TBM) with model protein bovine serum albumin (BSA) shows strong modulation in presence of colloidal gold nanoparticles (AuNP). Intrinsic tryptophan fluorescence of both the native BSA and BSA-AuNP conjugate quenched in presence of the drugs. Stern-Volmer quenching constant (KSV) of CPM binding to BSA-AuNP conjugate at different temperatures is almost twice (6.76~14.76 × 103 M-1) than the corresponding values in native BSA (3.21~5.72 × 103 M-1). However, the calculated KSV values with TBM show certain degree of reduction in presence of AuNP (6.46× 103 M-1), while comparing with native BSA (8.83 × 103 M-1). The binding mode of CPM towards BSA-AuNP conjugate is mainly through hydrophobic forces; whereas, TBM binding is identified to be Van der Waal's and hydrogen bonding type of interaction. Fluorescence lifetime analysis confirms static type of quenching for the intrinsic tryptophan fluorescence of BSA as well as BSA-AuNP conjugate with addition of CPM and TBM at different concentrations. The α-helical content in the secondary structure of BSA is decreased to 48.32% and 45. 28% in presence of AuNP, when the concentration of CPM is 0.08 mM and 0.16 mM in comparison with that of native protein (50.13%). On the other hand, the intensity of sugar induced advanced glycated end (AGE) product fluorescence is decreased by 55% and 80% at 0.13 nM and 0.68 nM AuNP, respectively. Change in the binding strength of the drugs with transport protein and reduced AGE product formation in presence of AuNP could lead to a major development in the field of nanomedicine and associated drug delivery techniques. Graphical Abstract Modulated drug binding ability and AGE product formation of serum proteins in presence of AuNP.


Assuntos
Clorpropamida/farmacologia , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Hipoglicemiantes/farmacologia , Soroalbumina Bovina/química , Tolbutamida/farmacologia , Adsorção , Animais , Sítios de Ligação/efeitos dos fármacos , Bovinos , Clorpropamida/química , Coloides/química , Produtos Finais de Glicação Avançada/metabolismo , Ouro/química , Ouro/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Hipoglicemiantes/química , Nanopartículas Metálicas/química , Tamanho da Partícula , Soroalbumina Bovina/antagonistas & inibidores , Soroalbumina Bovina/metabolismo , Espectrometria de Fluorescência , Propriedades de Superfície , Temperatura , Tolbutamida/química
12.
Drug Des Devel Ther ; 13: 3735-3751, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31802848

RESUMO

BACKGROUND: Membranous glomerulonephritis (MGN) is a nephrotic syndrome which shows the symptoms of heavy proteinuria and immune complex deposition in glomerular sub-epithelial space and finally leads to chronic kidney disease. Isoliquiritin (ILQ) is a flavonoid with a wide range of pharmacological properties, including antioxidant and anti-inflammatory activity. The present study was undertaken to investigate the possible mechanisms by which ILQ ameliorates cationic bovine serum albumin (C-BSA) induced MGN in rat model. METHODS: The MGN condition was confirmed by the 24 hr proteinuria and ILQ (10 mg/kg/bw/day) or TPCA-1 (10 mg/kg/bw/day; IKKß inhibitor) was administered to successfully induce rats for 4 weeks. RESULTS: The present study revealed that MGN rats treated with ILQ showed significantly ameliorated kidney dysfunction and histopathological changes in kidneys. ILQ treated MGN rats alleviated the oxidative stress and were presented with increased anti-oxidative status in kidneys. Furthermore, ILQ treatment to MGN rats showed anti-oxidative effects through the prominent stimulation of Nrf2 signaling pathway and inhibition of Keap1, which consequently increases the Nrf2 nuclear translocation and thereby induces expression of NQO1 and HO-1. In addition, ILQ-treated MGN rats demonstrated anti-inflammatory effects by inhibiting NF-κB signaling pathway through decreased mRNA and protein expressions of NF-κB p65, IKKß, COX-2, iNOS, p38-MAPK, p-p38-MAPK, TNF-α, IL-1ß, IL-8, ICAM-1, E-selectin and VCAM-1 and reduced the nuclear translocation of NF-κB p65. CONCLUSION: The protective effect of ILQ on MGN can be explained by its anti-oxidative and anti-inflammatory activities, which in turn due to the activation of Nrf2 and downregulation of NF-κB pathway.


