RESUMO
Super-enhancers (SEs) have been recognized as key epigenetic regulators underlying cancer stemness and malignant traits by aberrant transcriptional control and promising therapeutic targets against human cancers. However, the SE landscape and their roles during head and neck squamous cell carcinoma (HNSCC) development especially in cancer stem cells (CSCs) maintenance remain underexplored yet. Here, we identify leukemia inhibitory factor (LIF)-SE as a representative oncogenic SE to activate LIF transcription in HNSCC. LIF secreted from cancer cells and cancer-associated fibroblasts promotes cancer stemness by driving SOX2 transcription in an autocrine/paracrine manner, respectively. Mechanistically, enhancer elements E1, 2, 4 within LIF-SE recruit SOX2/SMAD3/BRD4/EP300 to facilitate LIF transcription; LIF activates downstream LIFR-STAT3 signaling to drive SOX2 transcription, thus forming a previously unknown regulatory feedback loop (LIF-SE-LIF/LIFR-STAT3-SOX2) to maintain LIF overexpression and CSCs stemness. Clinically, increased LIF abundance in clinical samples correlate with malignant clinicopathological features and patient prognosis; higher LIF concentrations in presurgical plasma dramatically diminish following cancer eradication. Therapeutically, pharmacological targeting LIF-SE-LIF/LIFR-STAT3 significantly impairs tumor growth and reduces CSC subpopulations in xenograft and PDX models. Our findings reveal a hitherto uncharacterized LIF-SE-mediated auto-regulatory loop in regulating HNSCC stemness and highlight LIF as a novel noninvasive biomarker and potential therapeutic target for HNSCC.
Assuntos
Neoplasias de Cabeça e Pescoço , Fator Inibidor de Leucemia , Células-Tronco Neoplásicas , Fatores de Transcrição SOXB1 , Fator de Transcrição STAT3 , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Fator Inibidor de Leucemia/metabolismo , Fator Inibidor de Leucemia/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Camundongos , Animais , Células-Tronco Neoplásicas/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Retroalimentação Fisiológica , Linhagem Celular Tumoral , Modelos Animais de Doenças , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Transdução de Sinais/genéticaRESUMO
Stüve-Wiedemann syndrome (SWS), a rare autosomal recessive disorder, characterized by diminutive size, curvature of the elongated bones, bent fingers, episodes of heightened body temperature, respiratory distress or periods of breath-holding, and challenges with feeding, especially causes fatality in infants. SWS is an outcome of potential missense mutations in the leukemia inhibitory factor receptor gene reflected as numerous amino acid mutations at protein level. Employing in silico tools and techniques like mutational screening with Pred_MutHTP, I-Mutant2.0, PANTHER.db, PolyPhen, to classify mutations as deleterious/destabilizing, in conjunction with experimental data analysis, P136A and S279P emerged as 'effect'-causing mutations. Pre-existing knowledge suggests, SWS progression is effectuated conformationally altered and dysfunctional LIFR, unable to bind to LIF and further form the LIF/LIFR/gp130 signalling complex. To gain functional insights into the effect of the said mutations on the wild type protein, an all-atom, explicit, solvent molecular dynamics simulation was performed following docking approaches. Consequently, referring to the RMSD, RMSF, protein dynamic network analysis, energy landscape plots and domain motion analysis, it was revealed that unbound LIFR_WT was more prone to LIF binding as usual whereas the mutants exhibited considerable domain closure to inhibit LIF binding. We conducted binding affinity analysis via MM/GBSA and dissociation constant estimation after LIFR-LIF docking and found the WT_complex to be more stable and compact as a whole when compared to the flexible mutant complexes thus being associated with SWS. Our study offers a route for understanding molecular level implications upon LIFR mutations which opens an avenue for therapeutic interventions.
Assuntos
Subunidade alfa de Receptor de Fator Inibidor de Leucemia , Simulação de Dinâmica Molecular , Transdução de Sinais , Humanos , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Transdução de Sinais/genética , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Exostose Múltipla Hereditária/genética , Exostose Múltipla Hereditária/metabolismo , Mutação de Sentido Incorreto , Janus Quinases/genética , Janus Quinases/metabolismo , Fator Inibidor de LeucemiaRESUMO
Medial vascular calcification in chronic kidney disease (CKD) involves pro-inflammatory pathways induced by hyperphosphatemia. Several interleukin 6 family members have been associated with pro-calcific effects in vascular smooth muscle cells (VSMCs) and are considered as therapeutic targets. Therefore, we investigated the role of leukemia inhibitory factor (LIF) during VSMC calcification. LIF expression was found to be increased following phosphate exposure of VSMCs. LIF supplementation aggravated, while silencing of endogenous LIF or LIF receptor (LIFR) ameliorated the pro-calcific effects of phosphate in VSMCs. The soluble LIFR mediated antagonistic effects towards LIF and reduced VSMC calcification. Mechanistically, LIF induced phosphorylation of the non-receptor tyrosine-protein kinase 2 (TYK2) and signal transducer and activator of transcription-3 (STAT3) in VSMCs. TYK2 inhibition by deucravacitinib, a selective, allosteric oral immunosuppressant used in psoriasis treatment, not only blunted the effects of LIF, but also interfered with the pro-calcific effects induced by phosphate. Conversely, TYK2 overexpression aggravated VSMC calcification. Ex vivo calcification of mouse aortic rings was ameliorated by Tyk2 pharmacological inhibition and genetic deficiency. Cholecalciferol-induced vascular calcification in mice was improved by Tyk2 inhibition and in the Tyk2-deficient mice. Similarly, calcification was ameliorated in Abcc6/Tyk2-deficient mice after adenine/high phosphorus-induced CKD. Thus, our observations indicate a role for LIF in CKD-associated vascular calcification. Hence, the effects of LIF identify a central pro-calcific role of TYK2 signaling, which may be a future target to reduce the burden of vascular calcification in CKD.
Assuntos
Fator Inibidor de Leucemia , Músculo Liso Vascular , Miócitos de Músculo Liso , Insuficiência Renal Crônica , Transdução de Sinais , TYK2 Quinase , Calcificação Vascular , Animais , Humanos , Masculino , Camundongos , Células Cultivadas , Modelos Animais de Doenças , Fator Inibidor de Leucemia/metabolismo , Fator Inibidor de Leucemia/genética , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fosfatos/metabolismo , Fosforilação , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Fator de Transcrição STAT3/metabolismo , TYK2 Quinase/metabolismo , TYK2 Quinase/genética , Calcificação Vascular/patologia , Calcificação Vascular/metabolismo , Calcificação Vascular/etiologia , Calcificação Vascular/genéticaRESUMO
Ciliary neurotrophic factor (CNTF) activates cells via the non-signaling α-receptor CNTF receptor (CNTFR) and the two signaling ß-receptors glycoprotein 130 (gp130) and leukemia inhibitory factor receptor (LIFR). The CNTF derivate, Axokine, was protective against obesity and insulin resistance, but clinical development was halted by the emergence of CNTF antibodies. The chimeric cytokine IC7 used the framework of interleukin (IL-)6 with the LIFR-binding site from CNTF to activate cells via IL-6R:gp130:LIFR complexes. Similar to CNTF/Axokine, IC7 protected mice from obesity and insulin resistance. Here, we developed CNTF-independent chimeras that specifically target the IL-6R:gp130:LIFR complex. In GIL-6 and GIO-6, we transferred the LIFR binding site from LIF or OSM to IL-6, respectively. While GIO-6 signals via gp130:IL-6R:LIFR and gp130:IL-6R:OSMR complexes, GIL-6 selectively activates the IL-6R:gp130:LIFR receptor complex. By re-evaluation of IC7 and CNTF, we discovered the Oncostatin M receptor (OSMR) as an alternative non-canonical high-affinity receptor leading to IL-6R:OSMR:gp130 and CNTFR:OSMR:gp130 receptor complexes, respectively. The discovery of OSMR as an alternative high-affinity receptor for IC7 and CNTF designates GIL-6 as the first truly selective IL-6R:gp130:LIFR cytokine, whereas GIO-6 is a CNTF-free alternative for IC7.
