Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 924
Filtrar
1.
mSphere ; 8(3): e0062522, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37017541

RESUMO

Bacteria are known to cope with amino acid starvation by the stringent response signaling system, which is mediated by the accumulation of the (p)ppGpp alarmones when uncharged tRNAs stall at the ribosomal A site. While a number of metabolic processes have been shown to be regulatory targets of the stringent response in many bacteria, the global impact of amino acid starvation on bacterial metabolism remains obscure. This work reports the metabolomic profiling of the human pathogen Streptococcus pneumoniae under methionine starvation. Methionine limitation led to the massive overhaul of the pneumococcal metabolome. In particular, methionine-starved pneumococci showed a massive accumulation of many metabolites such as glutamine, glutamic acid, lactate, and cyclic AMP (cAMP). In the meantime, methionine-starved pneumococci showed a lower intracellular pH and prolonged survival. Isotope tracing revealed that pneumococci depend predominantly on amino acid uptake to replenish intracellular glutamine but cannot convert glutamine to methionine. Further genetic and biochemical analyses strongly suggested that glutamine is involved in the formation of a "prosurvival" metabolic state by maintaining an appropriate intracellular pH, which is accomplished by the enzymatic release of ammonia from glutamine. Methionine starvation-induced intracellular pH reduction and glutamine accumulation also occurred to various extents under the limitation of other amino acids. These findings have uncovered a new metabolic mechanism of bacterial adaptation to amino acid limitation and perhaps other stresses, which may be used as a potential therapeutic target for infection control. IMPORTANCE Bacteria are known to cope with amino acid starvation by halting growth and prolonging survival via the stringent response signaling system. Previous investigations have allowed us to understand how the stringent response regulates many aspects of macromolecule synthesis and catabolism, but how amino acid starvation promotes bacterial survival at the metabolic level remains largely unclear. This paper reports our systematic profiling of the methionine starvation-induced metabolome in S. pneumoniae. To the best of our knowledge, this represents the first reported bacterial metabolome under amino acid starvation. These data have revealed that the significant accumulation of glutamine and lactate enables S. pneumoniae to form a "prosurvival" metabolic state with a lower intracellular pH, which inhibits bacterial growth for prolonged survival. Our findings have provided insightful information on the metabolic mechanisms of pneumococcal adaptation to nutrient limitation during the colonization of the human upper airway.


Assuntos
Glutamina , Streptococcus pneumoniae , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pneumoniae/metabolismo , Metionina/metabolismo , Metaboloma , Glutamina/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas de Bactérias/metabolismo
2.
BMC Microbiol ; 22(1): 31, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35057744

RESUMO

BACKGROUND: Nasopharyngeal colonization is considered a necessary step in the initiation of pneumococcal diseases. Real time PCR (RT-PCR) is an alternative approach for the identification and quantification of pneumococci directly from samples. OBJECTIVES: To compare pneumococcal detection rates using culture-based method versus RT-PCR direct detection and to quantify pneumococcal colonization in two study cohorts (healthy children and hospitalized children with respiratory symptoms) using quantitation through RT-PCR. METHODOLOGY: A total of 101 nasopharyngeal swabs (NPS) from healthy children and 183 NPSs from hospitalized children with respiratory symptoms were included in the study. None of the children were vaccinated. All children were between 2 months to 2 years. In parallel to routine culture and identification, a RT-PCR assay targeting the lytA gene was done. RESULTS: Considering all 284 samples tested, colonization rate by conventional culture was 41.2% (n = 117) while positive colonization using RT-PCR was 43.7% (n = 124). The colonization rate detected by RT-PCR in the healthy cohort was 33.7% (n = 34) and it was 49.2% (n = 90) in the hospitalized cohort. It was 37.6% (n = 38) and 43.2% (n = 79) for the two cohorts by culture. The mean Cq value for the healthy cohort is 29.61 (SD 2.85) and 28.93 (SD 3.62) for the hospitalized cohort. With the standard curve obtained from amplifying a dilution series of control DNA, the mean amount of genomic DNA copy numbers detected in children with respiratory symptoms was log10 7.49 (SD 1.07) while it was log10 7.30 (SD 0.23) in healthy children and the difference was not statistically significant. CONCLUSIONS: The overall colonization rate was higher when detected using RT-PCR compared to culture. However, it was lower in the healthy group when detected with RT-PCR compared to culture. Even though there was a higher detection of pneumococcal colonization density in children with respiratory symptoms, this was not significantly higher unlike many previous studies. Therefore, the use of RT-PCR to detect pneumococcal colonization needs further evaluation with careful analysis of interpretation and confounders.