Assuntos
Chalcona/análogos & derivados , Modelos Animais de Doenças , Glomerulonefrite Membranosa/prevenção & controle , Glucosídeos/farmacologia , Inflamação/tratamento farmacológico , Substâncias Protetoras/farmacologia , Soroalbumina Bovina/antagonistas & inibidores , Animais , Biomarcadores/análise , Cátions/antagonistas & inibidores , Chalcona/administração & dosagem , Chalcona/farmacologia , Relação Dose-Resposta a Droga , Glomerulonefrite Membranosa/induzido quimicamente , Glucosídeos/administração & dosagem , Inflamação/metabolismo , Injeções Intravenosas , Masculino , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/administração & dosagem , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
13.
Chem Biodivers ; 16(11): e1900315, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31532059

RESUMO

Here, we report the synthesis and characterization of four new aroyl-hydrazone derivatives L1 -L4 , and their structural as well as biological activities have been explored. In addition to docking with bovine serum albumin (BSA) and duplex DNA, the experimental results demonstrate the effective binding of L1 -L4 with BSA protein and calf thymus DNA (ct-DNA) which is in agreement with the docking results. Further biological activities of L1 -L4 have been examined through molecular docking with different proteins which are involved in the propagation of viral or cancer diseases. L1 shows best binding affinity with influenza A virus polymerase PB2 subunit (2VY7) with binding energy -11.42 kcal/mol and inhibition constant 4.23 nm, whereas L2 strongly bind with the hepatitis C virus NS5B polymerase (2WCX) with binding energy -10.47 kcal/mol and inhibition constant 21.06 nm. Ligand L3 binds strongly with TGF-beta receptor 1 (3FAA) and L4 with cancer-related EphA2 protein kinases (1MQB) with binding energy -10.61 kcal/mol, -10.02 kcal/mol and inhibition constant 16.67 nm and 45.41 nm, respectively. The binding energies of L1 -L4 are comparable with binding energies of their proven inhibitors. L1 , L3 and L4 can be considered as both 3FAA and 1MQB dual targeting anticancer agents, while L1 and L3 are both 2VY7 and 2WCX dual targeting antiviral agents. On the other side, L2 and L4 target only one virus related target (2WCX). Furthermore, the geometry optimizations of L1 -L4 were performed via density functional theory (DFT). Moreover, all four ligands (L1 -L4 ) were characterized by NMR, FT-IR, ESI-MS, elemental analysis and their molecular structures were validated by single crystal X-ray diffraction studies.


Assuntos
Antineoplásicos/farmacologia , Antivirais/farmacologia , DNA/antagonistas & inibidores , Desenho de Fármacos , Hidrazonas/farmacologia , Simulação de Acoplamento Molecular , Soroalbumina Bovina/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antivirais/síntese química , Antivirais/química , Bovinos , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , DNA/química , Teoria da Densidade Funcional , Ensaios de Seleção de Medicamentos Antitumorais , Hepacivirus/efeitos dos fármacos , Hidrazonas/síntese química , Hidrazonas/química , Vírus da Influenza A/efeitos dos fármacos , Ligantes , Testes de Sensibilidade Microbiana , Estrutura Molecular , Soroalbumina Bovina/química
14.
Colloids Surf B Biointerfaces ; 181: 270-277, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31153022

RESUMO

It is very important to examine carefully the potential adverse effects of engineered nanoparticles (NPs) on human health and environments. In the present study, we have investigated the impact of interfacial serum proteins on the cell membrane disruption induced by silica NPs of primary diameter of 55-68 nm in four types of cells (erythrocytes, Jurkat, B16F10, and J774.1). The silica-induced membranolysis was repressed by addition of 1-2% serum into culture media, where the adhesion amount of the FBS-coated silica NPs onto a cell surface seemed comparable with that of the bare silica NPs. The nonspecific attraction between the bare silica and J774.1 cell membrane surfaces was masked by pretreatment of the silica surface with serum albumin, whereas the serum proteins-coated silica surface exhibited the attractive interactions with the cell membrane due to specific binding between some of adsorbed proteins thereon and the membrane receptors. The difference in silica-cell interaction between the nonspecific and specific attractions would explain the reason why interfacial serum proteins reduced the membranolysis without prevention of silica NPs adhering to cell surfaces.