Assuntos
Fator Neurotrófico Ciliar , Receptor gp130 de Citocina , Interleucina-6 , Transdução de Sinais , Animais , Humanos , Camundongos , Fator Neurotrófico Ciliar/metabolismo , Fator Neurotrófico Ciliar/genética , Receptor gp130 de Citocina/metabolismo , Receptor gp130 de Citocina/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Modelos Moleculares , Engenharia de Proteínas/métodos , Estrutura Terciária de Proteína , Receptores de Interleucina-6/metabolismo , Receptores de Interleucina-6/genética , Receptores de OSM-LIF/metabolismo , Receptores de OSM-LIF/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Camundongos Endogâmicos C57BLRESUMO
OBJECTIVES: Studies have investigated miR-125a for its predictable role in recurrent pregnancy loss (RPL) cases to regulate many biological events required for the maintenance of pregnancy by regulating its confirmed target genes LIFR, ERBB2 and STAT3. METHODS: The present study included 40 cases of women with at least two RPLs in ≤20 weeks of gestation against 40 healthy multiparous women without a previous history of abortion. Expression analysis of ERBB2, LIFR, STAT3 and miR-125a was conducted by quantitative real-time PCR (qPCR). RESULTS: The expression of miR-125a was significantly lower in the plasma of RPL cases (P = 0.0001) and showed a significantly increased mean expression level in product of conception (2.56-fold, P < 0.0001). Among the target gene of miR-125a, ERBB2 and STAT3 gene expression level was significantly increased (2.58-fold, P = 0.04; 1.87-fold, P = 0.025), respectively in RPL cases while the LIFR gene revealed comparable expression (P = 0.64). Furthermore, expression analysis of ERBB2 gene with respect to its regulatory miR-125a cases depicted a significant association (P = 0.0005). Kaplan-Meier survival analysis revealed cases with low miR-125a expression had significantly shorter time to miscarriages, (log-rank P = 0.02). Also, decreased expression of miR-125a significantly conferred >2-fold increased risk for RPL (HR = 2.34: P < 0.05). CONCLUSION: The overall conclusion of the study was that altered miR-125a expression may cause deregulation in target genes LIFR, ERBB2 and STAT3 resulting in adverse consequence in the outcome of pregnancy.
Assuntos
Aborto Habitual , Subunidade alfa de Receptor de Fator Inibidor de Leucemia , MicroRNAs , Receptor ErbB-2 , Fator de Transcrição STAT3 , Humanos , Feminino , Aborto Habitual/genética , MicroRNAs/genética , Gravidez , Adulto , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Receptor ErbB-2/genética , Estudos de Casos e Controles , Adulto JovemRESUMO
Prostate stromal cells play a crucial role in the promotion of tumor growth and immune evasion in the tumor microenvironment (TME) through intricate molecular alterations in their interaction with prostate cancer (PCa) cells. While the impact of these cells on establishing an immunosuppressive response and influencing PCa aggressiveness remains incompletely understood. Our study shows that the activation of the leukemia inhibitory factor (LIF)/LIF receptor (LIFR) pathway in both prostate tumor and stromal cells, following androgen deprivation therapy (ADT), leads to the development of an immunosuppressive TME. Activation of LIF/LIFR signaling in PCa cells induces neuroendocrine differentiation (NED) and upregulates immune checkpoint expression. Inhibition of LIF/LIFR attenuates these effects, underscoring the crucial role of LIF/LIFR in linking NED to immunosuppression. Prostate stromal cells expressing LIFR contribute to NED and immunosuppressive marker abundance in PCa cells, while LIFR knockdown in prostate stromal cells reverses these effects. ADT-driven LIF/LIFR signaling induces brain-derived neurotrophic factor (BDNF) expression, which, in turn, promotes NED, aggressiveness, and immune evasion in PCa cells. Clinical analyses demonstrate elevated BDNF levels in metastatic castration-resistant PCa (CRPC) and a positive correlation with programmed death-ligand 1 (PDL1) and immunosuppressive signatures. This study shows that the crosstalk between PCa cells and prostate stromal cells enhances LIF/LIFR signaling, contributing to an immunosuppressive TME and NED in PCa cells through the upregulation of BDNF.
Assuntos
Fator Neurotrófico Derivado do Encéfalo , Neoplasias da Próstata , Microambiente Tumoral , Masculino , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/imunologia , Linhagem Celular Tumoral , Microambiente Tumoral/imunologia , Transdução de Sinais/efeitos dos fármacos , Fator Inibidor de Leucemia/metabolismo , Células Estromais/metabolismo , Células Estromais/patologia , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Animais , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/imunologia , Diferenciação CelularRESUMO
Endometrial cancer (ECa) is the most common female gynecologic cancer. When comparing the two histological subtypes of endometrial cancer, Type II tumors are biologically more aggressive and have a worse prognosis than Type I tumors. Current treatments for Type II tumors are ineffective, and new targeted therapies are urgently needed. LIFR and its ligand, LIF, have been shown to play a critical role in the progression of multiple solid cancers and therapy resistance. The role of LIF/LIFR in the progression of Type II ECa, on the other hand, is unknown. We investigated the role of LIF/LIFR signaling in Type II ECa and tested the efficacy of EC359, a novel small-molecule LIFR inhibitor, against Type II ECa. The analysis of tumor databases has uncovered a correlation between diminished survival rates and increased expression of leukemia inhibitory factor (LIF), suggesting a potential connection between altered LIF expression and unfavorable overall survival in Type II ECa. The results obtained from cell viability and colony formation assays demonstrated a significant decrease in the growth of Type II ECa LIFR knockdown cells in comparison to vector control cells. Furthermore, in both primary and established Type II ECa cells, pharmacological inhibition of the LIF/LIFR axis with EC359 markedly decreased cell viability, long-term cell survival, and invasion, and promoted apoptosis. Additionally, EC359 treatment reduced the activation of pathways driven by LIF/LIFR, such as AKT, mTOR, and STAT3. Tumor progression was markedly inhibited by EC359 treatment in two different patient-derived xenograft models in vivo and patient-derived organoids ex vivo. Collectively, these results suggest LIFR inhibitor EC359 as a possible new small-molecule therapeutics for the management of Type II ECa.
Assuntos
Neoplasias do Endométrio , Transdução de Sinais , Humanos , Feminino , Receptores de OSM-LIF/metabolismo , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Neoplasias do Endométrio/tratamento farmacológicoRESUMO
The poly(rC) binding protein 1 gene (PCBP1) encodes the heterogeneous nuclear ribonucleoprotein E1 (hnRNPE1), a nucleic acid-binding protein that plays a tumor-suppressive role in the mammary epithelium by regulating phenotypic plasticity and cell fate. Following the loss of PCBP1 function, the FAM3C gene (encoding the Interleukin-like EMT inducer, or "ILEI" protein) and the leukemia inhibitory factor receptor (LIFR) gene are upregulated. Interaction between FAM3C and LIFR in the extracellular space induces phosphorylation of signal transducer and activator of transcription 3 (pSTAT3). Overexpression and/or hyperactivity of STAT3 has been detected in 40% of breast cancer cases and is associated with a poor prognosis. Herein, we characterize feed-forward regulation of LIFR expression in response to FAM3C/LIFR/STAT3 signaling in mammary epithelial cells. We show that PCBP1 upregulates LIFR transcription through activity at the LIFR promoter, and that FAM3C participates in transcriptional regulation of LIFR. Additionally, our bioinformatic analysis reveals a signature of transcriptional regulation associated with FAM3C/LIFR interaction and identifies the TWIST1 transcription factor as a downstream effector that participates in the maintenance of LIFR expression. Finally, we characterize the effect of LIFR expression in cell-based experiments that demonstrate the promotion of invasion, migration, and self-renewal of breast cancer stem cells (BCSCs), consistent with previous studies linking LIFR expression to tumor initiation and metastasis in mammary epithelial cells.
Assuntos
Neoplasias da Mama , Proteínas de Ligação a DNA , Proteínas de Ligação a RNA , Feminino , Humanos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Autorrenovação Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Proteínas de Neoplasias/genética , Receptores de OSM-LIF/genética , Receptores de OSM-LIF/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Invasividade NeoplásicaRESUMO
Stüve-Wiedemann Syndrome (STWS) is an autosomal recessive condition caused by variants in the LIFR gene, presenting with respiratory failure, hyperthermia and skeletal dysplasia in the neonatal period. Historically identified as a lethal condition, more children are now managed holistically from early in life with multidisciplinary team involvement with improved outcomes. This stems from early diagnosis, supported by molecular testing in the pre and postnatal periods. This report includes five such cases with survival in childhood to 10 years old in the UK affected by skeletal abnormalities, hyperthermia, respiratory distress and their diagnostic odyssey. All cases have a molecular diagnosis; two patients (family 1) were found to be homozygous for a novel pathogenic LIFR variant NM_002310.5:c.704G > A, p.(Trp235Ter). One patient (family 2) is compound heterozygous with the previously reported LIFR variant NM_002310.5:c.756dup p.(Lys253Ter), and a second novel variant NM_002310.5:c.397+5G > A. Two patients (family 3) are homozygous for one of the same LIFR variants NM_002310.5:c.756dup p.(Lys253Ter) as in family 2. This report discusses genotypic and phenotypic data for five patients with STWS, as well as the need for multi-disciplinary, proactive management and genetic counselling.
Assuntos
Osteocondrodisplasias , Recém-Nascido , Criança , Humanos , Lactente , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Mutação , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética , Reino UnidoRESUMO
Lung cancer is the most commonly diagnosed cancer and the leading reason for tumor-related mortality, while non-small cell lung cancer (NSCLC) is the most usual type of lung cancer. Circular RNAs (circRNAs) have emerged as vital regulators in the development of human cancers, including NSCLC. We aimed to explore the functions of circRNA leukemia inhibitory factor receptor (circLIFR) in NSCLC progression. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to quantify the expression of circLIFR, microRNA-429 (miR-429), and Elav-like family member 2 (CELF2) in NSCLC tissues and cells. Cell proliferation capability of NSCLC cells was determined by Cell Counting Kit-8 (CCK-8) and colony formation assays. The flow cytometry assay was performed to evaluate cell-cycle distribution and apoptosis of NSCLC cells. The abilities of migration and invasion were measured by transwell assay. In addition, the activities of caspase 3 and caspase 9 were measured by the assay kits. The interaction relationship between miR-429 and circLIFR or CELF2 was analyzed by dual-luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays. The expression levels of related proteins were examined by Western Blot assay. The xenograft experiment was established to explore the role of circLIFR in vivo. CircLIFR, circular, and stable transcript in NSCLC cells, was decreased more than 2 folds in NSCLC tissues and cells than controls (P < 0.0001). Importantly, overexpression of circLIFR impeded cell proliferation, migration, invasion, and inactivated protein kinase B (AKT)/phosphatase and tensin homolog (PTEN)-signaling pathways while enhanced apoptosis and cell-cycle arrest in NSCLC cells, which was overturned by upregulation of miR-429 or silencing of CELF2. Furthermore, the upregulation of circLIFR inhibited NSCLC tumor growth in vivo. Overexpression of circLIFR could suppress NSCLC progress by acting as a sponge of miR-429 to regulate the expression of CELF2 and PTEN/AKT-signaling pathways in NSCLC.
Assuntos
Proteínas CELF , Carcinoma Pulmonar de Células não Pequenas , Subunidade alfa de Receptor de Fator Inibidor de Leucemia , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Proliferação de Células , Neoplasias Pulmonares/genética , MicroRNAs/genética , Proteínas do Tecido Nervoso , Proteínas Proto-Oncogênicas c-akt , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genéticaRESUMO
Vesicoureteral reflux (VUR) is a common urological problem in children and its hereditary nature is well recognised. However, despite decades of research, the aetiological factors are poorly understood and the genetic background has been elucidated in only a minority of cases. To explore the molecular aetiology of primary hereditary VUR, we performed whole-exome sequencing in 13 large families with at least three affected cases. A large proportion of our study cohort had congenital renal hypodysplasia in addition to VUR. This high-throughput screening revealed 23 deleterious heterozygous variants in 19 candidate genes associated with VUR or nephrogenesis. Sanger sequencing and segregation analysis in the entire families confirmed the following findings in three genes in three families: frameshift LAMC1 variant and missense variants of KIF26B and LIFR genes. Rare variants were also found in SALL1, ROBO2 and UPK3A. These gene variants were present in individual cases but did not segregate with disease in families. In all, we demonstrate a likely causal gene variant in 23% of the families. Whole-exome sequencing technology in combination with a segregation study of the whole family is a useful tool when it comes to understanding pathogenesis and improving molecular diagnostics of this highly heterogeneous malformation.
Assuntos
Cinesinas , Laminina , Subunidade alfa de Receptor de Fator Inibidor de Leucemia , Refluxo Vesicoureteral , Humanos , Heterozigoto , Cinesinas/genética , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Mutação , Linhagem , Refluxo Vesicoureteral/genética , Sequenciamento do Exoma , Laminina/genéticaRESUMO
BACKGROUND: Aberrant DNA methylation is an epigenetic marker that has been linked to the pathogenesis of colorectal cancer (CRC). Long noncoding RNAs (lncRNAs) have been increasingly identified to be associated with tumorigenic processes of CRC. Identifying epigenetically dysregulated lncRNAs and characterizing their effects during carcinogenesis are focuses of cancer research. METHODS: Differentially methylated loci and expressed lncRNAs were identified by integrating DNA methylome and transcriptome analyses using The Cancer Genome Atlas database. Bisulfite sequencing PCR (BSP) was performed to analyze LIFR-AS1 promoter methylation status. The functional roles of LIFR-AS1 in CRC were determined by in vitro and in vivo experiments. RESULTS: We identified a novel hypermethylated lncRNA, LIFR-AS1, that was downregulated and associated with tumorigenesis, metastasis, and poor prognosis in CRC. High methylation burden of LIFR-AS1 indicated a poor survival of CRC patients. Promoter hypermethylation of LIFR-AS1 in tumor tissues was confirmed by BSP. Functional assays revealed that LIFR-AS1 could competitively bind to hsa-miR-29b-3p, and repressed colon cancer cell proliferation, colony formation and invasion. LIFR-AS1 also inhibited tumor growth in a mouse xenograft model of CRC. CONCLUSIONS: Our results showed that the identified DNA methylation-dysregulated lncRNAs may be potential biomarkers and highlighted a role for LIFR-AS1 as a tumor suppressor in CRC.
Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Humanos , Camundongos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Neoplasias Colorretais/patologia , Metilação de DNA , Detecção Precoce de Câncer , MicroRNAs/genética , Proliferação de Células/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismoRESUMO
BACKGROUND: Serous ovarian carcinoma (SOC) is a common malignant tumor in female reproductive system. Long noncoding RNA (lncRNA) LIFR-AS1 is a tumor suppressor gene in colorectal cancer, but its effect and underlying mechanism in SOC are still unclear. Therefore, this study focuses on unveiling the regulatory mechanism of LIFR-AS1 in SOC. METHODS: The relationship between LIFR-AS1 expression and prognosis of SOC patients was analyzed by TCGA database and Starbase, and then, the LIFR-AS1 expression in SOC tissues and cells was detected by quantitative real-time PCR (qRT-PCR) and in situ hybridization (ISH). Besides, the relationship between LIFR-AS1 and clinical characteristics was analyzed. Also, the effects of LIFR-AS1 on the biological behaviors of SOC cells were measured by Cell Counting Kit-8, colony formation, and wound-healing and Transwell assays, respectively. Western blot and qRT-PCR were employed to determine the protein expressions of genes related to proliferation (PCNA), apoptosis (cleaved caspase-3), epithelial-mesenchymal transition (E-cadherin, N-cadherin, and Snail). RESULTS: LIFR-AS1 was lowly expressed in SOC, which was correlated with the poor prognosis of SOC patients. Low expression of LIFR-AS1 in SOC was associated with the tumor size, clinical stage, lymph node metastasis, and distant metastasis. LIFR-AS1 overexpression promoted the expressions of cleaved caspase-3 and E-cadherin while suppressing the malignant behaviors (proliferation, migration, and invasion) of SOC cells, the expressions of PCNA, N-cadherin, and Snail. Besides, silencing LIFR-AS1 exerted the effects opposite to overexpressed LIFR-AS1. CONCLUSION: LIFR-AS1 overexpression inhibits biological behaviors of SOC cells, which may be a new therapeutic method.
Assuntos
Neoplasias Ovarianas , RNA Longo não Codificante , Caderinas , Carcinoma Epitelial do Ovário/genética , Caspase 3/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Antígeno Nuclear de Célula em Proliferação/genética , RNA Longo não Codificante/genéticaRESUMO
The dysregulation of leukemia inhibitory factor (LIF) and its cognate receptor (LIFR) has been associated with multiple cancer initiation, progression, and metastasis. LIF plays a significant tumor-promoting role in cancer, while LIFR functions as a tumor promoter and suppressor. Epithelial and stromal cells secrete LIF via autocrine and paracrine signaling mechanism(s) that bind with LIFR and subsequently with co-receptor glycoprotein 130 (gp130) to activate JAK/STAT1/3, PI3K/AKT, mTORC1/p70s6K, Hippo/YAP, and MAPK signaling pathways. Clinically, activating the LIF/LIFR axis is associated with poor survival and anti-cancer therapy resistance. This review article provides an overview of the structure and ligands of LIFR, LIF/LIFR signaling in developmental biology, stem cells, cancer stem cells, genetics and epigenetics of LIFR, LIFR regulation by long non-coding RNAs and miRNAs, and LIF/LIFR signaling in cancers. Finally, neutralizing antibodies and small molecule inhibitors preferentially blocking LIF interaction with LIFR and antagonists against LIFR under pre-clinical and early-phase pre-clinical trials were discussed.
Assuntos
Subunidade alfa de Receptor de Fator Inibidor de Leucemia , Fator Inibidor de Leucemia , Neoplasias , Fosfatidilinositol 3-Quinases , Humanos , Interleucina-6/metabolismo , Fator Inibidor de Leucemia/genética , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Neoplasias/tratamento farmacológico , Neoplasias/genéticaRESUMO
Polycystic ovary syndrome (PCOS) is a complex endocrine disorder that represents infertility in many reproductive-age women. Reduced implantation of blastocyst was proposed as an etiology for infertility in this syndrome. In this regard, many candidate genes such as leukemia inhibitory factor (LIF), LIF receptor (LIFR), glycoprotein 130 (gp130), and interleukin 11 (IL11) were proposed to be disrupted. Investigation of these genes is not ethically approved in pregnant women with PCOS. In this study, we aimed to compare the expression of LIF, LIFR, gp130, and IL11 before and during different gestational days in uterine tissues of prenatally-androgenized rat models of PCOS with control rats. The rat model of polycystic ovary syndrome was created by the injection of testosterone during prenatal life. RNA extraction and cDNA synthesis from uterine tissues were performed in both prenatal induced PCOS and control rats. Expression of LIF, LIFR, gp130, and IL11 genes was compared before pregnancy (GD0) and during pregnancy on GD0.5, GD4.5, GD5.5, and GD8.5 between two study groups (n = 6 each group) using SYBR Green real-time PCR. The expression of the LIF mRNAs significantly decreased on GD4.5, 5.5, and 8.5 in the PCOS rats compared to the controls (P-values: 0.0483, 0.0152, and 0.0043). Additionally, decreased expression of LIFR and gp130 was observed on GD0.5 to 8.5 in PCOS rats compared to controls (P-values: 0.022, 0.0480, 0.0043, 0.0022 for LIFR and 0.0189, 0.0022, 0.0087, 0.0022 for gp130). Moreover, IL-11 mRNA levels decreased in the PCOS group compared to their controls both before (P-value:0.0362) and during the gestational period (P-values:0.0085, 0.0043, 0.0389, 0.0087). Reduced expression of LIF, LIFR, gp130, and IL11 in the rats with PCOS indicates a possible disruption in the implantation and decidualization stages in this syndrome.
Assuntos
Infertilidade , Síndrome do Ovário Policístico , Androgênios , Animais , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Implantação do Embrião , Feminino , Glicoproteínas , Humanos , Interleucina-11/genética , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/genética , Gravidez , RNA Mensageiro/análise , Ratos , Receptores de CitocinasRESUMO
Emerging evidence has indicated that aberrantly expressed long noncoding RNAs (lncRNAs) play a vital role in various biological processes associated with tumorigenesis. Leukemia inhibitory factor receptor antisense RNA1 (LIFR-AS1) is a recently identified lncRNA transcribed in an antisense manner from the LIFR gene located on human chromosome 5p13.1. LIFR-AS1 regulates tumor proliferation, migration, invasion, apoptosis, and drug resistance through different mechanisms. Its expression level is related to the clinicopathological characteristics of tumors and plays a key role in tumor occurrence and development. In this review, we summarize the role of LIFR-AS1 in the development and progression of different cancers and highlight the potential for LIFR-AS1 to serve as a biomarker and therapeutic target for a variety of human cancers.
Assuntos
Neoplasias , RNA Antissenso , RNA Longo não Codificante , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Neoplasias/genética , RNA Antissenso/genética , RNA Longo não Codificante/genéticaRESUMO
Long non-coding RNA LIFR-AS1 is low-expressed in many cancers, but its functions in papillary thyroid carcinoma (PTC) were not defined and require further study. The relationship between LIFR-AS1 expression and clinicopathological characteristics of patients with PTC was statistically analyzed. The downregulation of LIFR-AS1 in PTC tissues and cell lines was predicted by bioinformatics analysis and verified by qRT-PCR. After overexpressing or silencing LIFR-AS1, the regulatory role of LIFR-AS1 in PTC was examined by performing MTT, colony formation, wound healing, Transwell, ELISA, tube formation and xenograft tumor experiment. MiR-31-5p and SID1 transmembrane family member 2 (SIDT2) expressions in PTC tissues or cell lines were detected by qRT-PCR, Western blot, or in situ hybridization. The relationship between miR-31-5p and LIFR-AS1/SIDT2 was predicted by LncBase, TargetScan or Pearson correlation test and then verified by Dual-Luciferase Reporter assay, RNA pull-down assay and qRT-PCR. The regulatory effect of LIFR-AS1/miR-31-5p/SIDT2 axis on the biological behaviors of PTC cells was confirmed by functional experiments and rescue experiments mentioned above. The tumor size and lymphatic metastasis were correlated with LIFR-AS1 overexpression. Overexpressed LIFR-AS1 suppressed tumorigenesis in vivo. LIFR-AS1 and SIDT2 expressions were suppressed in PTC tissues, while that of miR-31-5p was elevated in PTC tissues. LIFR-AS1 was negatively correlated with miR-31-5p. LIFR-AS1 sponged miR-31-5p to upregulate SIDT2, thereby inhibiting the viability, proliferation, migration, invasion, and the secretion of vascular endothelial growth factor (VEGF) of PTC cells and angiogenesis of human umbilical vein endothelial cells (HUVECs). This paper demonstrates that LIFR-AS1/miR-31-5p/SIDT2 axis modulated the development of PTC.
Assuntos
MicroRNAs , Proteínas de Transporte de Nucleotídeos , RNA Longo não Codificante , Neoplasias da Glândula Tireoide , Linhagem Celular Tumoral , Proliferação de Células/genética , Células Endoteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Transporte de Nucleotídeos/genética , Proteínas de Transporte de Nucleotídeos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Câncer Papilífero da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
N6-methyladenosine (m6A) modification, the most abundant internal methylation of eukaryotic RNA transcripts, is critically implicated in RNA processing. There is extensive evidence indicating that long non-coding RNAs (lncRNAs) serve as key regulators of oncogenesis and tumor progression in humans. Through prior study has assessed that LIFR-AS1 plays a key role in various kinds of malignant tumors. However, the exact role of m6A induced LIFR-AS1 in pancreatic cancer (PC) and its potential molecular mechanisms remain largely unknown. In this study, we determined that PC cell lines and tumors exhibit increased LIFR-AS1 expression that correlates with larger tumor size, lymph node metastasis, and more advanced TNM stage. Functionally, loss-of-function studies indicated that LIFR-AS1 knockdown decreased the proliferation, migration, and invasion of PC cells in vitro. Mechanistically, we found that METTL3 induced m6A hyper-methylation on the 3' UTR of LIFR-AS1 to enhance its mRNA stability and LIFR-AS1 could directly interact with miR-150-5p, thereby indirectly up-regulating VEGFA expressions within cells. Through rescue experiments, we were able to confirm that the unfavorable impact of LIFR-AS1 knockdown on VEGFA /PI3K/Akt Signaling could be reversed via the inhibition of miR-150-5p expression. Together, these findings indicate that a noval m6A-LIFR-AS1 axis promotes PC progression at least in part via regulation of the miR-150-5p/VEGFA axis, indicating that this regulatory axis may be a viable clinical target for the treatment of PC.
Assuntos
Adenosina/análogos & derivados , Subunidade alfa de Receptor de Fator Inibidor de Leucemia , Metiltransferases , MicroRNAs , Neoplasias Pancreáticas , RNA Longo não Codificante , Fator A de Crescimento do Endotélio Vascular , Adenosina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Regulação para Cima/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
The mesenchymal subtype of glioblastoma is thought to be determined by both cancer cell-intrinsic alterations and extrinsic cellular interactions, but remains poorly understood. Here, we dissect glioblastoma-to-microenvironment interactions by single-cell RNA sequencing analysis of human tumors and model systems, combined with functional experiments. We demonstrate that macrophages induce a transition of glioblastoma cells into mesenchymal-like (MES-like) states. This effect is mediated, both in vitro and in vivo, by macrophage-derived oncostatin M (OSM) that interacts with its receptors (OSMR or LIFR) in complex with GP130 on glioblastoma cells and activates STAT3. We show that MES-like glioblastoma states are also associated with increased expression of a mesenchymal program in macrophages and with increased cytotoxicity of T cells, highlighting extensive alterations of the immune microenvironment with potential therapeutic implications.
Assuntos
Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Glioblastoma/imunologia , Glioblastoma/patologia , Linfócitos T/imunologia , Macrófagos Associados a Tumor/imunologia , Animais , Neoplasias Encefálicas/genética , Células Cultivadas , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Citotoxicidade Imunológica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Humanos , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oncostatina M/metabolismo , Subunidade beta de Receptor de Oncostatina M/genética , Subunidade beta de Receptor de Oncostatina M/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Microambiente Tumoral , Macrófagos Associados a Tumor/patologiaRESUMO
Leukemia inhibitory factor (LIF), a cytokine secreted by stromal myofibroblasts and tumor cells, has recently been highlighted to promote tumor progression in pancreatic and other cancers through KRAS-driven cell signaling. We engineered a high affinity soluble human LIF receptor (LIFR) decoy that sequesters human LIF and inhibits its signaling as a therapeutic strategy. This engineered 'ligand trap', fused to an antibody Fc-domain, has ~50-fold increased affinity (~20 pM) and improved LIF inhibition compared to wild-type LIFR-Fc, potently blocks LIF-mediated effects in pancreatic cancer cells, and slows the growth of pancreatic cancer xenograft tumors. These results, and the lack of apparent toxicity observed in animal models, further highlights ligand traps as a promising therapeutic strategy for cancer treatment.