Assuntos
Técnicas Bacteriológicas/normas , Hospitalização/estatística & dados numéricos , Infecções Pneumocócicas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/normas , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pneumoniae/genética , Pré-Escolar , Estudos de Coortes , Voluntários Saudáveis/estatística & dados numéricos , Humanos , Lactente , Nasofaringe/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Infecções Respiratórias/microbiologia , Streptococcus pneumoniae/isolamento & purificação
3.
Artigo em Inglês | MEDLINE | ID: mdl-35042147

RESUMO

To investigate and screen the active antibacterial constituents of Niuhuang Shangqing Pill (NSP), the current study developed a two-dimensional liquid chromatography (2DLC) method combining microcalorimetry technique. 60% ethanol extracts from 10 batches of different commercial NSP samples were analyzed and their chemical fingerprint were developed by the comprehensive 2DLC system of Shimadzu Nexera X2. Anti-streptococcus pneumoniae (SP) constituents were determined by microcalorimetry. Thermal kinetic parameters of the SP thermogram affected by 60% ethanol extracts from 10 NSP samples were analyzed by principal component analysis. Spectrum-effect correlation between comprehensive 2DLC fingerprint and the antibacterial activity were analyzed by orthogonal partial least squares (OPLS) and orthogonal partial least squares discriminant analysis (OPLS-DA). Findings showed that peak X1 (unknown), X9 (aloe-emodin), X10 (baicalein), X11 (unknown), X14 (wogonin), X15 (glycyrrhizic acid) and X17 (unknown) are the relevant components that are in positive correlation with inhibitory rate. Regarding inhibitory rate, X17 is the most powerful one, followed by X14, X15, X10, X11, X1 and X9, suggesting that compound X17, wogonin, glycyrrhizic acid and baicalein are the major active antibacterial components of NSP. The current method employing 2DLC with microcalorimetry technique proposes a new insight for screening and identifying antibacterial components in complex herbal formula.


Assuntos
Antibacterianos/química , Calorimetria/métodos , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Cromatografia Líquida de Alta Pressão/instrumentação , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/crescimento & desenvolvimento
4.
Eur J Clin Microbiol Infect Dis ; 41(1): 37-44, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34432166

RESUMO

The otopathogens colonizing the nasopharynx (NP) and causing acute otitis media (AOM) have shown dynamic changes following introduction of pneumococcal conjugate vaccines. Five hundred eighty-nine children were prospectively enrolled, 2015-2019. Two thousand fifty-nine visits (1528 healthy, 393 AOM, and 138 AOM follow-up) were studied. Two thousand forty-two NP and 495 middle ear fluid (MEF) samples by tympanocentesis from 319 AOM cases were cultured for bacterial identification and antibiotic susceptibility. Streptococcus pneumoniae (Spn) isolates were serotyped by Quellung, and multi-locus sequence type (ST) determined by genomic analysis. Haemophilus influenzae (Hi) was the most common otopathogen cultured from MEF during AOM (34% in MEF) followed by Spn (24% in MEF), then Moraxella catarrhalis (Mcat) (15% in MEF). NP isolates during healthy visit were Mcat (39%), Spn (32%), Hi (12%). 48.6% of Hi isolates from MEF were beta-lactamase-producing. Spn non-susceptibility to penicillin and other antibiotics was high. The most common Spn serotypes associated with AOM (and colonizing the NP during healthy visits) were 35B, 23B, and 15B/C. ST558 and ST199 were the most common sequence types. During 2015-2019, Hi was the most common otopathogen cultured from MEF during AOM among young children. Pneumococcal AOM was most commonly caused by non-PCV13 serotypes of Spn, predominantly 35B, 23B, and 15B/C. Resistance to common antibiotics among Spn strains showed an increasing trend.


Assuntos
Nasofaringe/microbiologia , Otite Média/microbiologia , Infecções Pneumocócicas/microbiologia , Vacinas Pneumocócicas/administração & dosagem , Streptococcus pneumoniae/crescimento & desenvolvimento , Antibacterianos/farmacologia , Pré-Escolar , Feminino , Humanos , Lactente , Estudos Longitudinais , Masculino , Otite Média/prevenção & controle , Filogenia , Infecções Pneumocócicas/prevenção & controle , Estudos Prospectivos , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/imunologia
5.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34732571

RESUMO

Many pathogenic bacteria are encased in a layer of capsular polysaccharide (CPS). This layer is important for virulence by masking surface antigens, preventing opsonophagocytosis, and avoiding mucus entrapment. The bacterial tyrosine kinase (BY-kinase) regulates capsule synthesis and helps bacterial pathogens to survive different host niches. BY-kinases autophosphorylate at the C-terminal tyrosine residues upon external stimuli, but the role of phosphorylation is still unclear. Here, we report that the BY-kinase CpsCD is required for growth in Streptococcus pneumoniae Cells lacking a functional cpsC or cpsD accumulated low molecular weight CPS and lysed because of the lethal sequestration of the lipid carrier undecaprenyl phosphate, resulting in inhibition of peptidoglycan (PG) synthesis. CpsC interacts with CpsD and the polymerase CpsH. CpsD phosphorylation reduces the length of CPS polymers presumably by controlling the activity of CpsC. Finally, pulse-chase experiments reveal the spatiotemporal coordination between CPS and PG synthesis. This coordination is dependent on CpsC and CpsD. Together, our study provides evidence that BY-kinases regulate capsule polymer length by fine-tuning CpsC activity through autophosphorylation.