Assuntos
Membrana Celular/efeitos dos fármacos , Nanopartículas/química , Soroalbumina Bovina/antagonistas & inibidores , Dióxido de Silício/farmacologia , Animais , Bovinos , Células Cultivadas , Eritrócitos/efeitos dos fármacos , Humanos , Células Jurkat , Linfócitos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Melanócitos/efeitos dos fármacos , Tamanho da Partícula , Coelhos , Soroalbumina Bovina/química , Dióxido de Silício/química , Propriedades de Superfície
15.
J Biomol Struct Dyn ; 37(16): 4238-4250, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30600777

RESUMO

Better solubility and improved toxicity of palladium complexes compared with cisplatin were major reasons for synthesis of novel Pd(II) complex, [Pd(8Q)(bpy)]NO3 (8Q=8-hydroxyquinolinate, bpy=2,2'-bipyridine). Interaction between the [Pd(8Q)(bpy)]NO3 complex and calf thymus DNA in aqueous solution has been investigated by circular dichroism (CD), UV-Visible absorption and fluorescence spectroscopic techniques. These experiments showed that prepared Pd(II) complex can effectively intercalate into CT-DNA and weakly bind to BSA in which the bovine serum albumin molecule was unfolded slightly. The cytotoxicity of the prepared complex has been evaluated on the MCF-7 and DU145 cell lines by MTT and TUNEL assay. The MTT results were showed that in DU145, the CC50 values of [Pd(8Q)(bpy)]NO3 and cisplatin are very close together (10.4 and 8.3 µM, respectively), unlike MCF-7. Accordingly, TUNEL assay was performed on DU145 and apoptosis was clearly obvious by 43% DNA fragmentation in the treated cell lines. So, we can suggest the [Pd(8Q)(bpy)]NO3 as alternative drug for cisplatin in the future which has great potential in DNA denaturation and apoptosis specially on prostate cancer. PdO nanoparticles were successfully prepared without supported any surfactants via sonochemical approach. The synthesized PdONPs were characterized using UV-Vis and FTIR spectroscopy, X-ray diffraction (XRD), dynamic light scattering (DLS), energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Communicated by Ramaswamy H. Sarma.


Assuntos
Proliferação de Células/efeitos dos fármacos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Paládio/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Dicroísmo Circular , Cisplatino/química , Cisplatino/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Humanos , Substâncias Intercalantes/química , Substâncias Intercalantes/farmacologia , Células MCF-7 , Simulação de Acoplamento Molecular , Desnaturação de Ácido Nucleico/efeitos dos fármacos , Paládio/química , Ligação Proteica/efeitos dos fármacos , Soroalbumina Bovina/antagonistas & inibidores , Soroalbumina Bovina/química , Ultrassom
16.
Biomolecules ; 9(12)2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31888262

RESUMO

The development of advanced glycation end-products (AGEs) inhibitors is considered to have therapeutic potential in diabetic complications inhibiting the loss of the biomolecular function. In the present study, zinc oxide nanoparticles (ZnO-NPs) were synthesized from aqueous leaf extract of Morus indica and were characterized by various techniques such as ultraviolet (UV)-Vis spectroscopy, Powder X-Ray Diffraction (PXRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). Further, the inhibition of AGEs formation after exposure to ZnO-NPs was investigated by in-vitro, in-vivo, and molecular docking studies. Biochemical and histopathological changes after exposure to ZnO-NPs were also studied in streptozotocin-induced diabetic rats. ZnO-NPs showed an absorption peak at 359 nm with a purity of 92.62% and ~6-12 nm in size, which is characteristic of nanoparticles. The images of SEM showed agglomeration of smaller ZnO-NPs and EDS authenticating that the synthesized nanoparticles were without impurities. The biosynthesized ZnO-NPs showed significant inhibition in the formation of AGEs. The particles were effective against methylglyoxal (MGO) mediated glycation of bovine serum albumin (BSA) by inhibiting the formation of AGEs, which was dose-dependent. Further, the presence of MGO resulted in complete damage of biconcave red blood corpuscles (RBCs) to an irregular shape, whereas the morphological changes were prevented when they were treated with ZnO-NPs leading to the prevention of complications caused due to glycation. The administration of ZnO-NPs (100 mg Kg-1) in streptozotocin(STZ)-induced diabetic rats reversed hyperglycemia and significantly improved hepatic enzymes level and renal functionality, also the histopathological studies revealed restoration of kidney and liver damage nearer to normal conditions. Molecular docking of BSA with ZnO-NPs confirms that masking of lysine and arginine residues is one of the possible mechanisms responsible for the potent antiglycation activity of ZnO-NPs. The findings strongly suggest scope for exploring the therapeutic potential of diabetes-related complications.


Assuntos
Eritrócitos/efeitos dos fármacos , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Simulação de Acoplamento Molecular , Morus/química , Nanopartículas/química , Aldeído Pirúvico/antagonistas & inibidores , Óxido de Zinco/farmacologia , Animais , Bovinos , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Eritrócitos/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Hiperglicemia/induzido quimicamente , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Masculino , Morus/metabolismo , Nanopartículas/metabolismo , Aldeído Pirúvico/farmacologia , Ratos , Ratos Wistar , Soroalbumina Bovina/antagonistas & inibidores , Soroalbumina Bovina/metabolismo , Estreptozocina , Óxido de Zinco/química , Óxido de Zinco/metabolismo
18.
Biochemistry (Mosc) ; 83(1): 60-68, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29534670

RESUMO

Sodium dodecyl sulfate (SDS), as an anionic surfactant, can induce protein conformational changes. Recent investigations demonstrated different effects of SDS on protein amyloid aggregation. In the present study, the effect of SDS on amyloid aggregation of bovine serum albumin (BSA) was evaluated. BSA transformed to ß-sheet-rich amyloid aggregates upon incubation at pH 7.4 and 65°C, as demonstrated by thioflavin T fluorescence, circular dichroism, and transmission electron microscopy. SDS at submicellar concentrations inhibited BSA amyloid aggregation with IC50 of 47.5 µM. The inhibitory effects of structural analogs of SDS on amyloid aggregation of BSA were determined to explore the structure-activity relationship, with results suggesting that both anionic and alkyl moieties of SDS were critical, and that an alkyl moiety with chain length ≥10 carbon atoms was essential to amyloid inhibition. We attributed the inhibitory effect of SDS on BSA amyloid aggregation to interactions between the detergent molecule and the fatty acid binding sites on BSA. The bound SDS stabilized BSA, thereby inhibiting protein transformation to amyloid aggregates. This study reports for the first time that the inhibitory effect of SDS on albumin fibrillation is closely related to its alkyl structure. Moreover, the specific binding of SDS to albumin is the main driving force in amyloid inhibition. This study not only provides fresh insight into the role of SDS in amyloid aggregation of serum albumin, but also suggests rational design of novel anti-amyloidogenic reagents based on specific-binding ligands.


Assuntos
Proteínas Amiloidogênicas/antagonistas & inibidores , Soroalbumina Bovina/antagonistas & inibidores , Dodecilsulfato de Sódio/farmacologia , Tensoativos/farmacologia , Proteínas Amiloidogênicas/metabolismo , Animais , Bovinos , Relação Dose-Resposta a Droga , Micelas , Tamanho da Partícula , Agregados Proteicos/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Dodecilsulfato de Sódio/química , Relação Estrutura-Atividade , Propriedades de Superfície , Tensoativos/química
19.
Biomed Pharmacother ; 100: 83-92, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29425747

RESUMO

Annona muricata leaves are used in traditional medicine to manage diabetes mellitus and its complications. The aim of this study was to evaluate the potential in vitro antidiabetic properties of Annona muricata leaf by identifying its main phytochemical constituents and characterizing the phenolic-enriched fractions for their in vitro antioxidant capacity and inhibitory activities against glycoside and lipid hydrolases, advanced glycation end-product formation and lipid peroxidation. Ethanol extract of A. muricata leaf was subjected to a liquid-liquid partitioning and its fractions were used in enzymatic assays to evaluate their inhibitory potential against α-amylase, α-glucosidase and lipase, as well as their antioxidant (DPPH, ORAC, FRAP and Fe2+-ascorbate-induced lipid peroxidation assays) and anti-glycation (BSA-fructose, BSA-methylglyoxal and arginine-methylglyoxal models) capacities. In addition, identification of the main bioactive compounds of A. muricata leaf by HPLC-ESI-MS/MS analysis was carried out. Ethyl acetate (EtOAc) and n-butanol (BuOH) fractions showed, respectively, antioxidant properties (ORAC 3964 ±â€¯53 and 2707 ±â€¯519 µmol trolox eq g-1, FRAP 705 ±â€¯35 and 289 ±â€¯18 µmol trolox eq g-1, and DPPH IC50 4.3 ±â€¯0.7 and 9.3 ±â€¯0.8 µg mL-1) and capacity to reduce liver lipid peroxidation (p < .01). Also, EtOAc and BuOH, respectively, inhibited glycation in BSA-fructose (IC50 45.7 ±â€¯13.5 and 61.9 ±â€¯18.2 µg mL-1), BSA-methylglyoxal (IC50 166.1 ±â€¯21.6 and 413.2 ±â€¯49.5 µg mL-1) and arginine-methylglyoxal (IC50 437.9 ±â€¯89.0 and 1191.0 ±â€¯199.0 µg mL-1) assays, α-amylase (IC50 9.2 ±â€¯2.3 and 6.1 ±â€¯1.6 µg mL-1), α-glucosidase (IC50 413.1 ±â€¯121.1 and 817.4 ±â€¯87.9 µg mL-1) and lipase (IC50 74.2 ±â€¯30.1 and 120.3 ±â€¯50.5 µg.mL-1), and presented lower cytotoxicity, when compared to the other fractions and crude extract. Various biomolecules known as potent antioxidants were identified in these fractions, such as chlorogenic and caffeic acids, procyanidins B2 and C1, (epi)catechin, quercetin, quercetin-hexosides and kaempferol. This study presents new biological activities not yet described for A. muricata, which contributes to the understanding of the potential effectiveness in the use of the A. muricata leaf, especially its polyphenols-enriched fractions, for the management of diabetes mellitus and its complications.


Assuntos
Annona/química , Antioxidantes/farmacologia , Inibidores Enzimáticos/farmacologia , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Animais , Antioxidantes/isolamento & purificação , Inibidores Enzimáticos/isolamento & purificação , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Hipoglicemiantes/isolamento & purificação , Lipase/antagonistas & inibidores , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Células NIH 3T3 , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Ratos Wistar , Soroalbumina Bovina/antagonistas & inibidores , alfa-Amilases/antagonistas & inibidores , alfa-Glucosidases/metabolismo
20.
J Pharm Biomed Anal ; 150: 436-451, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29291586

RESUMO

Protein glycation in the body is one of the main reasons of diabetes complications. The electrochemical studies on the inhibitory mechanism of glycation are rather scarce. Thus, it is important to investigate the role of electrochemistry in the glycation process with basic chemometric frameworks. The aim of the current study is to investigate the anti-glycation effects of candidate compounds from thyme species i.e. thymol and p-cymene. To gain this objective, the electrochemical and absorption responses of glycated bovine serum albumin (BSA) in the absence and presence of inhibitors were recorded after 20 day of incubation. Due to the presence of multiple binding sites on BSA for the interaction with glucose, there are overlapping between the signals of these sites. Therefore, it is reasonable to use chemometric methods such as parallel factor analysis (PARAFAC) and alternating penalty trilinear decomposition (APTLD). The obtained results from chemometric methods showed that the solution of thymol at 5.0 mg mL-1 mixture with p-cymene (2.5 mg mL-1) was effective than thymol of 5.0 mg mL-1. Computational docking studies revealed the interaction pattern of thymol with BSA. The binding affinity of thymol was greater than glucose which it is in well agreement with the experimental data.


Assuntos
Técnicas Eletroquímicas , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Hipoglicemiantes/farmacologia , Simulação de Acoplamento Molecular , Monoterpenos/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Soroalbumina Bovina/antagonistas & inibidores , Espectrofotometria Ultravioleta , Timol/farmacologia , Arginina , Sítios de Ligação , Cimenos , Sinergismo Farmacológico , Produtos Finais de Glicação Avançada/química , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação , Hipoglicemiantes/química , Hipoglicemiantes/metabolismo , Cinética , Lisina , Monoterpenos/química , Monoterpenos/metabolismo , Ligação Proteica , Conformação Proteica , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Relação Estrutura-Atividade , Timol/química , Timol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA