Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Am J Bot ; 111(5): e16348, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38764292

RESUMO

PREMISE: Shared geographical patterns of population genetic variation among related species is a powerful means to identify the historical events that drive diversification. The Sphagnum capillifolium complex is a group of closely related peat mosses within the Sphagnum subgenus Acutifolia and contains several circumboreal species whose ranges encompass both glaciated and unglaciated regions across the northern hemisphere. In this paper, we (1) inferred the phylogeny of subg. Acutifolia and (2) investigated patterns of population structure and genetic diversity among five circumboreal species within the S. capillifolium complex. METHODS: We generated RAD sequencing data from most species of the subg. Acutifolia and samples from across the distribution ranges of circumboreal species within the S. capillifolium complex. RESULTS: We resolved at least 14 phylogenetic clusters within the S. capillifolium complex. Five circumboreal species show some common patterns: One population system comprises plants in eastern North America and Europe, and another comprises plants in the Pacific Northwest or around the Beringian and Arctic regions. Alaska appears to be a hotspot for genetic admixture, genetic diversity, and sometimes endemic subclades. CONCLUSIONS: Our results support the hypothesis that populations of five circumboreal species within the S. capillifolium complex survived in multiple refugia during the last glacial maximum. Long-distance dispersal out of refugia, population bottlenecks, and possible adaptations to conditions unique to each refugium could have contributed to current geographic patterns. These results indicate the important role of historical events in shaping the complex population structure of plants with broad distribution ranges.


Assuntos
Variação Genética , Filogenia , Sphagnopsida , Sphagnopsida/genética
2.
Ann Bot ; 132(3): 499-512, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37478307

RESUMO

BACKGROUND AND AIMS: New plant species can evolve through the reinforcement of reproductive isolation via local adaptation along habitat gradients. Peat mosses (Sphagnaceae) are an emerging model system for the study of evolutionary genomics and have well-documented niche differentiation among species. Recent molecular studies have demonstrated that the globally distributed species Sphagnum magellanicum is a complex of morphologically cryptic lineages that are phylogenetically and ecologically distinct. Here, we describe the architecture of genomic differentiation between two sister species in this complex known from eastern North America: the northern S. diabolicum and the largely southern S. magniae. METHODS: We sampled plant populations from across a latitudinal gradient in eastern North America and performed whole genome and restriction-site associated DNA sequencing. These sequencing data were then analyzed computationally. KEY RESULTS: Using sliding-window population genetic analyses we find that differentiation is concentrated within 'islands' of the genome spanning up to 400 kb that are characterized by elevated genetic divergence, suppressed recombination, reduced nucleotide diversity and increased rates of non-synonymous substitution. Sequence variants that are significantly associated with genetic structure and bioclimatic variables occur within genes that have functional enrichment for biological processes including abiotic stress response, photoperiodism and hormone-mediated signalling. Demographic modelling demonstrates that these two species diverged no more than 225 000 generations ago with secondary contact occurring where their ranges overlap. CONCLUSIONS: We suggest that this heterogeneity of genomic differentiation is a result of linked selection and reflects the role of local adaptation to contrasting climatic zones in driving speciation. This research provides insight into the process of speciation in a group of ecologically important plants and strengthens our predictive understanding of how plant populations will respond as Earth's climate rapidly changes.


Assuntos
Sphagnopsida , Sphagnopsida/genética , Especiação Genética , Evolução Biológica , Genômica , Análise de Sequência de DNA , Seleção Genética
3.
Ann Bot ; 132(1): 77-94, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37417448

RESUMO

BACKGROUND AND AIMS: Sphagnum (peatmoss) comprises a moss (Bryophyta) clade with ~300-500 species. The genus has unparalleled ecological importance because Sphagnum-dominated peatlands store almost a third of the terrestrial carbon pool and peatmosses engineer the formation and microtopography of peatlands. Genomic resources for Sphagnum are being actively expanded, but many aspects of their biology are still poorly known. Among these are the degree to which Sphagnum species reproduce asexually, and the relative frequencies of male and female gametophytes in these haploid-dominant plants. We assess clonality and gametophyte sex ratios and test hypotheses about the local-scale distribution of clones and sexes in four North American species of the S. magellanicum complex. These four species are difficult to distinguish morphologically and are very closely related. We also assess microbial communities associated with Sphagnum host plant clones and sexes at two sites. METHODS: Four hundred and five samples of the four species, representing 57 populations, were subjected to restriction site-associated DNA sequencing (RADseq). Analyses of population structure and clonality based on the molecular data utilized both phylogenetic and phenetic approaches. Multi-locus genotypes (genets) were identified using the RADseq data. Sexes of sampled ramets were determined using a molecular approach that utilized coverage of loci on the sex chromosomes after the method was validated using a sample of plants that expressed sex phenotypically. Sex ratios were estimated for each species, and populations within species. Difference in fitness between genets was estimated as the numbers of ramets each genet comprised. Degrees of clonality [numbers of genets/numbers of ramets (samples)] within species, among sites, and between gametophyte sexes were estimated. Sex ratios were estimated for each species, and populations within species. Sphagnum-associated microbial communities were assessed at two sites in relation to Sphagnum clonality and sex. KEY RESULTS: All four species appear to engage in a mixture of sexual and asexual (clonal) reproduction. A single ramet represents most genets but two to eight ramets were dsumbers ansd text etected for some genets. Only one genet is represented by ramets in multiple populations; all other genets are restricted to a single population. Within populations ramets of individual genets are spatially clustered, suggesting limited dispersal even within peatlands. Sex ratios are male-biased in S. diabolicum but female-biased in the other three species, although significantly so only in S. divinum. Neither species nor males/females differ in levels of clonal propagation. At St Regis Lake (NY) and Franklin Bog (VT), microbial community composition is strongly differentiated between the sites, but differences between species, genets and sexes were not detected. Within S. divinum, however, female gametophytes harboured two to three times the number of microbial taxa as males. CONCLUSIONS: These four Sphagnum species all exhibit similar reproductive patterns that result from a mixture of sexual and asexual reproduction. The spatial patterns of clonally replicated ramets of genets suggest that these species fall between the so-called phalanx patterns, where genets abut one another but do not extensively mix because of limited ramet fragmentation, and the guerrilla patterns, where extensive genet fragmentation and dispersal result in greater mixing of different genets. Although sex ratios in bryophytes are most often female-biased, both male and female biases occur in this complex of closely related species. The association of far greater microbial diversity for female gametophytes in S. divinum, which has a female-biased sex ratio, suggests additional research to determine if levels of microbial diversity are consistently correlated with differing patterns of sex ratio biases.


Assuntos
Variação Genética , Sphagnopsida , Animais , Sphagnopsida/genética , Razão de Masculinidade , Células Germinativas Vegetais , Filogenia , Viverridae
4.
Int J Phytoremediation ; 25(13): 1762-1773, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36949727

RESUMO

Farmland soil pollution is a serious problem worldwide threatening environment and human health. Microbial communities plays a key role in soil function. The purpose of this study was to analyze the relationship between microbial structure and soil physicochemical properties under different heavy metal pollution levels, find out heavy metal tolerant species under different environmental conditions, then provide useful reference for the bioremediation of contaminated farmland. In this study, 16s rRNA high-throughput sequencing technology was used, multiple comparisons and correlation analyses of the data were performed using R software. The results showed that study area A was contaminated by heavy metal Cd, and study area A, B and C were contaminated by heavy metal Hg. From the analysis of the community structure of the samples, it can be seen that the dominant bacterial phyla were Proteobacteria, Acidobacteriota, Chloroflexi, Actinobacteria, and 10 others. Correlation and RDA analysis of samples showed that the heavy metals Hg and As in peat were related to dominant bacteria phyla, and the physicochemical properties of soil potential of hydrogen (pH), total nitrogen (TN), available nitrogen (AN), available phosphorus (AP), available potassium (AK), and soil organic matter (SOM) were significantly positively correlated with the bacteria (Acidobacterta and Chloroflexi). Moreover, Chloroflexi was more tolerant to the heavy metals Hg and As. There was a significant correlation between bacterial community abundance and diversity in the four study areas. Soil heavy metal concentration and soil physicochemical properties affected the main phyla, bacterial community abundance and bacterial diversity of peat soil. These results indicate that some microorganisms have strong tolerance to heavy metal pollution and certain heavy metal digestion ability, which can create a good environment for farmland soil remediation.


This manuscript is the first study on a new crop­Sphagnum in China. It mainly discusses the reaction of soil bacteria and microorganisms of Sphagnum in farmland to heavy metals and soil physical-chemical properties.


Assuntos
Mercúrio , Metais Pesados , Microbiota , Poluentes do Solo , Sphagnopsida , Humanos , Solo/química , Fazendas , Sphagnopsida/genética , RNA Ribossômico 16S/genética , Poluentes do Solo/análise , Microbiologia do Solo , Biodegradação Ambiental , Metais Pesados/toxicidade , Metais Pesados/análise , Bactérias/genética , China , Nitrogênio/análise , Nitrogênio/farmacologia
5.
mSystems ; 7(5): e0005522, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36036503

RESUMO

Understanding microbial niche differentiation along ecological and geochemical gradients is critical for assessing the mechanisms of ecosystem response to hydrologic variation and other aspects of global change. The lineage-specific biogeochemical roles of the widespread phylum Acidobacteria in hydrologically sensitive ecosystems, such as peatlands, are poorly understood. Here, we demonstrate that Acidobacteria sublineages in Sphagnum peat respond differentially to redox fluctuations due to variable oxygen (O2) availability, a typical feature of hydrologic variation. Our genome-centric approach disentangles the mechanisms of niche differentiation between the Acidobacteria genera Holophaga and Terracidiphilus in response to the transient O2 exposure of peat in laboratory incubations. Interlineage functional diversification explains the enrichment of the otherwise rare Holophaga in anoxic peat after transient O2 exposure in comparison to Terracidiphilus dominance in continuously anoxic peat. The observed niche differentiation of the two lineages is linked to differences in their carbon degradation potential. Holophaga appear to be primarily reliant on carbohydrate oligomers and amino acids, produced during the prior period of O2 exposure via the O2-stimulated breakdown of peat carbon, rich in complex aromatics and carbohydrate polymers. In contrast, Terracidiphilus genomes are enriched in diverse respiratory hydrogenases and carbohydrate active enzymes, enabling the degradation of complex plant polysaccharides into monomers and oligomers for fermentation. We also present the first evidence for the potential contribution of Acidobacteria in peat nitrogen fixation. In addition to canonical molybdenum-based diazotrophy, the Acidobacteria genomes harbor vanadium and iron-only alternative nitrogenases. Together, the results better inform the different functional roles of Acidobacteria in peat biogeochemistry under global change. IMPORTANCE Acidobacteria are among the most widespread and abundant members of the soil bacterial community, yet their ecophysiology remains largely underexplored. In acidic peat systems, Acidobacteria are thought to perform key biogeochemical functions, yet the mechanistic links between the phylogenetic and metabolic diversity within this phylum and peat carbon transformations remain unclear. Here, we employ genomic comparisons of Acidobacteria subgroups enriched in laboratory incubations of peat under variable O2 availability to disentangle the lineage-specific functional roles of these microorganisms in peat carbon transformations. Our genome-centric approach reveals that the diversification of Acidobacteria subpopulations across transient O2 exposure is linked to differences in their carbon substrate preferences. We also identify a previously unknown functional potential for biological nitrogen fixation in these organisms. This has important implications for carbon, nitrogen, and trace metal cycling in peat systems.


Assuntos
Acidobacteria , Sphagnopsida , Acidobacteria/genética , Ecossistema , Sphagnopsida/genética , Filogenia , Microbiologia do Solo , Solo/química , Oxirredução , Carboidratos , Carbono/metabolismo
6.
New Phytol ; 236(4): 1497-1511, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35971292

RESUMO

Sphagnum magellanicum is one of two Sphagnum species for which a reference-quality genome exists to facilitate research in ecological genomics. Phylogenetic and comparative genomic analyses were conducted based on resequencing data from 48 samples and RADseq analyses based on 187 samples. We report herein that there are four clades/species within the S. magellanicum complex in eastern North America and that the reference genome belongs to Sphagnum divinum. The species exhibit tens of thousands (RADseq) to millions (resequencing) of fixed nucleotide differences. Two species, however, referred to informally as S. diabolicum and S. magni because they have not been formally described, are differentiated by only 100 (RADseq) to 1000 (resequencing) of differences. Introgression among species in the complex is demonstrated using D-statistics and f4 ratios. One ecologically important functional trait, tissue decomposability, which underlies peat (carbon) accumulation, does not differ between segregates in the S. magellanicum complex, although previous research showed that many closely related Sphagnum species have evolved differences in decomposability/carbon sequestration. Phylogenetic resolution and more accurate species delimitation in the S. magellanicum complex substantially increase the value of this group for studying the early evolutionary stages of climate adaptation and ecological evolution more broadly.