Assuntos
Cápsulas Bacterianas/metabolismo , Proteínas de Bactérias/metabolismo , Galactosiltransferases/metabolismo , Polissacarídeos Bacterianos/metabolismo , Proteínas Tirosina Quinases/metabolismo , Streptococcus pneumoniae/enzimologia , Proteínas de Bactérias/genética , Galactosiltransferases/genética , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/crescimento & desenvolvimento
6.
Int J Antimicrob Agents ; 58(6): 106460, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34695564

RESUMO

L-sulforaphane (LSF) is an isothiocyanate derived from cruciferous vegetables that has long been known for its anticarcinogenic, antioxidant and anti-inflammatory effects. LSF also possesses antimicrobial properties, although the evidence for this is limited. Respiratory pathogens, such as Streptococcus pneumoniae, Haemophilus influenzae, Streptococcus pyogenes and respiratory syncytial virus (RSV), are leading global causes of illness and death among children aged under five years, particularly in resource-poor countries where access to vaccines are limited or, in the case of S. pyogenes and RSV, vaccines have not been licensed for use in humans. Therefore, alternative strategies to prevent and/or treat these common infectious diseases are urgently needed. This study was conducted to investigate the antimicrobial effects of LSF against common respiratory pathogens, S. pneumoniae (serotypes 1 and 6B), H. influenzae type B (HiB), non-typeable H. influenzae (NTHi), S. pyogenes and RSV in relevant human cell-based models. LSF significantly inhibited the growth of H. influenzae, but not S. pneumoniae or S. pyogenes. LSF did not improve opsonophagocytic capacity or killing by human phagocytic cell lines (HL-60s and THP-1 macrophages) for S. pneumoniae yet showed some improved killing for H. influenzae species in THP-1 macrophages. However, LSF significantly reduced RSV infection in human lung epithelial cells, associated with increased expression of cyclin D1 (CCND1) gene as well as the antioxidant genes, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HMOX-1). Overall, LSF represents an exciting avenue for further antimicrobial research, particularly as a novel therapy against H. influenzae species and RSV.


Assuntos
Antibacterianos/farmacologia , Infecções por Haemophilus/tratamento farmacológico , Isotiocianatos/farmacologia , Infecções Pneumocócicas/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções Respiratórias/tratamento farmacológico , Sulfóxidos/farmacologia , Linhagem Celular , Ciclina D1/metabolismo , Células HL-60 , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/crescimento & desenvolvimento , Heme Oxigenase-1/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Testes de Sensibilidade Microbiana , Fator 2 Relacionado a NF-E2/metabolismo , Opsonização/efeitos dos fármacos , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Infecções Respiratórias/microbiologia , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pyogenes/efeitos dos fármacos , Streptococcus pyogenes/crescimento & desenvolvimento , Células THP-1 , Verduras/química
7.
mBio ; 12(6): e0256921, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34696596

RESUMO

Streptococcus pneumoniae is an asymptomatic colonizer of the nasopharynx, but it is also one of the most important bacterial pathogens of humans, causing a wide range of mild to life-threatening diseases. The basis of the pneumococcal transition from a commensal to a parasitic lifestyle is not fully understood. We hypothesize that exposure to host catecholamine stress hormones is important for this transition. In this study, we demonstrated that pneumococci preexposed to a hormone released during stress, norepinephrine (NE), have an increased capacity to translocate from the nasopharynx into the lungs compared to untreated pneumococci. Examination of NE-treated pneumococci revealed major alterations in metabolic profiles, cell associations, capsule synthesis, and cell size. By systemically mutating all 12 two-component and 1 orphan regulatory systems, we also identified a unique genetic regulatory circuit involved in pneumococcal recognition and responsiveness to human stress hormones. IMPORTANCE Microbes acquire unique lifestyles under different environmental conditions. Although this is a widespread occurrence, our knowledge of the importance of various host signals and their impact on microbial behavior is not clear despite the therapeutic value of this knowledge. We discovered that catecholamine stress hormones are the host signals that trigger the passage of Streptococcus pneumoniae from a commensal to a parasitic state. We identify that stress hormone treatment of this microbe leads to reductions in cell size and capsule synthesis and renders it more able to migrate from the nasopharynx into the lungs in a mouse model of infection. The microbe requires the TCS09 protein for the recognition and processing of stress hormone signals. Our work has particular clinical significance as catecholamines are abundant in upper respiratory fluids as well as being administered therapeutically to reduce inflammation in ventilated patients, which may explain why intubation in the critically ill is a recognized risk factor for the development of pneumococcal pneumonia.


Assuntos
Translocação Bacteriana , Pulmão/microbiologia , Pneumonia Pneumocócica/microbiologia , Streptococcus pneumoniae/fisiologia , Animais , Feminino , Humanos , Camundongos , Nasofaringe/microbiologia , Norepinefrina/metabolismo , Pneumonia Pneumocócica/metabolismo , Pneumonia Pneumocócica/fisiopatologia , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/crescimento & desenvolvimento , Estresse Fisiológico
8.
World J Microbiol Biotechnol ; 37(11): 187, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34586515

RESUMO

Bacterial meningitis remains a very important disease worldwide, and the major causative pathogens were Neisseria meningitidis (N. meningitidis), Streptococcus pneumoniae (S. pneumoniae) and Haemophilus influenzae (H. influenzae). In our context, the technical difficulties encountered in the routine practice were associated with the fragility of these bacteria, the high rates of negative culture and the demanding transport conditions. That's why the need to look for a solution to its technical problems and to propose a new proper solution with the local situation. The aim of this study was to develop, perform and evaluate a novel biphasic medium used for the transport, culture and conservation at an ambient temperature of N. meningitidis, S. pneumoniae and H. influenzae. The results showed that this biphasic medium provided more, novels and easy nutriments through the addition of liquid phase and solid phase medium and it was found to be conducive to the growth and conservation of N. meningitidis, S. pneumoniae and H. influenzae at an ambient temperature of a minimum of 40 days. And the ingredients used in the medium are readily available at a low cost as well as the components prepared in large quantities, they could be stored at + 4 ± 1 °C for 2 years without significantly altering their growth and conservation supporting their potential. The survival and recovery for the fastidious bacteria on the biphasic medium and the other media used for comparison in this study were significantly different (P < 0.05). In addition, the Sensitivity, Specificity, Positive and Negative Predictive Value of biphasic medium showed highest among the three bacteria at least 40 days of storage at room temperature in this study. In conclusion, we found the biphasic medium to be low cost and suitable for previously mentioned bacteria from suspected meningitis patients, offering an optimal condition and an increase in the viability of the isolates at ambient temperature. And it was concluded that this biphasic medium could be used as a technical solution in laboratories for the management of meningitis.


Assuntos
Meios de Cultura/química , Haemophilus influenzae/isolamento & purificação , Neisseria meningitidis/isolamento & purificação , Streptococcus pneumoniae/isolamento & purificação , Temperatura , Bactérias , DNA Bacteriano , Haemophilus influenzae/genética , Haemophilus influenzae/crescimento & desenvolvimento , Humanos , Meningites Bacterianas/microbiologia , Neisseria meningitidis/genética , Neisseria meningitidis/crescimento & desenvolvimento , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/crescimento & desenvolvimento
9.
Infect Immun ; 89(12): e0046321, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34543118

RESUMO

Streptococcus pneumoniae colonizes the nasopharynx of children and the elderly but also kills millions worldwide yearly. The secondary bile acid metabolite deoxycholic acid (DoC) affects the viability of human pathogens but also plays multiple roles in host physiology. We assessed in vitro the antimicrobial activity of DoC and investigated its potential to eradicate S. pneumoniae colonization using a model of human nasopharyngeal colonization and an in vivo mouse model of colonization. At a physiological concentration, DoC (0.5 mg/ml; 1.27 mM) killed all tested S. pneumoniae strains (n = 48) 2 h postinoculation. The model of nasopharyngeal colonization showed that DoC eradicated colonization by S. pneumoniae strains as soon as 10 min postexposure. The mechanism of action did not involve activation of autolysis, since the autolysis-defective double mutants ΔlytAΔlytC and ΔspxBΔlctO were as susceptible to DoC as was the wild type (WT). Oral streptococcal species (n = 20), however, were not susceptible to DoC (0.5 mg/ml). Unlike trimethoprim, whose spontaneous resistance frequency (srF) for TIGR4 or EF3030 was ≥1 × 10-9, no spontaneous resistance was observed with DoC (srF, ≥1 × 10-12). Finally, the efficacy of DoC to eradicate S. pneumoniae colonization was assessed in vivo using a topical route via intranasal (i.n.) administration and as a prophylactic treatment. Mice challenged with S. pneumoniae EF3030 carried a median of 4.05 × 105 CFU/ml 4 days postinoculation compared to 6.67 × 104 CFU/ml for mice treated with DoC. Mice in the prophylactic group had an ∼99% reduction of the pneumococcal density (median, 2.61 × 103 CFU/ml). Thus, DoC, an endogenous human bile salt, has therapeutic potential against S. pneumoniae.


Assuntos
Ácido Desoxicólico/farmacologia , Interações Hospedeiro-Patógeno , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/prevenção & controle , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/crescimento & desenvolvimento , Animais , Ácidos e Sais Biliares/metabolismo , Ácido Desoxicólico/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Farmacorresistência Bacteriana , Humanos , Camundongos , Mutação , N-Acetil-Muramil-L-Alanina Amidase/genética , Nasofaringe/microbiologia , Infecções Pneumocócicas/metabolismo , Streptococcus pneumoniae/genética
10.
Front Immunol ; 12: 725244, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447389

RESUMO

Background: Development of vaccines to prevent disease and death from Streptococcus pneumoniae, and nontypeable Haemophilus influenzae (NTHi), the main pathogens that cause otitis media, pneumonia, meningitis and sepsis, are a global priority. Children living in low and lower-middle income settings are at the highest risk of contracting and dying from these diseases. Improved vaccines with broader coverage are required. Data on the natural development of antibodies to putative vaccine antigens, especially in high-risk settings, can inform the rational selection of the best antigens for vaccine development. Methods: Serum IgG titres to four pneumococcal proteins (PspA1, PspA2, CbpA, and Ply) and five NTHi antigens (P4, P6, OMP26, rsPilA and ChimV4) were measured in sera collected from 101 Papua New Guinean children at 1, 4, 9, 10, 23 and 24 months of age using multiplexed bead-based immunoassays. Carriage density of S. pneumoniae and H. influenzae were assessed by quantitative PCR on genomic DNA extracted from nasopharyngeal swabs using species-specific primers and probes. All data were log-transformed for analysis using Student's unpaired t-tests with geometric mean titre (GMT) or density (GMD) calculated with 95% confidence intervals (CI). Results: Serum -pneumococcal protein-specific IgG titres followed a "U" shaped pattern, with a decrease in presumably maternally-derived IgG titres between 1 and 4 months of age and returning to similar levels as those measured at 1 month of age by 24 months of age. In contrast, NTHi protein-specific IgG titres steadily increased with age. There was no correlation between antibody titres and carriage density for either pathogen. Conclusion: This longitudinal study indicates that the waning of maternally- derived antibodies that is usually observed in infants, after infants does not occur for NTHi antigens in Papua New Guinean infants. Whether NTHi antigen IgG can be transferred maternally remains to be determined. Vaccines that are designed to specifically increase the presence of protective NTHi antibodies in the first few months of life may be most effective in reducing NTHi disease. Clinical Trial Registration: https://clinicaltrials.gov/, identifier NCT01619462.


Assuntos
Anticorpos Antibacterianos/sangue , Infecções por Haemophilus/sangue , Haemophilus influenzae/imunologia , Infecções Pneumocócicas/sangue , Streptococcus pneumoniae/imunologia , Pré-Escolar , Feminino , Infecções por Haemophilus/imunologia , Infecções por Haemophilus/prevenção & controle , Haemophilus influenzae/crescimento & desenvolvimento , Humanos , Imunoglobulina G/sangue , Lactente , Modelos Lineares , Estudos Longitudinais , Masculino , Papua Nova Guiné , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/administração & dosagem , Especificidade da Espécie , Streptococcus pneumoniae/crescimento & desenvolvimento , Desenvolvimento de Vacinas
11.
Cells ; 10(8)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34440707

RESUMO

Cells respond to genome damage by inducing restorative programs, typified by the SOS response of Escherichia coli. Streptococcus pneumoniae (the pneumococcus), with no equivalent to the SOS system, induces the genetic program of competence in response to many types of stress, including genotoxic drugs. The pneumococcal competence regulon is controlled by the origin-proximal, auto-inducible comCDE operon. It was previously proposed that replication stress induces competence through continued initiation of replication in cells with arrested forks, thereby increasing the relative comCDE gene dosage and expression and accelerating the onset of competence. We have further investigated competence induction by genome stress. We find that absence of RecA recombinase stimulates competence induction, in contrast to SOS response, and that double-strand break repair (RexB) and gap repair (RecO, RecR) initiation effectors confer a similar effect, implying that recombinational repair removes competence induction signals. Failure of replication forks provoked by titrating PolC polymerase with the base analogue HPUra, over-supplying DnaA initiator, or under-supplying DnaE polymerase or DnaC helicase stimulated competence induction. This induction was not correlated with concurrent changes in origin-proximal gene dosage. Our results point to arrested and unrepaired replication forks, rather than increased comCDE dosage, as a basic trigger of pneumococcal competence.


Assuntos
Proteínas de Bactérias/metabolismo , Dano ao DNA , Reparo do DNA , DNA Bacteriano/metabolismo , Streptococcus pneumoniae/metabolismo , Proteínas de Bactérias/genética , Replicação do DNA , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Óperon , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/crescimento & desenvolvimento
12.
Mol Microbiol ; 116(3): 996-1008, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34328238

RESUMO

Rggs are a group of transcriptional regulators with diverse roles in metabolism and virulence. Here, we present work on the Rgg1518/SHP1518 quorum sensing system of Streptococcus pneumoniae. The activity of Rgg1518 is induced by its cognate peptide, SHP1518. In vitro analysis showed that the Rgg1518 system is active in conditions rich in galactose and mannose, key nutrients during nasopharyngeal colonization. Rgg1518 expression is highly induced in the presence of these sugars and its isogenic mutant is attenuated in growth on galactose and mannose. When compared with other Rgg systems, Rgg1518 has the largest regulon on galactose. On galactose it controls up- or downregulation of a functionally diverse set of genes involved in galactose metabolism, capsule biosynthesis, iron metabolism, protein translation, as well as other metabolic functions, acting mainly as a repressor of gene expression. Rgg1518 is a repressor of capsule biosynthesis, and binds directly to the capsule regulatory region. Comparison with other Rggs revealed inter-regulatory interactions among Rggs. Finally, the rgg1518 mutant is attenuated in colonization and virulence in a mouse model of colonization and pneumonia. We conclude that Rgg1518 is a virulence determinant that contributes to a regulatory network composed of multiple Rgg systems.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Galactose/metabolismo , Manose/metabolismo , Percepção de Quorum , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Transativadores/genética , Transativadores/metabolismo , Animais , Metabolismo dos Carboidratos , Feminino , Regulação Bacteriana da Expressão Gênica , Humanos , Camundongos , Mutação , Infecções Pneumocócicas/microbiologia , Regiões Promotoras Genéticas , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pneumoniae/patogenicidade , Virulência , Fatores de Virulência/metabolismo
13.
Microbiology (Reading) ; 167(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33983874

RESUMO

Streptococcus pneumoniae, S. pyogenes (Group A Streptococcus; GAS) and S. agalactiae (Group B Streptococcus; GBS) are major aetiological agents of diseases in humans. The cellular membrane, a crucial site in host-pathogen interactions, is poorly characterized in streptococci. Moreover, little is known about whether or how environmental conditions influence their lipid compositions. Using normal phase liquid chromatography coupled with electrospray ionization MS, we characterized the phospholipids and glycolipids of S. pneumoniae, GAS and GBS in routine undefined laboratory medium, streptococcal defined medium and, in order to mimic the host environment, defined medium supplemented with human serum. In human serum-supplemented medium, all three streptococcal species synthesize phosphatidylcholine (PC), a zwitterionic phospholipid commonly found in eukaryotes but relatively rare in bacteria. We previously reported that S. pneumoniae utilizes the glycerophosphocholine (GPC) biosynthetic pathway to synthesize PC. Through substrate tracing experiments, we confirm that GAS and GBS scavenge lysoPC, a major metabolite in human serum, thereby using an abbreviated GPC pathway for PC biosynthesis. Furthermore, we found that plasmanyl-PC is uniquely present in the GBS membrane during growth with human serum, suggesting GBS possesses unusual membrane biochemical or biophysical properties. In summary, we report cellular lipid remodelling by the major pathogenic streptococci in response to metabolites present in human serum.


Assuntos
Fosfolipídeos/metabolismo , Soro/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/metabolismo , Streptococcus pneumoniae/metabolismo , Streptococcus pyogenes/metabolismo , Membrana Celular/química , Membrana Celular/genética , Meios de Cultura/metabolismo , Humanos , Fosfolipídeos/química , Infecções Estreptocócicas/sangue , Streptococcus agalactiae/química , Streptococcus agalactiae/crescimento & desenvolvimento , Streptococcus pneumoniae/química , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pyogenes/química , Streptococcus pyogenes/crescimento & desenvolvimento
14.
Eur J Clin Microbiol Infect Dis ; 40(11): 2397-2401, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33797644

RESUMO

Streptococcus pneumoniae (pneumococcus) is a human pathogen that colonizes the nasopharynx. We investigated serotype distribution in paired invasive and nasopharyngeal samples obtained from 57 children during invasive pneumococcal disease. Of 39 nasopharyngeal samples positive for pneumococci, 46.2% contained a serotype different from the one causing disease. This study reports a high frequency of pneumococcal multiple serotype carriage in children with invasive pneumococcal disease. Whether multiple serotype carriage is important for the onset and progress to pneumococcal infection warrants further investigation.


Assuntos
Portador Sadio/microbiologia , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/isolamento & purificação , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Nasofaringe/microbiologia , Estudos Prospectivos , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/crescimento & desenvolvimento
15.
Mol Microbiol ; 116(2): 438-458, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33811693

RESUMO

Streptococcus pneumoniae resides in the human upper airway as a commensal but also causes pneumonia, bacteremia, meningitis, and otitis media. It remains unclear how pneumococci adapt to nutritional conditions of various host niches. We here show that MetR, a LysR family transcriptional regulator, serves as a molecular adaptor for pneumococcal fitness, particularly in the upper airway. The metR mutant of strain D39 rapidly disappeared from the nasopharynx but was marginally attenuated in the lungs and bloodstream of mice. RNA-seq and ChIP-seq analyses showed that MetR broadly regulates transcription of the genes involved in methionine synthesis and other functions under methionine starvation. Genetic and biochemical analyses confirmed that MetR is essential for the activation of methionine synthesis but not uptake. Co-infection of influenza virus partially restored the colonization defect of the metR mutant. These results strongly suggest that MetR is particularly evolved for pneumococcal carriage in the upper airway of healthy individuals where free methionine is severely limited, but it becomes dispensable where environmental methionine is relatively more abundant (e.g., inflamed upper airway and sterile sites). To the best of our knowledge, MetR represents the first known regulator particularly for pneumococcal carriage in healthy individuals.


Assuntos
Proteínas de Bactérias/genética , Metionina/biossíntese , Nasofaringe/microbiologia , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pneumoniae/genética , Transativadores/genética , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Metionina/metabolismo , Camundongos , Infecções Pneumocócicas/patologia , Transativadores/metabolismo , Transcrição Gênica/genética
16.
Structure ; 29(7): 731-742.e6, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33740396

RESUMO

Branched Lipid II, required for the formation of indirectly crosslinked peptidoglycan, is generated by MurM, a protein essential for high-level penicillin resistance in the human pathogen Streptococcus pneumoniae. We have solved the X-ray crystal structure of Staphylococcus aureus FemX, an isofunctional homolog, and have used this as a template to generate a MurM homology model. Using this model, we perform molecular docking and molecular dynamics to examine the interaction of MurM with the phospholipid bilayer and the membrane-embedded Lipid II substrate. Our model suggests that MurM is associated with the major membrane phospholipid cardiolipin, and experimental evidence confirms that the activity of MurM is enhanced by this phospholipid and inhibited by its direct precursor phosphatidylglycerol. The spatial association of pneumococcal membrane phospholipids and their impact on MurM activity may therefore be critical to the final architecture of peptidoglycan and the expression of clinically relevant penicillin resistance in this pathogen.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cardiolipinas/metabolismo , Resistência às Penicilinas , Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Streptococcus pneumoniae/crescimento & desenvolvimento , Sítios de Ligação , Membrana Celular/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fosfatidilgliceróis/metabolismo , Conformação Proteica , Homologia de Sequência de Aminoácidos , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/metabolismo , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurâmico/metabolismo
17.
Sci Rep ; 11(1): 6195, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737573

RESUMO

Streptococcus pneumoniae endophthalmitis is clinically more severe, more difficult to treat, and carry a higher risk of vision loss, evisceration, or enucleation. This study is to investigate the clinical settings, antibiotic susceptibility, and visual outcomes of S. pneumoniae endophthalmitis at a tertiary referral center in Taiwan. S. pneumoniae endophthalmitis was diagnosed in 38 eyes of 38 patients. The main clinical features were postcataract endophthalmitis (n = 13, 34%) and endophthalmitis associated with corneal ulcer (n = 12, 32%), trauma (n = 6, 16%), endogenous etiology (n = 4, 11%), trabeculectomy (n = 2, 5%), and pterygium excision-related scleral ulcer (n = 1, 3%). Presenting visual acuity ranged from counting fingers to no light perception. Pars plana vitrectomy with intravitreal antibiotics was performed in 17 eyes (39%) in primary or secondary treatments. S. pneumoniae isolates were susceptible to vancomycin (38/38, 100%), penicillin (37/38, 97%), ceftriaxone (37/38, 97%), cefuroxime (12/15, 80%), levofloxacin (13/15 ,87%), and moxifloxacin (15/17, 88%). Final visual acuity was better than 20/400 in 3 of 38 eyes (8%), 5/200 to hand motions in 3 eyes (8%), and light perception to no light perception in 32 eyes (84%). Ten eyes (26%) underwent evisceration or enucleation. Although S. pneumoniae isolates were susceptible to vancomycin, S. pneumoniae endophthalmitis had a very poor visual prognosis.


Assuntos
Antibacterianos/uso terapêutico , Endoftalmite/patologia , Infecções Pneumocócicas/patologia , Streptococcus pneumoniae/patogenicidade , Vitrectomia/estatística & dados numéricos , Adulto , Idoso , Idoso de 80 Anos ou mais , Catarata/complicações , Catarata/microbiologia , Catarata/patologia , Extração de Catarata/efeitos adversos , Ceftriaxona/uso terapêutico , Cefuroxima/uso terapêutico , Úlcera da Córnea/complicações , Úlcera da Córnea/microbiologia , Úlcera da Córnea/patologia , Endoftalmite/etiologia , Endoftalmite/microbiologia , Enucleação Ocular/métodos , Enucleação Ocular/estatística & dados numéricos , Traumatismos Oculares/complicações , Traumatismos Oculares/microbiologia , Traumatismos Oculares/patologia , Feminino , Humanos , Levofloxacino/uso terapêutico , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Moxifloxacina/uso terapêutico , Penicilinas/uso terapêutico , Infecções Pneumocócicas/etiologia , Infecções Pneumocócicas/microbiologia , Estudos Retrospectivos , Índice de Gravidade de Doença , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/crescimento & desenvolvimento , Taiwan , Centros de Atenção Terciária , Trabeculectomia/efeitos adversos , Resultado do Tratamento , Vancomicina/uso terapêutico , Vitrectomia/métodos
18.
J Microbiol Methods ; 182: 106170, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33600877

RESUMO

This work highlights the issue of interference by growth media when measuring bacterial H2O2 production. H2O2 was shown to be stable in phosphate buffered saline (PBS) but not in growth media. The protocol used for evaluating the intrinsic capacity of oral streptococci to produce H2O2 was shown to be reliable.


Assuntos
Meios de Cultura , Peróxido de Hidrogênio/metabolismo , Streptococcus pneumoniae , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pneumoniae/metabolismo
19.
PLoS One ; 16(1): e0246122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33497410

RESUMO

The Hajj is an annual pilgrimage to Mecca and one of the largest gathering of people in the world. Most Indonesian pilgrims are senior adults and elderly adults, who are more prone to acquire infections during the Hajj ritual. The aims of this study are to investigate the dynamics of Streptococcus pneumoniae colonization and to investigate antibiotic susceptibility of pneumococcal strains in Indonesian pilgrims. This was a prospective multi-site longitudinal study in Indonesian hajj pilgrims aged >18 years old in the year 2015. Nasopharyngeal swabs were collected from the same subject before departure and upon arrival at the airport. S. pneumoniae was identified using conventional and molecular approach, while antibiotic susceptibility was determined using a disk diffusion method. Among 813 Hajj pilgrims who were enrolled from five sites in this study, the prevalence of S. pneumoniae carriage rates before- and after-the Hajj were 8.6% (95% CI 6.7-10.5%) and 8.2% (95% CI 6.4-10.1%), (p value: 0.844) respectively. Serotype 16F, 6A/6B, 3, 18, and 23F were the five most prevalent serotypes before Hajj, whereas serotypes 3, 34, 13, 4, and 23F were the most prevalent serotypes after Hajj. Serotype 3 was identified as most acquired serotype during Hajj in Indonesian pilgrim. There was an increase in the percentage of isolates susceptible to co-trimoxazole after Hajj (42.9% versus 57.4%). The study provided an overview of the change of dynamics of S. pneumoniae serotype acquisition in Indonesian Hajj Pilgrims. Along with data of vaccination serotypes coverage and antimicrobial susceptibility, these findings may contribute to recommendation of vaccination and treatment policies in the future.


Assuntos
Antibacterianos/farmacologia , Portador Sadio , Aglomeração , Farmacorresistência Bacteriana , Infecções Pneumocócicas , Streptococcus pneumoniae , Adolescente , Adulto , Portador Sadio/epidemiologia , Portador Sadio/microbiologia , Feminino , Humanos , Indonésia/epidemiologia , Estudos Longitudinais , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Nasofaringe/microbiologia , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/microbiologia , Estudos Prospectivos , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pneumoniae/isolamento & purificação
20.
mBio ; 12(1)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436429

RESUMO

Colonization of the upper respiratory tract with Streptococcus pneumoniae is the precursor of pneumococcal pneumonia and invasive disease. Following exposure, however, it is unclear which human immune mechanisms determine whether a pathogen will colonize. We used a human challenge model to investigate host-pathogen interactions in the first hours and days following intranasal exposure to Streptococcus pneumoniae Using a novel home sampling method, we measured early immune responses and bacterial density dynamics in the nose and saliva after volunteers were experimentally exposed to pneumococcus. Here, we show that nasal colonization can take up to 24 h to become established. Also, the following two distinct bacterial clearance profiles were associated with protection: nasal clearers with immediate clearance of bacteria in the nose by the activity of pre-existent mucosal neutrophils and saliva clearers with detectable pneumococcus in saliva at 1 h post challenge and delayed clearance mediated by an inflammatory response and increased neutrophil activity 24 h post bacterial encounter. This study describes, for the first time, how colonization with a bacterium is established in humans, signifying that the correlates of protection against pneumococcal colonization, which can be used to inform design and testing of novel vaccine candidates, could be valid for subsets of protected individuals.IMPORTANCE Occurrence of lower respiratory tract infections requires prior colonization of the upper respiratory tract with a pathogen. Most bacterial infection and colonization studies have been performed in murine and in vitro models due to the current invasive sampling methodology of the upper respiratory tract, both of which poorly reflect the complexity of host-pathogen interactions in the human nose. Self-collecting saliva and nasal lining fluid at home is a fast, low-cost, noninvasive, high-frequency sampling platform for continuous monitoring of bacterial encounter at defined time points relative to exposure. Our study demonstrates for the first time that, in humans, there are distinct profiles of pneumococcal colonization kinetics, distinguished by speed of appearance in saliva, local phagocytic function, and acute mucosal inflammatory responses, which may either recruit or activate neutrophils. These data are important for the design and testing of novel vaccine candidates.


Assuntos
Infecções Pneumocócicas/microbiologia , Sistema Respiratório/microbiologia , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pneumoniae/imunologia , Adolescente , Adulto , Animais , Citocinas , Interações Hospedeiro-Patógeno , Humanos , Cinética , Camundongos , Pessoa de Meia-Idade , Neutrófilos , Nariz/microbiologia , Vacinas Pneumocócicas/imunologia , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/microbiologia , Sistema Respiratório/imunologia , Saliva/microbiologia , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/isolamento & purificação , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA