RESUMO
Global concerns over folate deficiency, the risks of excessive synthetic folic acid consumption, and food loss implications for environmental sustainability and food security drive needs of innovative approaches that align food by-product valorisation with folate bio-enrichment. This study explored the use of three fruit by-products extracts (grape, passion fruit, and pitaya) and whey to develop a folate bio-enriched fermented whey-based beverage. Three strains (Lacticaseibacillus rhamnosus LGG, Bifidobacterium infantis BB-02, and Streptococcus thermophilus TH-4) were tested for folate production in different fermentation conditions in modified MRS medium and in a whey-based matrix prepared with water extracts of these fruit by-products. B. infantis BB-02 and S. thermophilus TH-4, alone and in co-culture, were the best folate producers. The selection of cultivation conditions, including the presence of different substrates and pH, with grape by-product water extract demonstrating the most substantial effect on folate production among the tested extracts, was crucial for successfully producing a biofortified fermented whey-based beverage (FWBB). The resulting FWBB provided 40.7 µg of folate per 100 mL after 24 h of fermentation at 37 °C, effectively leveraging food by-products. Moreover, the beverage showed no cytotoxicity in mouse fibroblast cells tests. This study highlights the potential for valorising fruit by-products and whey for the design of novel bioenriched foods, promoting health benefits and contributing to reduced environmental impact from improper disposal.
Assuntos
Fermentação , Ácido Fólico , Frutas , Soro do Leite , Animais , Frutas/química , Camundongos , Humanos , Soro do Leite/química , Bebidas/microbiologia , Streptococcus thermophilus/metabolismo , Streptococcus thermophilus/crescimento & desenvolvimento , Lacticaseibacillus rhamnosus/metabolismo , Lacticaseibacillus rhamnosus/crescimento & desenvolvimento , Bifidobacterium/metabolismo , Bifidobacterium/crescimento & desenvolvimento , Vitis/químicaRESUMO
Streptococcus thermophilus holds promise as a chassis for producing and secreting heterologous proteins. Used for thousands of years to ferment milk, this species has generally recognized as safe (GRAS) status in the USA and qualified presumption of safety (QPS) status in Europe. In addition, it can be easily genetically modified thanks to its natural competence, and it secretes very few endogenous proteins, which means less downstream processing is needed to purify target proteins, reducing costs. Extracellular degradation of heterologous proteins can be eliminated by introducing mutations that inactivate the genes encoding the bacterium's three major surface proteases. Here, we constructed an inducible expression system that utilizes a peptide pheromone (SHP1358) and a transcriptional regulator (Rgg1358) involved in quorum-sensing regulation. We explored the functionality of a complete version of the system, in which the inducer is produced by the bacterium itself, by synthesizing a luciferase reporter protein. This complete version was assessed with bacteria grown in a chemically defined medium but also in vivo, in the faeces of germ-free mice. We also tested an incomplete version, in which the inducer had to be added to the culture medium, by synthesizing luciferase and a secreted form of elafin, a human protein with therapeutic properties. Our results show that, in our system, protein production can be modulated by employing different concentrations of the SHP1358 inducer or other SHPs with closed amino acid sequences. We also constructed a genetic background in which all system leakiness was eliminated. In conclusion, with this new inducible expression system, we have added to the set of tools currently used to produce secreted proteins in S. thermophilus, whose myriad applications include the delivery of therapeutic peptides or proteins.
Assuntos
Proteínas de Bactérias , Percepção de Quorum , Proteínas Recombinantes , Streptococcus thermophilus , Percepção de Quorum/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Animais , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Camundongos , Regulação Bacteriana da Expressão Gênica , Transativadores/genética , Transativadores/metabolismo , Feromônios/metabolismo , Feromônios/genéticaRESUMO
This work evaluated the impact of incorporating 1% of commercial protein hydrolysates [rice protein hydrolysate (RPH), pea protein hydrolysate (PPH), and casein hydrolysate (CH)] on the functional, microstructure, and texture properties of set yogurt. Yogurt prepared with RPH exhibited the highest viability number of Streptococcus thermophilus. The addition of three hydrolysate types to yogurt revealed significant increases in the antioxidant and ACE-inhibitory activities, where the highest values were noted for the yogurt prepared with RPH. RPH exhibited no differences in texture properties (firmness, consistency, and cohesiveness) to control yogurt. These results were confirmed by scanning electron microscope examination. RPH and control yogurts showed compacted and dense structures accompanied by small pores, whereas CH and PPH yogurt structures were characterized by coarse networks with large voids. Furthermore, there was no significant impact of adding protein hydrolysates on the overall acceptability of yogurt as indicated by a sensory panel.
Assuntos
Hidrolisados de Proteína , Streptococcus thermophilus , Iogurte , Iogurte/análise , Hidrolisados de Proteína/química , Humanos , Streptococcus thermophilus/química , Streptococcus thermophilus/metabolismo , Alimentos Fortificados/análise , Antioxidantes/química , Oryza/química , Paladar , Inibidores da Enzima Conversora de Angiotensina/química , Caseínas/químicaRESUMO
Lactic acid bacteria are probiotics in the intestines and have been widely used as natural antioxidants in the food industry. In this study, Enterococcus italicus FM5 with strong antioxidant ability was isolated from fresh milk. The safety evaluation showed that E. italicus FM5 was sensitive to ampicillin, chloramphenicol, erythromycin, vancomycin, rifampicin, and tetracycline, and was not hemolytic. Meanwhile, the whole genome information and biofunctional attributes of this strain were determined and analyzed. Subsequently, E. italicus FM5 was co-cultured with traditional yogurt starters (Streptococcus thermophilus and Lactobacillus bulgaricus) to make fermented milk. The results showed that the addition of E. italicus FM5 could improve the oxygen free radical scavenging ability of the fermented milk, and the scavenging rates of DPPH, ABTS, OH-, and O2- radicals reaching up to 95.54 %, 88.35 %, 93.65 %, and 60.29 %, respectively. Furthermore, the addition of E. italicus FM5 reduced the curd time and improved the water holding capacity of the fermented milk. Besides, the growth of Lb. bulgaricus was significantly promoted when co-cultured with E. italicus FM5, thus the survival cells were increased compared with the traditional fermentation processes. Therefore, this study emphasized the potential to manufacture fermented milk by the co-cultivation of E. italicus with traditional yogurt starters.
Assuntos
Antioxidantes , Enterococcus , Fermentação , Leite , Enterococcus/metabolismo , Enterococcus/crescimento & desenvolvimento , Animais , Leite/microbiologia , Antioxidantes/farmacologia , Probióticos , Iogurte/microbiologia , Produtos Fermentados do Leite/microbiologia , Microbiologia de Alimentos , Armazenamento de Alimentos , Streptococcus thermophilus/metabolismo , Streptococcus thermophilus/crescimento & desenvolvimento , Técnicas de Cocultura , Lactobacillus delbrueckii/metabolismo , Lactobacillus delbrueckii/crescimento & desenvolvimento , Antibacterianos/farmacologiaRESUMO
This study investigates the aromatic composition of pea albumin and globulin fractions obtained through either fermentation or conventional acidification using hydrochloric acid (control) toward the isoelectric point of pea globulins. Different lactic acid bacteria were used including S. thermophilus (ST), L. plantarum (LP), and their coculture (STLP). The volatile compounds were extracted by solvent-assisted flavor evaporation technique and quantified by gas chromatography-mass spectrometry (GC-MS). Odor-active compounds (OAC) were further characterized by gas chromatography-olfactometry (GC-O). In total, 96 volatile and 36 OACs were identified by GC-MS and GC-O, respectively. The results indicated that the protein fractions obtained by conventional acidification were mainly described by green notes for the presence of different volatile compounds such as hexanal. However, the samples obtained by fermentation had a lower content of these volatile compounds. Moreover, protein fractions obtained by coculture fermentation were described by volatile compounds associated with fruity, floral, and lactic notes. PRACTICAL APPLICATION: The insights from this study on pea protein aroma could find practical use in the food industry to enhance the sensory qualities of plant-based products. By utilizing fermentation methods and specific lactic acid bacteria combinations, manufacturers may produce pea protein with reduced undesirable green notes, offering consumers food options with improved flavors. This research may contribute to the development of plant-based foods that not only provide nutritional benefits but also meet consumer preferences for a more appealing taste profile.
Assuntos
Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Odorantes , Proteínas de Ervilha , Pisum sativum , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Odorantes/análise , Proteínas de Ervilha/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Pisum sativum/química , Olfatometria/métodos , Lactobacillus plantarum/metabolismo , Aromatizantes , Humanos , Streptococcus thermophilus/metabolismoRESUMO
BACKGROUND: Gamma-aminobutyric acid (GABA) is an important neurotransmitter in the human body, with several negative emotions reported as being associated with GABA dysregulation. This study investigates the safety and modulatory effects of GABA-enriched milk, fermented by Streptococcus thermophilus GA8 and Lacticasebacillus rhamnosus HAO9, on the gut microbiota and neurotransmitter profiles in mice. RESULTS: Through rigorous culturing and fermentation processes, we achieved consistent GABA production in milk, with concentrations reaching 4.6 and 8.5 g L-1 for GA8-fermented and co-fermented milk, respectively, after 48 h. Using SPF male C57BL/6J mice, we administered either mono-culture or combined-culture milk treatments and monitored physiological impacts. The treatments did not affect mouse body weight but induced significant changes in gut microbiota composition. Beta diversity analysis revealed distinct microbial profiles between treatment groups, highlighting fermentation-specific microbial shifts, such as an increase in Verrucomicrobia for the GA8 group and a modulation in Saccharibacteria_genera_incertae_sedis for the GA8 + HAO9 group. Serum neurotransmitter levels were elevated in both treatment groups, with significant increases in l-glutamine, l-tryptophan and, notably, serotonin hydrochloride in the GA8 + HAO9 group. Correlation analysis identified a positive association between specific bacterial genera and neurotransmitter levels, suggesting a probiotic effect on neuroactive substances. CONCLUSION: These findings suggest that fermented milk has potential as a probiotic supplement for mood improvement and stress relief, highlighting its role in modulating the gut-brain axis. © 2024 Society of Chemical Industry.
Assuntos
Fermentação , Microbioma Gastrointestinal , Lacticaseibacillus rhamnosus , Camundongos Endogâmicos C57BL , Leite , Neurotransmissores , Probióticos , Streptococcus thermophilus , Ácido gama-Aminobutírico , Animais , Camundongos , Streptococcus thermophilus/metabolismo , Lacticaseibacillus rhamnosus/metabolismo , Masculino , Ácido gama-Aminobutírico/metabolismo , Neurotransmissores/metabolismo , Neurotransmissores/sangue , Probióticos/administração & dosagem , Leite/metabolismo , Leite/química , Leite/microbiologia , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Produtos Fermentados do Leite/microbiologia , Bovinos , HumanosRESUMO
To explore the roles of loops around active pocket in the reuteran type 4,6-α-glucanotransferase (StGtfB) from S. thermophilus, they were individually or simultaneously replaced with those of an isomalto/maltopolysaccharides type 4,6-α-glucanotransferase from L. reuteri. StGtfB with the replaced loops A1, A2 (A1A2) and A1, A2, B (A1A2B), respectively, showed 1.41- and 0.83-fold activities of StGtfB. Two mutants reduced crystallinity and increased starch disorder at 2, 4, and 8 U/g more than StGtfB and increased DP ≤ 5 short branches of starch by 38.01% at 2 U/g, much more than StGtfB by 4.24%. A1A2B modified starches had the lowest retrogradation over 14 days. A1A2 modified starches had the highest percentage of slowly digestible fractions, ranging from 40.32% to 43.34%. StGtfB and its mutants bind substrates by hydrogen bonding and van der Waals forces at their nonidentical amino acid residues, suggesting that loop replacement leads to a different conformation and changes activity and product structure.
Assuntos
Proteínas de Bactérias , Sistema da Enzima Desramificadora do Glicogênio , Streptococcus thermophilus , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Domínio Catalítico , Sistema da Enzima Desramificadora do Glicogênio/química , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Sistema da Enzima Desramificadora do Glicogênio/genética , Cinética , Amido/metabolismo , Amido/química , Streptococcus thermophilus/enzimologia , Streptococcus thermophilus/genética , Streptococcus thermophilus/química , Streptococcus thermophilus/metabolismo , Especificidade por SubstratoRESUMO
Streptococcus thermophilus is a common starter in yogurt production and plays an important role in the dairy industry. In this study, a galactose-positive (Gal+) mutant strain, IMAU20246Y, was produced using the chemical mutagen N-methyl-N'-nitro-N-nitrosoguanidine (NTG) from wild-type S. thermophilus IMAU20246, which is known to have good fermentation characteristics. The sugar content of milk fermented by either the mutant or the wild type was determined using HPLC; metabolism of lactose and galactose was significantly increased in the mutant strain. In addition, we used response surface methodology to optimize components of the basic M17 medium for survival ratio of the mutant strain. Under these optimal conditions, the viable counts of mutant S. thermophilus IMAU20246Y reached 4.15 × 108 cfu/mL and, following freeze-drying in the medium, retained cell viability of up to 67.42%. These results are conducive to production of a high-vitality starter culture and development of "low sugar, high sweetness" dairy products.
Assuntos
Fermentação , Galactose , Streptococcus thermophilus , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Galactose/metabolismo , Lactose/metabolismo , Animais , Leite , Iogurte/microbiologia , MutaçãoRESUMO
Currently, Bifidobacterium, Lactobacillus, and Streptococcus thermophilus (BLS) are widely recognized as the crucially beneficial bacteria in the gut. Many preclinical and clinical studies have shown their protective effects against non-alcoholic fatty liver disease (NAFLD). However, whether gestational BLS supplementation could alleviate NAFLD in the offspring is still unknown. Kunming mice were given a high-fat diet (HFD) for 4 weeks before mating. They received BLS supplementation by gavage during pregnancy. After weaning, offspring mice were fed with a regular diet up to 5 weeks old. Gestational BLS supplementation significantly increased the abundance of Actinobacteriota, Bifidobacterium, and Faecalibaculum in the gut of dams exposed to HFD. In offspring mice exposed to maternal HFD, maternal BLS intake significantly decreased the ratio of Firmicutes to Bacteroidetes as well as the relative abundance of Prevotella and Streptococcus, but increased the relative abundance of Parabacteroides. In offspring mice, maternal BLS supplementation significantly decreased the hepatic triglyceride content and mitigated hepatic steatosis. Furthermore, maternal BLS supplementation increased the glutathione content and reduced malondialdehyde content in the liver. In addition, mRNA and protein expression levels of key rate-limiting enzymes in mitochondrial ß-oxidation (CPT1α, PPARα, and PGC1α) in the livers of offspring mice were significantly increased after gestational BLS supplementation. Thus, gestational BLS supplementation may ameliorate maternal HFD-induced steatosis and oxidative stress in the livers of offspring mice by modulating fatty acid ß-oxidation.
Assuntos
Bifidobacterium , Dieta Hiperlipídica , Ácidos Graxos , Microbioma Gastrointestinal , Lactobacillus , Oxirredução , Probióticos , Streptococcus thermophilus , Animais , Streptococcus thermophilus/metabolismo , Camundongos , Feminino , Gravidez , Probióticos/administração & dosagem , Probióticos/farmacologia , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/microbiologia , Suplementos Nutricionais , Masculino , Triglicerídeos/metabolismoRESUMO
Streptococcus thermophilus is a bacterium widely used in the production of yogurts and cheeses, where it efficiently ferments lactose, the saccharide naturally present in milk. It is also employed as a starter in dairy- or plant-based fermented foods that contain saccharides other than lactose (e.g., sucrose, glucose). However, little is known about how saccharide use is regulated, in particular when saccharides are mixed. Here, we determine the effect of the 5 sugars that S. thermophilus is able to use, at different concentration and when they are mixed on the promoter activities of the C-metabolism genes. Using a transcriptional fusion approach, we discovered that lactose and glucose modulated the activity of the lacS and scrA promoters in a concentration-dependent manner. When mixed with lactose, glucose also repressed the two promoter activities; when mixed with sucrose, lactose still repressed scrA promoter activity. We determined that catabolite control protein A (CcpA) played a key role in these dynamics. We also showed that promoter activity was linked with glycolytic flux, which varied depending on saccharide type and concentration. Overall, this study identified key mechanisms in carbohydrate metabolism - autoregulation and partial hierarchical control - and demonstrated that they are partly mediated by CcpA.
Assuntos
Glucose , Lactose , Lactose/metabolismo , Glucose/metabolismo , Metabolismo dos Carboidratos , Glicólise , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Sacarose/metabolismoRESUMO
The lactic acid bacteria Streptococcus thermophilus and Lactobacillus helveticus are commonly used as starter cultures in dairy product production. This study aimed to investigate the characteristics of fermented milk using different ratios of these strains and analyze the changes in volatile compounds during fermentation and storage. A 10:1 ratio of Streptococcus thermophilus CICC 6063 to Lactobacillus helveticus CICC 6064 showed optimal fermentation time (4.2 h), viable cell count (9.64 log10 colony-forming units/mL), and sensory evaluation score (79.1 points). In total, 56 volatile compounds were identified and quantified by solid-phase microextraction and gas chromatography-mass spectrometry (SPME-GC-MS), including aldehydes, ketones, acids, alcohols, esters, and others. Among these, according to VIP analysis, 2,3-butanedione, acetoin, 2,3-pentanedione, hexanoic acid, acetic acid, acetaldehyde, and butanoic acid were identified as discriminatory volatile metabolites for distinguishing between different time points. Throughout the fermentation and storage process, the levels of 2,3-pentanedione and acetoin exhibited synergistic dynamics. These findings enhance our understanding of the chemical and molecular characteristics of milk fermented with Streptococcus thermophilus and Lactobacillus helveticus, providing a basis for improving the flavor and odor of dairy products during fermentation and storage.
Assuntos
Lactobacillus delbrueckii , Lactobacillus helveticus , Pentanonas , Animais , Leite/química , Streptococcus thermophilus/metabolismo , Fermentação , Acetoína/análise , Lactobacillus delbrueckii/metabolismo , Cetonas/análiseRESUMO
Urease operon is highly conserved within the species Streptococcus thermophilus and urease-negative strains are rare in nature. S. thermophilus MIMO1, isolated from commercial yogurt, was previously characterized as urease-positive Ni-dependent strain. Beside a mutation in ureQ, coding for a nickel ABC transporter permease, the strain MIMO1 showed a mutation in ureE gene which code for a metallochaperone involved in Ni delivery to the urease catalytic site. The single base mutation in ureE determined a substitution of Asp29 with Asn29 in the metallochaperone in a conserved protein region not involved in the catalytic activity. With the aim to investigate the role Asp29vs Asn29 substitution in UreE on the urease activity of S. thermophilus, ureE gene of the reference strain DSM 20617T (ureEDSM20617) was replaced by ureE gene of strain MIMO1 (ureEMIMO1) to obtain the recombinant ES3. In-gel detection of urease activity revealed that the substitution of Asp29 with Asn29 in UreE resulted in a higher stability of the enzyme complexes. Moreover, the recombinant ES3 showed higher level of urease activity compared to the wildtype without any detectable increase in the expression level of ureC gene, thus highlighting the role of UreE not only in Ni assembly but also on the level of urease activity. During the growth in milk, the recombinant ES3 showed an anticipated urease activity compared to the wildtype, and analogous milk fermentation performance. The overall data obtained by comparing urease-positive and urease-negative strains/mutants confirmed that urease activity strongly impacts on the milk fermentation process and specifically on the yield of the homolactic fermentation.
Assuntos
Streptococcus thermophilus , Urease , Animais , Urease/genética , Streptococcus thermophilus/metabolismo , Metalochaperonas/metabolismo , Proteínas de Transporte/genética , Níquel/metabolismo , Hidrólise , Leite/metabolismo , Ureia , Fermentação , Proteínas de Bactérias/genéticaRESUMO
The synergistic fermentation of milk by Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus is one of the key factors that determines the quality of yogurt. In this study, the mechanism whereby yogurt flavor compounds are produced by a mixture of S. thermophilus SIT-20.S and L. delbrueckii ssp. bulgaricus SIT-17.B were investigated by examining the flavor production, growth, and gene transcription of these strains. The results showed that yogurt produced by a 10:1 mixture of the aforementioned strains had the highest abundance of acetoin, whereas yogurt produced by a 1:1 mixture had the highest abundance of diacetyl and acetaldehyde. In addition, the growth of S. thermophilus SIT-20.S was enhanced in the 10:1 mixture. Transcriptomic analysis revealed differentially expressed genes in the flavor-compound-related pathways of S. thermophilus SIT-20.S and L. delbrueckii ssp. bulgaricus SIT-17.B in yogurts produced by 10:1 and 1:1 mixtures compared with those produced by either strain alone. Mixed fermentations regulated the expression of genes related to glycolysis, resulting in an increase of pyruvate, which is an important precursor for diacetyl and acetoin synthesis. The gene encoding the acetoin reductase (SIT-20S_orf01454) was decreased in S. thermophilus SIT-20.S, which ensured the accumulation of acetoin. In addition, the gene encoding the acetaldehyde dehydrogenase (SIT-20S_orf00949) was upregulated in S. thermophilus SIT-20.S, and the expression of alcohol dehydrogenase (SIT-20S_orf01479; SIT-17B_orf00943) was downregulated in both strains, maintaining the abundance of acetaldehyde. In addition, the gene encoding the NADH oxidase (SIT-17B_orf00860) in L. delbrueckii ssp. bulgaricus SIT-17.B were upregulated, which promoted the accumulation of diacetyl and acetoin. Overall, we characterized the mechanism by which S. thermophilus and L. delbrueckii ssp. bulgaricus synergistically generated yogurt flavor compounds during their production of yogurt and highlighted the importance of appropriate proportions of fermentation starters for improving the flavor of yogurts.
Assuntos
Fermentação , Iogurte , Animais , Aromatizantes , Acetoína/metabolismo , Lactobacillus delbrueckii/genética , Lactobacillus delbrueckii/metabolismo , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Leite/química , Transcriptoma , Paladar , Diacetil/metabolismoRESUMO
The type III CRISPR-Cas effector complex Csm functions as a molecular Swiss army knife that provides multilevel defense against foreign nucleic acids. The coordinated action of three catalytic activities of the Csm complex enables simultaneous degradation of the invader's RNA transcripts, destruction of the template DNA and synthesis of signaling molecules (cyclic oligoadenylates cAn) that activate auxiliary proteins to reinforce CRISPR-Cas defense. Here, we employed single-molecule techniques to connect the kinetics of RNA binding, dissociation, and DNA hydrolysis by the Csm complex from Streptococcus thermophilus. Although single-stranded RNA is cleaved rapidly (within seconds), dual-color FCS experiments and single-molecule TIRF microscopy revealed that Csm remains bound to terminal RNA cleavage products with a half-life of over 1 hour while releasing the internal RNA fragments quickly. Using a continuous fluorescent DNA degradation assay, we observed that RNA-regulated single-stranded DNase activity decreases on a similar timescale. These findings suggest that after fast target RNA cleavage the terminal RNA cleavage products stay bound within the Csm complex, keeping the Cas10 subunit activated for DNA destruction. Additionally, we demonstrate that during Cas10 activation, the complex remains capable of RNA turnover, i.e. of ongoing degradation of target RNA.
Assuntos
Streptococcus thermophilus , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Sistemas CRISPR-Cas , RNA/metabolismo , RNA/química , Proteínas Associadas a CRISPR/metabolismo , DNA/metabolismo , DNA/química , DNA/genética , Cinética , Clivagem do RNA , Hidrólise , Imagem Individual de Molécula , Ligação ProteicaRESUMO
Ice cream manufacture commonly results in the accumulation of wasted product that contains valuable food-grade quality components, including fat, carbohydrates, and protein. Methods have been developed for recovering the fat from this waste stream, but this results in the generation of a co-product rich in fermentable carbohydrates. This study aimed to investigate the potential for using this co-product as a fermentation substrate for production of antimicrobial peptides, called bacteriocins, by dairy starter cultures. Results showed that Streptococcus thermophilus B59671 and Lactococcus lactis 11454 produced the broad-spectrum bacteriocins thermophilin 110 and nisin, respectively, when the fermentation substrate was melted ice cream, or a co-product generated by a modified butter churning technique. Bacteriocin production varied depending on the brand and variety of vanilla ice cream used in this study. When an alternate enzyme-assisted fat extraction technique was used, S. thermophilus metabolism was impaired within the resulting co-product, and thermophilin 110 production was not observed. Lactococcus lactis was still able to grow in this co-product, but antimicrobial activity was not observed. Results from this study suggest the co-product generated when using the churning technique is a better choice to use as a base medium for future studies to optimize bacteriocin production.
Assuntos
Bacteriocinas , Fermentação , Sorvetes , Lactobacillales , Bacteriocinas/metabolismo , Bacteriocinas/biossíntese , Lactobacillales/metabolismo , Streptococcus thermophilus/metabolismo , Lactococcus lactis/metabolismoRESUMO
Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus are symbiotic starters widely used in yogurt fermentation. They exchange metabolites to meet their nutritional demands during fermentation, promoting mutual growth. Although S. thermophilus produces fumaric acid, and the addition of fumaric acid has been shown to promote the growth of L. bulgaricus monoculture, whether fumaric acid produced by S. thermophilus is used by L. bulgaricus during coculture remains unclear. Furthermore, the importance of fumaric acid metabolism in the growth of L. bulgaricus is yet to be elucidated. Therefore, in this study, we investigated the importance of fumaric acid metabolism in L. bulgaricus monocultures and coculture with S. thermophilus. We deleted the fumarate reductase gene (frd), which is responsible for the metabolism of fumaric acid to succinic acid, in L. bulgaricus strains 2038 and NCIMB 701373. Both Δfrd strains exhibited longer fermentation times than their parent strains, and fumaric acid was metabolized to malic acid rather than succinic acid. Coculture of Δfrd strains with S. thermophilus 1131 also resulted in a longer fermentation time, and the accumulation of malic acid was observed. These results indicated that fumaric acid produced by S. thermophilus is used by L. bulgaricus as a symbiotic substance during yogurt fermentation and that the metabolism of fumaric acid to succinic acid by fumarate reductase is a key factor determining the fermentation ability of L. bulgaricus.
Assuntos
Fermentação , Fumaratos , Lactobacillus delbrueckii , Iogurte , Lactobacillus delbrueckii/metabolismo , Fumaratos/metabolismo , Iogurte/microbiologia , Succinato Desidrogenase/metabolismo , Streptococcus thermophilus/metabolismoRESUMO
BACKGROUND: Streptococcus thermophilus is an important strain widely used in dairy fermentation, with distinct urea metabolism characteristics compared to other lactic acid bacteria. The conversion of urea by S. thermophilus has been shown to affect the flavor and acidification characteristics of milk. Additionally, urea metabolism has been found to significantly increase the number of cells and reduce cell damage under acidic pH conditions, resulting in higher activity. However, the physiological role of urea metabolism in S. thermophilus has not been fully evaluated. A deep understanding of this metabolic feature is of great significance for its production and application. Genome-scale metabolic network models (GEMs) are effective tools for investigating the metabolic network of organisms using computational biology methods. Constructing an organism-specific GEM can assist us in comprehending its characteristic metabolism at a systemic level. RESULTS: In the present study, we reconstructed a high-quality GEM of S. thermophilus S-3 (iCH492), which contains 492 genes, 608 metabolites and 642 reactions. Growth phenotyping experiments were employed to validate the model both qualitatively and quantitatively, yielding satisfactory predictive accuracy (95.83%), sensitivity (93.33%) and specificity (100%). Subsequently, a systematic evaluation of urea metabolism in S. thermophilus was performed using iCH492. The results showed that urea metabolism reduces intracellular hydrogen ions and creates membrane potential by producing and transporting ammonium ions. This activation of glycolytic fluxes and ATP synthase produces more ATP for biomass synthesis. The regulation of fluxes of reactions involving NAD(P)H by urea metabolism improves redox balance. CONCLUSION: Model iCH492 represents the most comprehensive knowledge-base of S. thermophilus to date, serving as a potent tool. The evaluation of urea metabolism led to novel insights regarding the role of urease. © 2023 Society of Chemical Industry.
Assuntos
Redes e Vias Metabólicas , Streptococcus thermophilus , Animais , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Fermentação , Leite/química , Ureia/metabolismo , Trifosfato de Adenosina/análiseRESUMO
Bone is a kind of meat processing by-product with high nutritional value but low in calorie, which is a typical food in China and parts of East Asian countries. Microbial fermentation by lactic acid bacteria showed remarkable advantages to increase the absorption of nutrients from bone cement by human body. Streptococcus thermophilus CICC 20372 is proven to be a good starter for bone cement fermentation. No genes encoding virulence traits or virulence factors were found in the genome of S. thermophilus CICC 20372 by a thorough genomic analysis. Its notable absence of antibiotic resistance further solidifies the safety. Furthermore, the genomic analysis identified four types of gene clusters responsible for the synthesis of antimicrobial metabolites. A comparative metabolomic analysis was performed by cultivating the strain in bone cement at 37 °C for 72 h, with the culture in de Man, Rogosa, and Sharpe (MRS) medium as control. Metabolome analysis results highlighted the upregulation of pathways involved in 2-oxocarboxylic acid metabolism, ATP-binding cassette (ABC) transporters, amino acid synthesis, and nucleotide metabolism during bone cement fermentation. S. thermophilus CICC 20372 produces several metabolites with health-promoting function during bone cement fermentation, including indole-3-lactic acid, which is demonstrated ameliorative effects on intestinal inflammation, tumor growth, and gut dysbiosis. In addition, lots of nucleotide and organic acids were accumulated at higher levels, which enriched the fermented bone cement with a variety of nutrients. Collectively, these features endow S. thermophilus CICC 20372 a great potential strain for bone food processing.
Assuntos
Cimentos Ósseos , Streptococcus thermophilus , Humanos , Fermentação , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Cimentos Ósseos/metabolismo , Metaboloma , Nucleotídeos/metabolismoRESUMO
It has been found that Streptococcus thermophilus (S. thermophilus) influenced the gut microbiota and host metabolism with strain specificity in C57BL/6J mice in the previous study, though it remains unclear whether lactose as a dietary factor associated with dairy consumption is involved as the mediator in the interaction. In the present study, integrated analysis of 16S rRNA gene sequencing and untargeted metabolomics by liquid chromatography-mass spectrometry of fecal samples in C57BL/6J mice was applied to evaluate the effect of lactose on the regulation of gut microbiota by two S. thermophilus strains (4M6 and DYNDL13-4). The results showed that the influence of lactose supplementation on gut microbiota induced by S. thermophilus ingestion was strain-specific. Although two S. thermophilus strains ingestion introduced similar perturbations in the fecal microbiota and gut microbial metabolism, the regulation of DYNDL13-4 on the gut microbiota and metabolism was more affected by lactose than 4M6. More specifically, lactose and 4M6 supplementation mainly enriched pathways of d-glutamine and d-glutamate metabolism, alanine, aspartate, and glutamate metabolism, and tryptophan and phenylalanine metabolism in the gut, whereas 4M6 only enriched tryptophan and phenylalanine metabolism. DYNDL13-4-L (DYNDL13-4 with lactose) had significant effects on sulfur, taurine, and hypotaurine metabolism in the gut and on phenylalanine, tyrosine, tryptophan biosynthesis, and linoleic acid metabolism in serum relative to the DYNDL13-4. Our study demonstrated the strain-specific effect of lactose and S. thermophilus supplementation on gut microbiota and host metabolism. However, considering the complexity of the gut microbiota, further research is necessary to provide insights to facilitate the design of personalized fermented milk products as a dietary therapeutic strategy for improving host health.
Assuntos
Microbioma Gastrointestinal , Streptococcus thermophilus , Camundongos , Animais , Streptococcus thermophilus/metabolismo , Lactose/metabolismo , Triptofano/metabolismo , RNA Ribossômico 16S/metabolismo , Camundongos Endogâmicos C57BL , Metaboloma , Fenilalanina/metabolismo , Suplementos NutricionaisRESUMO
Streptococcus thermophilus FUA329, a urolithin A-producing bacterium, is isolated from human breast milk. The complete genome sequence of FUA329 did not contain any plasmids and at least 20 proteins were related to extreme environment resistance. Phenotypic assay results demonstrated that FUA329 was susceptible to 12 kinds of antibiotics and did not exhibit any hemolytic or nitrate reductase activity. Three free radical scavenging assays revealed that FUA329 have high antioxidant capability. FUA329 exhibited a cell surface hydrophobicity of 52.58 ± 1.17% and an auto-aggregation rate of 18.69 ± 2.48%. Moreover, FUA329 demonstrated a survival rate of over 60% in strong acid and bile salt environments, indicating that FUA329 may be stable colonization in the gastrointestinal tract. Additionally, we firstly found 3 potential proteins and 11 potential genes of transforming ellagic acid to urolithins in FUA329 genome. The above results indicate that FUA329 has credible safety and probiotic properties, as well as the potential to be developed as a new generation of urolithin A-producing probiotics.