Assuntos
Briófitas , Sphagnopsida , Sphagnopsida/genética , Filogenia , Ecossistema , Solo , Carbono , Nucleotídeos
7.
Plant Mol Biol ; 106(3): 309-317, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33881701

RESUMO

KEY MESSAGE: The homologs of VASCULAR RELATED NAC-DOMAIN in the peat moss Sphagnum palustre were identified and these transcriptional activity as the VNS family was conserved. In angiosperms, xylem vessel element differentiation is governed by the master regulators VASCULAR RELATED NAC-DOMAIN6 (VND6) and VND7, encoding plant-specific NAC transcription factors. Although vessel elements have not been found in bryophytes, differentiation of the water-conducting hydroid cells in the moss Physcomitrella patens is regulated by VND homologs termed VND-NST-SOMBRERO (VNS) genes. VNS genes are conserved in the land plant lineage, but their functions have not been elucidated outside of angiosperms and P. patens. The peat moss Sphagnum palustre, of class Sphagnopsida in the phylum Bryophyta, does not have hydroids and instead uses hyaline cells with thickened, helical-patterned cell walls and pores to store water in the leaves. Here, we performed whole-transcriptome analysis and de novo assembly using next generation sequencing in S. palustre, obtaining sequences for 68,305 genes. Among them, we identified seven VNS-like genes, SpVNS1-A, SpVNS1-B, SpVNS2-A, SpVNS2-B, SpVNS3-A, SpVNS3-B, and SpVNS4-A. Transient expression of these VNS-like genes, with the exception of SpVNS2-A, in Nicotiana benthamiana leaf cells resulted in ectopic thickening of secondary walls. This result suggests that the transcriptional activity observed in other VNS family members is functionally conserved in the VNS homologs of S. palustre.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Nicotiana/metabolismo , Folhas de Planta/metabolismo , Sphagnopsida/genética , Fatores de Transcrição/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Domínios Proteicos , Fatores de Transcrição/genética , Xilema/metabolismo
8.
Mol Biol Evol ; 38(7): 2750-2766, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33681996

RESUMO

The relative importance of introgression for diversification has long been a highly disputed topic in speciation research and remains an open question despite the great attention it has received over the past decade. Gene flow leaves traces in the genome similar to those created by incomplete lineage sorting (ILS), and identification and quantification of gene flow in the presence of ILS is challenging and requires knowledge about the true phylogenetic relationship among the species. We use whole nuclear, plastid, and organellar genomes from 12 species in the rapidly radiated, ecologically diverse, actively hybridizing genus of peatmoss (Sphagnum) to reconstruct the species phylogeny and quantify introgression using a suite of phylogenomic methods. We found extensive phylogenetic discordance among nuclear and organellar phylogenies, as well as across the nuclear genome and the nodes in the species tree, best explained by extensive ILS following the rapid radiation of the genus rather than by postspeciation introgression. Our analyses support the idea of ancient introgression among the ancestral lineages followed by ILS, whereas recent gene flow among the species is highly restricted despite widespread interspecific hybridization known in the group. Our results contribute to phylogenomic understanding of how speciation proceeds in rapidly radiated, actively hybridizing species groups, and demonstrate that employing a combination of diverse phylogenomic methods can facilitate untangling complex phylogenetic patterns created by ILS and introgression.


Assuntos
Fluxo Gênico , Introgressão Genética , Especiação Genética , Filogenia , Sphagnopsida/genética , Genoma de Planta , Filogeografia
9.
Molecules ; 26(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33573075

RESUMO

Anthocyanins with various functions in nature are one of the most important sources of colours in plants. They are based on anthocyanidins or 3-deoxyanthocyanidins having in common a C15-skeleton and are unique in terms of how each anthocyanidin is involved in a network of equilibria between different forms exhibiting their own properties including colour. Sphagnorubin C (1) isolated from the cell wall of peat moss (Sphagnum sp.) was in fairly acidic and neutral dimethyl sulfoxide characterized by nuclear magnetic resonance (NMR) and ultraviolet-visible (UV-vis) absorption techniques. At equilibrium, the network of 1 behaved as a two-component colour system involving the reddish flavylium cationic and the yellow trans-chalcone forms. The additional D- and E-rings connected to the common C15-skeleton extend the π-conjugation within the molecule and provide both bathochromic shifts in the absorption spectra of the various forms as well as a low isomerization barrier between the cis- and trans-chalcone forms. The hemiketal and cis-chalcone forms were thus not observed experimentally by NMR due to their short lives. The stable, reversible network of 1 with good colour contrast between its two components has previously not been reported for other natural anthocyanins and might thus have potential in future photochromic systems. This is the first full structural characterization of any naturally occurring anthocyanin chalcone form.


Assuntos
Antocianinas/química , Chalcona/química , Sphagnopsida/química , Antocianinas/genética , Cor , Isomerismo , Cinética , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Pigmentação/genética , Sphagnopsida/genética
10.
Plant Mol Biol ; 107(4-5): 337-353, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33389562

RESUMO

KEY MESSAGE: Identification of the subfamily X leucine-rich repeat receptor-like kinases in the recently sequenced moss and hornwort genomes points to their diversification into distinct groups during early evolution of land plants. Signal transduction mediated through receptor-ligand interactions plays key roles in controlling developmental and physiological processes of multicellular organisms, and plants employ diverse receptors in signaling. Leucine-rich repeat receptor-like kinases (LRR-RLKs) represent one of the largest receptor classes in plants and are structurally classified into subfamilies. LRR-RLKs of the subfamily X are unique in the variety of their signaling roles; they include receptors for steroid or peptide hormones as well as negative regulators of signaling through binding to other LRR-RLKs, raising a question as to how they diversified. However, our understanding of diversification processes of LRR-RLKs has been hindered by the paucity of genomic data in non-seed plants and limited taxa sampling in previous phylogenetic analyses. Here we analyzed the phylogeny of LRR-RLK X sequences collected from all major land plant lineages and show that this subfamily diversified into six major clades before the divergence between bryophytes and vascular plants. Notably, we have identified homologues of the brassinosteroid receptor, BRASSINOSTEROID INSENSITIVE 1 (BRI1), in the genomes of Sphagnum mosses, hornworts, and ferns, contrary to earlier reports that postulate the origin of BRI1-like LRR-RLKs in the seed plant lineage. The phylogenetic distribution of major clades illustrates that the current receptor repertoire was shaped through lineage-specific gene family expansion and independent gene losses, highlighting dynamic changes in the evolution of LRR-RLKs.


Assuntos
Anthocerotophyta/genética , Variação Genética , Genoma de Planta/genética , Proteínas de Plantas/genética , Proteínas Quinases/genética , Sphagnopsida/genética , Sequência de Aminoácidos , Simulação por Computador , Evolução Molecular , Genômica/métodos , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Domínios Proteicos , Proteínas Quinases/química , Proteínas Quinases/classificação , Homologia de Sequência de Aminoácidos , Transdução de Sinais/genética
11.
New Phytol ; 223(2): 939-949, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30924950

RESUMO

Species in the genus Sphagnum create, maintain, and dominate boreal peatlands through 'extended phenotypes' that allow these organisms to engineer peatland ecosystems and thereby impact global biogeochemical cycles. One such phenotype is the production of peat, or incompletely decomposed biomass, that accumulates when rates of growth exceed decomposition. Interspecific variation in peat production is thought to be responsible for the establishment and maintenance of ecological gradients such as the microtopographic hummock-hollow gradient, along which sympatric species sort within communities. This study investigated the mode and tempo of functional trait evolution across 15 species of Sphagnum using data from the most extensive studies of Sphagnum functional traits to date and phylogenetic comparative methods. We found evidence for phylogenetic conservatism of the niche descriptor height-above-water-table and of traits related to growth, decay and litter quality. However, we failed to detect the influence of phylogeny on interspecific variation in other traits such as shoot density and suggest that environmental context can obscure phylogenetic signal. Trait correlations indicate possible adaptive syndromes that may relate to niche and its construction. This study is the first to formally test the extent to which functional trait variation among Sphagnum species is a result of shared evolutionary history.


Assuntos
Evolução Biológica , Ecossistema , Característica Quantitativa Herdável , Solo , Sphagnopsida/genética , Sequência de Bases , Modelos Lineares , Análise Multivariada , Filogenia
12.
Am J Bot ; 106(1): 137-144, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30644542

RESUMO

PREMISE OF THE STUDY: The traditional approach used in analyses of population genetic data for historical inference is to average across multiple marker loci, but averaging conflates the different evolutionary signals provided by stable vs. labile markers. METHODS: We used a battery of microsatellites with a wide range of mutation/substitution rates, grouping them into two sets (stable and hypervariable) to provide a more nuanced reconstruction of the population genetics and evolutionary history of the allotriploid peat moss Sphagnum × falcatulum across three disjunct regions. KEY RESULTS: Shannon diversity translation analyses show that the relative apportionment of total within-species allelic diversity (∆WS ) within and among strata ranges widely, both between the two sets and within and among regions. The majority of diversity in the stable set was inherited directly from the ancestors of this genetically complex allopolyploid, but most of the diversity in the hypervariable set has developed post-hybrid-origin. CONCLUSIONS: It is useful to group markers into sets having similar evolutionary lability, with each set being analyzed separately, particularly for allopolyploids. A methodology for determining how to group markers into such sets is presented, which can be applied to the requirements of other studies. Within-individual allelic diversity (ΔWI ) should be addressed in genetic studies on allopolyploids. Allotriploid haplotypes based on a set of nine highly stable microsatellites appear to serve as a clonal-detection set for S. × falcatulum. An additive "allele-metric" diversity approach is introduced, which facilitates a direct comparison of within- and among-stratum diversity components at all levels of diversity.


Assuntos
Marcadores Genéticos , Variação Genética , Ploidias , Sphagnopsida/genética , Alelos , Repetições de Microssatélites
13.
Glob Chang Biol ; 25(1): 108-120, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30346105

RESUMO

Peat mosses (Sphagnum) hold exceptional importance in the control of global carbon fluxes and climate because of the vast stores of carbon bound up in partially decomposed biomass (peat). This study tests the hypothesis that the early diversification of Sphagnum was in the Northern Hemisphere, with subsequent range expansions to tropical latitudes and the Southern Hemisphere. A phylogenetic analysis of 192 accessions representing the moss class Sphagnopsida based on four plastid loci was conducted in conjunction with biogeographic analyses using BioGeoBEARS to investigate the tempo and mode of geographic range evolution. Analyses support the hypothesis that the major intrageneric clades of peat-forming species accounting for >90% of peat moss diversity originated and diversified at northern latitudes. The genus underwent multiple range expansions into tropical and Southern Hemisphere regions. Range evolution in peat mosses was most common within latitudinal zones, attesting to the relative difficulty of successfully invading new climate zones. Allopolyploidy in Sphagnum (inferred from microsatellite heterozygosity) does not appear to be biased with regard to geographic region nor intrageneric clade. The inference that Sphagnum diversified in cool-or cold-climate regions and repeatedly expanded its range into tropical regions makes the genus an excellent model for studying morphological, physiological, and genomic traits associated with adaptation to warming climates.


Assuntos
Adaptação Fisiológica/fisiologia , Clima , Sphagnopsida/fisiologia , Biodiversidade , Evolução Biológica , Carbono/metabolismo , Mudança Climática , Filogenia , Sphagnopsida/classificação , Sphagnopsida/genética , Sphagnopsida/metabolismo
14.
New Phytol ; 217(1): 16-25, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29076547

RESUMO

Considerable progress has been made in ecological and evolutionary genetics with studies demonstrating how genes underlying plant and microbial traits can influence adaptation and even 'extend' to influence community structure and ecosystem level processes. Progress in this area is limited to model systems with deep genetic and genomic resources that often have negligible ecological impact or interest. Thus, important linkages between genetic adaptations and their consequences at organismal and ecological scales are often lacking. Here we introduce the Sphagnome Project, which incorporates genomics into a long-running history of Sphagnum research that has documented unparalleled contributions to peatland ecology, carbon sequestration, biogeochemistry, microbiome research, niche construction, and ecosystem engineering. The Sphagnome Project encompasses a genus-level sequencing effort that represents a new type of model system driven not only by genetic tractability, but by ecologically relevant questions and hypotheses.


Assuntos
Genoma de Planta/genética , Genômica , Modelos Biológicos , Sphagnopsida/genética , Adaptação Fisiológica , Evolução Biológica , Ecologia , Filogenia , Análise de Sequência de DNA , Sphagnopsida/citologia , Sphagnopsida/fisiologia
15.
Chemosphere ; 181: 208-215, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28441611

RESUMO

In the present work, the genotoxic effect of cadmium and lead supplied in a laboratory trial, was investigated for the first time in the moss Sphagnum palustre, by ISSR molecular markers. A total of 169 reproducible bands were obtained with 12 primers, ten of which gave polymorphisms (i.e., appearance/disappearance of bands), indicating a clear genotoxic effect induced by the metals. Both metals induced a decrease of the genome template stability in a dose dependent manner. At concentration >10-5 Cd also induced a general toxic effect in S. palustre, leading to chlorophyll degradation and moss death. Moreover, we followed the fate of supplied heavy metals into the moss tissue by SEM-EDX to see if they entered the cells. SEM-EDX observations on moss cultures treated with equimolar concentrations of the two metals showed that most Pb precipitated in form of particles on moss surface, while Cd did not aggregate in particles and was not found on moss surface. In light of these findings, we concluded that probably Pb induced a genotoxic effect at lower intracellular concentrations than Cd.


Assuntos
Cádmio/toxicidade , Chumbo/toxicidade , Sphagnopsida/metabolismo , Briófitas/genética , Briófitas/metabolismo , Cádmio/metabolismo , Precipitação Química , Instabilidade Genômica , Metais Pesados/toxicidade , Mutagênicos , Polimorfismo Genético , Sphagnopsida/genética
16.
Ann Bot ; 120(2): 221-231, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28088765

RESUMO

Background and Aims: Allopolyploids exhibit both different levels and different patterns of genetic variation than are typical of diploids. However, scant attention has been given to the partitioning of allelic information and diversity in allopolyploids, particularly that among homeologous monoploid components of the hologenome. Sphagnum × falcatulum is a double allopolyploid peat moss that spans a considerable portion of the Holantarctic. With monoploid genomes from three ancestral species, this organism exhibits a complex evolutionary history involving serial inter-subgeneric allopolyploidizations. Methods: Studying populations from three disjunct regions [South Island (New Zealand); Tierra de Fuego archipelago (Chile, Argentina); Tasmania (Australia)], allelic information for five highly stable microsatellite markers that differed among the three (ancestral) monoploid genomes was examined. Using Shannon information and diversity measures, the holoploid information, as well as the information within and among the three component monoploid genomes, was partitioned into separate components for individuals within and among populations and regions, and those information components were then converted into corresponding diversity measures. Key Results: The majority (76 %) of alleles detected across these five markers are most likely to have been captured by hybridization, but the information within each of the three monoploid genomes varied, suggesting a history of recurrent allopolyploidization between ancestral species containing different levels of genetic diversity. Information within individuals, equivalent to the information among monoploid genomes (for this dataset), was relatively stable, and represented 83 % of the grand total information across the Holantarctic, with both inter-regional and inter-population diversification each accounting for about 5 % of the total information. Conclusions: Sphagnum × falcatulum probably inherited the great majority of its genetic diversity at these markers by reticulation, rather than by subsequent evolutionary radiation. However, some post-hybridization genetic diversification has become fixed in at least one regional population. Methodology allowing statistical analysis of any ploidy level is presented.


Assuntos
Evolução Biológica , Hibridização Genética , Sphagnopsida/genética , Triploidia , Alelos , Argentina , Austrália , Chile , Variação Genética , Genoma de Planta , Repetições de Microssatélites , Nova Zelândia , Tasmânia
17.
Ann Bot ; 118(2): 185-96, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27268484

RESUMO

BACKGROUND AND AIMS: Sphagnum-dominated peatlands contain approx. 30 % of the terrestrial carbon pool in the form of partially decomposed plant material (peat), and, as a consequence, Sphagnum is currently a focus of studies on biogeochemistry and control of global climate. Sphagnum species differ in ecologically important traits that scale up to impact ecosystem function, and sequencing of the genome from selected Sphagnum species is currently underway. As an emerging model system, these resources for Sphagnum will facilitate linking nucleotide variation to plant functional traits, and through those traits to ecosystem processes. A solid phylogenetic framework for Sphagnum is crucial to comparative analyses of species-specific traits, but relationships among major clades within Sphagnum have been recalcitrant to resolution because the genus underwent a rapid radiation. Herein a well-supported hypothesis for phylogenetic relationships among major clades within Sphagnum based on organellar genome sequences (plastid, mitochondrial) is provided. METHODS: We obtained nucleotide sequences (273 753 nucleotides in total) from the two organellar genomes from 38 species (including three outgroups). Phylogenetic analyses were conducted using a variety of methods applied to nucleotide and amino acid sequences. The Sphagnum phylogeny was rooted with sequences from the related Sphagnopsida genera, Eosphagnum and Flatbergium KEY RESULTS: Phylogenetic analyses of the data converge on the following subgeneric relationships: (Rigida (((Subsecunda) (Cuspidata)) ((Sphagnum) (Acutifolia))). All relationships were strongly supported. Species in the two major clades (i.e. Subsecunda + Cuspidata and Sphagnum + Acutifolia), which include >90 % of all Sphagnum species, differ in ecological niches and these differences correlate with other functional traits that impact biogeochemical cycling. Mitochondrial intron presence/absence are variable among species and genera of the Sphagnopsida. Two new nomenclatural combinations are made, in the genera Eosphagnum and Flatbergium CONCLUSIONS: Newly resolved relationships now permit phylogenetic analyses of morphological, biochemical and ecological traits among Sphagnum species. The results clarify long-standing disagreements about subgeneric relationships and intrageneric classification.


Assuntos
Genomas de Plastídeos/genética , Genômica , Sphagnopsida/classificação , Ecossistema , Evolução Molecular , Genoma Mitocondrial/genética , Genoma de Planta/genética , Modelos Biológicos , Filogenia , Plastídeos/genética , Análise de Sequência de DNA , Especificidade da Espécie , Sphagnopsida/genética
18.
Heredity (Edinb) ; 116(6): 523-30, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26905464

RESUMO

A major question in evolutionary biology is how mating patterns affect the fitness of offspring. However, in animals and seed plants it is virtually impossible to investigate the effects of specific gamete genotypes. In bryophytes, haploid gametophytes grow via clonal propagation and produce millions of genetically identical gametes throughout a population. The main goal of this research was to test whether gamete identity has an effect on the fitness of their diploid offspring in a population of the aquatic peat moss Sphagnum macrophyllum. We observed a heavily male-biased sex ratio in gametophyte plants (ramets) and in multilocus microsatellite genotypes (genets). There was a steeper relationship between mating success (number of different haploid mates) and fecundity (number of diploid offspring) for male genets compared with female genets. At the sporophyte level, we observed a weak effect of inbreeding on offspring fitness, but no effect of brood size (number of sporophytes per maternal ramet). Instead, the identities of the haploid male and haploid female parents were significant contributors to variance in fitness of sporophyte offspring in the population. Our results suggest that intrasexual gametophyte/gamete competition may play a role in determining mating success in this population.


Assuntos
Diploide , Aptidão Genética , Haploidia , Sphagnopsida/genética , Fertilidade , Variação Genética , Genótipo , Células Germinativas Vegetais/fisiologia , Endogamia , Repetições de Microssatélites , South Carolina , Sphagnopsida/fisiologia
19.
New Phytol ; 211(1): 300-18, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26900928

RESUMO

The goal of this research was to investigate whether there has been a whole-genome duplication (WGD) in the ancestry of Sphagnum (peatmoss) or the class Sphagnopsida, and to determine if the timing of any such duplication(s) and patterns of paralog retention could help explain the rapid radiation and current ecological dominance of peatmosses. RNA sequencing (RNA-seq) data were generated for nine taxa in Sphagnopsida (Bryophyta). Analyses of frequency plots for synonymous substitutions per synonymous site (Ks ) between paralogous gene pairs and reconciliation of 578 gene trees were conducted to assess evidence of large-scale or genome-wide duplication events in each transcriptome. Both Ks frequency plots and gene tree-based analyses indicate multiple duplication events in the history of the Sphagnopsida. The most recent WGD event predates divergence of Sphagnum from the two other genera of Sphagnopsida. Duplicate retention is highly variable across species, which might be best explained by local adaptation. Our analyses indicate that the last WGD could have been an important factor underlying the diversification of peatmosses and facilitated their rise to ecological dominance in peatlands. The timing of the duplication events and their significance in the evolutionary history of peat mosses are discussed.


Assuntos
Duplicação Gênica , Genoma de Planta , Sphagnopsida/genética , Evolução Biológica , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
20.
PLoS One ; 11(2): e0148447, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26859563

RESUMO

Spore-producing organisms have small dispersal units enabling them to become widespread across continents. However, barriers to gene flow and cryptic speciation may exist. The common, haploid peatmoss Sphagnum magellanicum occurs in both the Northern and Southern hemisphere, and is commonly used as a model in studies of peatland ecology and peatmoss physiology. Even though it will likely act as a rich source in functional genomics studies in years to come, surprisingly little is known about levels of genetic variability and structuring in this species. Here, we assess for the first time how genetic variation in S. magellanicum is spatially structured across its full distribution range (Northern Hemisphere and South America). The morphologically similar species S. alaskense was included for comparison. In total, 195 plants were genotyped at 15 microsatellite loci. Sequences from two plastid loci (trnG and trnL) were obtained from 30 samples. Our results show that S. alaskense and almost all plants of S. magellanicum in the northern Pacific area are diploids and share the same gene pool. Haploid plants occur in South America, Europe, eastern North America, western North America, and southern Asia, and five genetically differentiated groups with different distribution ranges were found. Our results indicate that S. magellanicum consists of several distinct genetic groups, seemingly with little or no gene flow among them. Noteworthy, the geographical separation of diploids and haploids is strikingly similar to patterns found within other haploid Sphagnum species spanning the Northern Hemisphere. Our results confirm a genetic division between the Beringian and the Atlantic that seems to be a general pattern in Sphagnum taxa. The pattern of strong genetic population structuring throughout the distribution range of morphologically similar plants need to be considered in future functional genomic studies of S. magellanicum.


Assuntos
Sphagnopsida/classificação , Sphagnopsida/genética , DNA de Cloroplastos/genética , Diploide , Ecossistema , Evolução Molecular , Fluxo Gênico , Especiação Genética , Variação Genética , Genética Populacional , Genoma de Planta , Haploidia , Repetições de Microssatélites , Biologia Molecular , Filogenia , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA