RESUMO
BACKGROUND: Genomic imprinting results in parent-of-origin-specific gene expression and, among vertebrates, is found only in therian mammals: marsupials and eutherians. A differentially methylated region (DMR), in which the methylation status of CpG dinucleotides differs between the two alleles, can mark the parental identity of imprinted genes. We developed a computational pipeline that detected CpG islands (CGIs) marked by both methylated and unmethylated signals in whole genome bisulfite sequencing data. This approach identified candidate marsupial DMRs in a publicly available koala methylome. One of these candidate DMRs was associated with PRKACB, a gene encoding the protein kinase A catalytic subunit beta. Nothing is known about the imprinting status of PRKACB in eutherian mammals although mutations of this gene are associated with endocrine neoplasia and other developmental disorders. RESULTS: In the tammar wallaby and brushtail possum there was parent-of-origin-specific DNA methylation in the PRKACB DMR in which the maternal allele was methylated and the paternal allele was unmethylated. There were multiple RNAs transcribed from this locus. Allele-specific expression analysis identified paternal expression of a PRKACB lncRNA and an mRNA isoform. Comparison of the PRKACB gene start site between marsupials and eutherians demonstrated that the CGI is longer in marsupials. The PRKACB gene product functions in the same signalling pathway as the guanine nucleotide-binding protein alpha subunit encoded at the GNAS locus, a known eutherian imprinted gene. In a mouse methylome Gnas had three differentially methylated CGIs, while in the koala methylome the GNAS locus had two unmethylated CGIs. CONCLUSIONS: We conclude that PRKACB is a novel, DMR-associated marsupial imprinted gene. Imprinting of PRKACB in marsupials and GNAS in eutherians may indicate a conserved selection pressure for imprinting of the protein kinase A signalling pathway in therians with the two lineages adapting by imprinting different genes.
Assuntos
Ilhas de CpG , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico , Metilação de DNA , Impressão Genômica , Animais , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Camundongos , Marsupiais/genética , Macropodidae/genética , AlelosRESUMO
BACKGROUND: Neuroendocrine prostate cancer (NEPC), a lethal subset of prostate cancer (PCa), is characterized by loss of AR signaling and resistance to AR-targeted therapy. While it is well reported that second-generation AR blockers induce neuroendocrine (NE) trans-differentiation of castration-resistant prostate cancer (CRPC) to promote the occurrence of NEPC, and pluripotent transcription factors might be potential regulators, the underlying molecular mechanisms remain unclear. METHODS: We analyzed the data from public databsets to screen candidate genes and then focused on SOX4, a regulator of NE trans-differentiation. The expression changes of SOX4 and its relationship with tumor progression were validated in clinical tumor tissues. We evaluated malignant characteristics related to NEPC in prostate cancer cell lines with stable overexpression or knockdown of SOX4 in vitro. Tumor xenografts were analyzed after inoculating the relevant cell lines into nude mice. RNA-seq, ATAC-seq, non-targeted metabolomics analysis, as well as molecular and biochemical assays were carried out to determine the mechanism. RESULTS: We screened public datasets and identified that expression of SOX4 was significantly elevated in NEPC. Overexpressing SOX4 in C4-2B cells increased cell proliferation and migration, upregulated the expression of NE marker genes, and inhibited AR expression. Consistently, inhibition of SOX4 expression in DU-145 and PC-3 cells reduced the above malignant phenotypes and repressed the expression of NE marker genes. For the in vivo assay, we found that knockdown of SOX4 inhibited tumor growth of subcutaneous xenografts in castrated nude mice which were concomitantly treated with enzalutamide (ENZ). Mechanically, we identified that one of the key enzymes in gluconeogenesis, PCK2, was a novel target of SOX4. The activation of carbohydrate metabolism reprogramming by SOX4 could promote NE trans-differentiation via the SOX4/PCK2 pathway. CONCLUSIONS: Our findings reveal that SOX4 promotes NE trans-differentiation both in vitro and in vivo via directly enhancing PCK2 activity to activate carbohydrate metabolism reprogramming. The SOX4/PCK2 pathway and its downstream changes might be novel targets for blocking NE trans-differentiation.
Assuntos
Transdiferenciação Celular , Neoplasias de Próstata Resistentes à Castração , Fatores de Transcrição SOXC , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Camundongos Nus , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismoRESUMO
BACKGROUND: Somatic mutations have been observed to induce aldosterone-producing adenomas (APAs). These may be accelerated during pregnancy. Somatic PRKACA mutations are common in cortisol-producing adenomas (CPAs). However, their role in APAs, particularly aldosterone- and cortisol-producing adenomas (A/CPAs), is not well understood. This study aims to investigate the association between PRKACA mutations and the accelerated development of A/CPAs during pregnancy. CASE PRESENTATION: A patient with primary aldosteronism (PA) associated with severe Cushing's syndrome (CS) underwent surgical resection of an adrenal tumor one year after delivery. Pathologic examination revealed an adrenocortical adenoma characterized primarily by zona glomerulosa hyperplasia. Somatic mutation analysis revealed the presence of the somatic PRKACA mutation, which was validated as a deleterious mutation by various computational databases. Immunohistochemical results showed positive staining for cytochrome P450 family 11 subfamily B member 1 (CYP11B1), cytochrome P450 family 11 subfamily B member 2 (CYP11B2), and luteinizing hormone/chorionic gonadotropin receptor (LHCGR). Our study included a review of 20 previously documented cases of aldosterone- and cortisol-producing adenomas (A/CPAs), two of which were concurrently positive for both CYP11B1 and CYP11B2, consistent with our findings. CONCLUSION: Somatic mutations in PRKACA may correlate with the upregulation of LHCGR, which synergistically drives the accelerated growth of co-secretion tumors during pregnancy, thereby exacerbating disease progression.
Assuntos
Neoplasias do Córtex Suprarrenal , Adenoma Adrenocortical , Aldosterona , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico , Hidrocortisona , Mutação , Complicações Neoplásicas na Gravidez , Humanos , Feminino , Gravidez , Adulto , Hidrocortisona/metabolismo , Adenoma Adrenocortical/genética , Adenoma Adrenocortical/patologia , Adenoma Adrenocortical/metabolismo , Adenoma Adrenocortical/cirurgia , Neoplasias do Córtex Suprarrenal/genética , Neoplasias do Córtex Suprarrenal/patologia , Neoplasias do Córtex Suprarrenal/metabolismo , Aldosterona/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Complicações Neoplásicas na Gravidez/genética , Complicações Neoplásicas na Gravidez/patologia , Hiperaldosteronismo/genética , Hiperaldosteronismo/patologia , Hiperaldosteronismo/cirurgia , Síndrome de Cushing/genética , Síndrome de Cushing/patologia , Adenoma/genética , Adenoma/patologia , Adenoma/metabolismoRESUMO
INTRODUCTION: Previous studies have demonstrated that Dual-specificity phosphatase 4 (DUSP4) plays an important role in the progression of different tumor types. However, the role and mechanism of DUSP4 in colorectal cancer (CRC) remain unclear. AIMS: We investigate the role and mechanisms of DUSP4 in CRC. METHODS: Immunohistochemistry was used to investigate DUSP4 expression in CRC tissues. Cell proliferation, apoptosis and migration assays were used to validate DUSP4 function in vitro and in vivo. RNA-sequence assay was used to identify the target genes of DUSP4. Human phosphokinase array and inhibitor assays were used to explore the downstream signaling of DUSP4. RESULTS: DUSP4 expression was upregulated in CRC tissues relative to normal colorectal tissues, and DUSP4 expression showed a significant positive correlation with CRC stage. Consistently, we found that DUSP4 was highly expressed in colorectal cancer cells compared to normal cells. DUSP4 knockdown inhibits CRC cell proliferation, migration and promotes apoptosis. Furthermore, the ectopic expression of DUSP4 enhanced CRC cell proliferation, migration and diminished apoptosis in vitro and in vivo. Human phosphokinase array data showed that ectopic expression of DUSP4 promotes CREB activation. RNA-sequencing data showed that PRKACB acts as a downstream target gene of DUSP4/CREB and enhances CREB activation through PKA/cAMP signaling. In addition, xenograft model results demonstrated that DUSP4 promotes colorectal tumor progression via PRKACB/CREB activation in vivo. CONCLUSION: These findings suggest that DUSP4 promotes CRC progression. Therefore, it may be a promising therapeutic target for CRC.
Assuntos
Apoptose , Movimento Celular , Proliferação de Células , Neoplasias Colorretais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Fosfatases de Especificidade Dupla , Fosfatases da Proteína Quinase Ativada por Mitógeno , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Transdução de SinaisRESUMO
Fibrolamellar hepatocellular carcinoma (FLC) is a rare liver cancer that is driven by the fusion of DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). PKA activity is controlled through regulatory proteins that both inhibit catalytic activity and control localization, and an excess of regulatory subunits ensures PRKACA activity is inhibited. Here, we found an increase in the ratio of catalytic to regulatory units in FLC patient tumors driven by DNAJB1::PRKACA using mass spectrometry, biochemistry, and immunofluorescence, with increased nuclear localization of the kinase. Overexpression of DNAJB1::PRKACA, ATP1B1::PRKACA, or PRKACA, but not catalytically inactive kinase, caused similar transcriptomic changes in primary human hepatocytes, recapitulating the changes observed in FLC. Consistently, tumors in patients missing a regulatory subunit or harboring an ATP1B1::PRKACA fusion were indistinguishable from FLC based on the histopathological, transcriptomic, and drug-response profiles. Together, these findings indicate that the DNAJB1 domain of DNAJB1::PRKACA is not required for FLC. Instead, changes in PKA activity and localization determine the FLC phenotype. Significance: Alterations leading to unconstrained protein kinase A signaling, regardless of the presence or absence of PRKACA fusions, drive the phenotypes of fibrolamellar hepatocellular carcinoma, reshaping understanding of the pathogenesis of this rare liver cancer.
Assuntos
Carcinoma Hepatocelular , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico , Proteínas de Choque Térmico HSP40 , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP40/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , ATPase Trocadora de Sódio-PotássioRESUMO
Intraductal oncocytic papillary neoplasms (IOPNs) of the pancreatobiliary tract are considered a separate entity from intraductal papillary mucinous neoplasms (IPMNs), especially because of the distinct molecular alterations represented by PRKACA or PRKACB fusion. However, IOPNs display a spectrum of cytoarchitectural features. Typically, an IOPN is composed of arborizing papillae lined by layers of cells with oncocytic cytoplasm, prominent nucleoli, and intraepithelial lumina, while a significant subset shows atypical morphology: lack of the characteristic cytoarchitectural features such as arborizing papillae and prominent nucleoli, or mixture with nononcocytic IPMN-like components within a single lesion. To elucidate the tumorigenesis and morphologic spectrum of IOPNs, we analyzed 22 IOPNs, including those with atypical morphology for PRKACA/PRKACB fusions in each different component separately using fluorescence in situ hybridization. In total, 18 of 22 (82%) cases harbored PRKACA/PRKACB fusions, including 3 of 3 (100%) purely typical IOPNs and 15 of 19 (79%) IOPNs with atypical morphology. In the latter, PRKACA/PRKACB fusions were noted in atypical components as well as typical IOPN components. Notably, gastric-type IPMN-like components in the fusion-positive cases were usually low grade and had scattered neoplastic cells with eosinophilic cytoplasm, a morphologic feature suggestive of an early lesion of IOPN. In summary, most IOPNs with atypical morphology either lack characteristic cytoarchitectural features or exhibit a mixture with nononcocytic IPMN-like components, harbored PRKACA/PRKACB fusion as did typical IOPN components. Our observations expanded the morphologic spectrum of IOPNs. They are expected to be useful for correct diagnosis of this neoplasm.
Assuntos
Biomarcadores Tumorais , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico , Fusão Gênica , Neoplasias Intraductais Pancreáticas , Neoplasias Pancreáticas , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Hibridização in Situ Fluorescente , Neoplasias Intraductais Pancreáticas/genética , Neoplasias Intraductais Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , FenótipoRESUMO
Allosteric cooperativity between ATP and substrates is a prominent characteristic of the cAMP-dependent catalytic subunit of protein kinase A (PKA-C). This long-range synergistic action is involved in substrate recognition and fidelity, and it may also regulate PKA's association with regulatory subunits and other binding partners. To date, a complete understanding of this intramolecular mechanism is still lacking. Here, we integrated NMR(Nuclear Magnetic Resonance)-restrained molecular dynamics simulations and a Markov State Model to characterize the free energy landscape and conformational transitions of PKA-C. We found that the apoenzyme populates a broad free energy basin featuring a conformational ensemble of the active state of PKA-C (ground state) and other basins with lower populations (excited states). The first excited state corresponds to a previously characterized inactive state of PKA-C with the αC helix swinging outward. The second excited state displays a disrupted hydrophobic packing around the regulatory (R) spine, with a flipped configuration of the F100 and F102 residues at the αC-ß4 loop. We validated the second excited state by analyzing the F100A mutant of PKA-C, assessing its structural response to ATP and substrate binding. While PKA-CF100A preserves its catalytic efficiency with Kemptide, this mutation rearranges the αC-ß4 loop conformation, interrupting the coupling of the two lobes and abolishing the allosteric binding cooperativity. The highly conserved αC-ß4 loop emerges as a pivotal element to control the synergistic binding of nucleotide and substrate, explaining how mutations or insertions near or within this motif affect the function and drug sensitivity in homologous kinases.
Assuntos
Simulação de Dinâmica Molecular , Regulação Alostérica , Trifosfato de Adenosina/metabolismo , Domínio Catalítico , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/genética , Conformação Proteica , Ligação Proteica , Nucleotídeos/metabolismo , Especificidade por Substrato , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genéticaRESUMO
Fibrolamellar carcinoma (FLC) is a rare liver cancer that disproportionately affects adolescents and young adults. Currently, no standard of care is available and there remains a dire need for new therapeutics. Most patients harbor the fusion oncogene DNAJB1-PRKACA (DP fusion), but clinical inhibitors are not yet developed and it is critical to identify downstream mediators of FLC pathogenesis. Here, we identify long noncoding RNA LINC00473 among the most highly upregulated genes in FLC tumors and determine that it is strongly suppressed by RNAi-mediated inhibition of the DP fusion in FLC tumor epithelial cells. We show by loss- and gain-of-function studies that LINC00473 suppresses apoptosis, increases the expression of FLC marker genes, and promotes FLC growth in cell-based and in vivo disease models. Mechanistically, LINC00473 plays an important role in promoting glycolysis and altering mitochondrial activity. Specifically, LINC00473 knockdown leads to increased spare respiratory capacity, which indicates mitochondrial fitness. Overall, we propose that LINC00473 could be a viable target for this devastating disease.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Adolescente , Humanos , Adulto Jovem , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Neoplasias Hepáticas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismoRESUMO
Fibrolamellar carcinoma (FLC) is a liver tumor with a high mortality burden and few treatment options. A promising therapeutic vulnerability in FLC is its driver mutation, a conserved DNAJB1-PRKACA gene fusion that could be an ideal target neoantigen for immunotherapy. In this study, we aim to define endogenous CD8 T cell responses to this fusion in FLC patients and evaluate fusion-specific T cell receptors (TCRs) for use in cellular immunotherapies. We observe that fusion-specific CD8 T cells are rare and that FLC patient TCR repertoires lack large clusters of related TCR sequences characteristic of potent antigen-specific responses, potentially explaining why endogenous immune responses are insufficient to clear FLC tumors. Nevertheless, we define two functional fusion-specific TCRs, one of which has strong anti-tumor activity in vivo. Together, our results provide insights into the fragmented nature of neoantigen-specific repertoires in humans and indicate routes for clinical development of successful immunotherapies for FLC.
Assuntos
Carcinoma Hepatocelular , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/patologia , Terapia Baseada em Transplante de Células e Tecidos , Proteínas de Choque Térmico HSP40/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genéticaRESUMO
Hepatocellular carcinoma (HCC) exhibits a high mortality rate due to its high invasion and metastatic nature, and the acidic microenvironment plays a pivotal role. Acid-sensing ion channel 1 (ASIC1) is upregulated in HCC tissues and facilitates tumor progression in a pH-dependent manner, while the specific mechanisms therein remain currently unclear. Herein, we aimed to investigate the underlying mechanisms by which ASIC1 contributes to the development of HCC. Using bioinformatics analysis, we found a significant association between ASIC1 expression and malignant transformation of HCC, such as poor prognosis, metastasis and recurrence. Specifically, ASIC1 enhanced the migration and invasion capabilities of Li-7 cells in the in vivo experiment using an HCC lung metastasis mouse model, as well as in the in vitro experiments such as wound healing assay and Transwell assay. Furthermore, our comprehensive gene chip and molecular biology experiments revealed that ASIC1 promoted HCC migration and invasion by activating the PRKACA/AP-1 signaling pathway. Our findings indicate that targeting ASIC1 could have therapeutic potential for inhibiting HCC progression.
Assuntos
Canais Iônicos Sensíveis a Ácido , Carcinoma Hepatocelular , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Invasividade Neoplásica , Transdução de Sinais , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Animais , Humanos , Camundongos , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição AP-1/genética , Linhagem Celular Tumoral , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Masculino , Prognóstico , Proliferação de CélulasRESUMO
Intraductal oncocytic papillary neoplasms (IOPNs) are distinct from intraductal papillary mucinous neoplasms based on characteristic morphologic and genetic features represented by fusion genes involving PRKACA or PRKACB (PRKACA/B). However, pancreatic and biliary tumors with partial oncocytic features are often encountered clinically, and their molecular features are yet to be clarified. This study included 80 intraductal papillary neoplasms: 32 tumors with mature IOPN morphology (typical), 28 with partial or subclonal oncocytic features (atypical), and 20 without oncocytic features (control). We analyzed PRKACA/B fusion genes, including ATP1B1::PRKACA, DNAJB1::PRKACA, and ATP1B1::PRKACB, by reverse-transcription PCR; mRNA expression of fusion genes and nonrearranged PRKACA/B genes by quantitative reverse-transcription PCR; mutations in KRAS, BRAF, and GNAS by targeted sequencing or droplet digital PCR; and the expression of cyclic adenosine monophosphate (cAMP)-dependent protein kinase catalytic subunits α (PRKACA) and ß (PRKACB), phosphorylated cAMP response element-binding protein, and aberrations of p16, p53, SMAD4, STK11, and ß-catenin by immunohistochemistry. PRKACA/B fusion genes were detected in 100% (32/32) of typical, 46% (13/28) of atypical, and 0% (0/20) of control (P < .05). Expression of PRKACA, PRKACB, and phosphorylated cAMP response element-binding protein was upregulated in neoplasms with PRKACA/B fusion genes (P < .05). mRNA expression of the PRKACA/B fusion genes and protein expression of PRKACA or PRKACB tended to be higher in typical than in atypical cases (mRNA, P = .002; protein expression, P = .054). In some atypical neoplasms with mixed subtypes, PRKACA/B fusion genes were superimposed exclusively on oncocytic components. Typical IOPNs harbored fewer KRAS and GNAS mutations than control samples and fewer alterations in p53 and STK11 than atypical samples (P < .05). In conclusion, PRKACA/B fusion genes not only are the characteristic drivers of IOPNs but also play a crucial role in the development of subclonal oncocytic neoplasms. Moreover, oncocytic morphology is strongly associated with upregulation of PRKACA/B, which may provide clues for potential therapeutic options.
Assuntos
Adenocarcinoma Mucinoso , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteína Supressora de Tumor p53/genética , Proteínas Quinases/genética , Domínio Catalítico , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Pancreáticas/patologia , Aberrações Cromossômicas , Adenocarcinoma Mucinoso/patologia , Rearranjo Gênico , RNA Mensageiro , Carcinoma Ductal Pancreático/patologia , Proteínas de Choque Térmico HSP40/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genéticaRESUMO
Fibrolamellar hepatocellular carcinoma (FLC) is a rare liver cancer caused by a dominant recurrent fusion of the heat shock protein (DNAJB1) and the catalytic subunit of protein kinase A (PRKACA). Current therapies such as chemotherapy and radiation have limited efficacy, and new treatment options are needed urgently. We have previously shown that FLC tumors are dependent on the fusion kinase DNAJB1::PRKACA, making the oncokinase an ideal drug target. mRNA degrading modalities such as antisense oligonucleotides or small interfering RNAs (siRNAs) provide an opportunity to specifically target the fusion junction. Here, we identify a potent and specific siRNA that inhibits DNAJB1::PRKACA expression. We found expression of the asialoglycoprotein receptor in FLC to be maintained at sufficient levels to effectively deliver siRNA conjugated to the GalNAc ligand. We observe productive uptake and siRNA activity in FLC patient-derived xenografts (PDX) models in vitro and in vivo. Knockdown of DNAJB1::PRKACA results in durable growth inhibition of FLC PDX in vivo with no detectable toxicities. Our results suggest that this approach could be a treatment option for FLC patients.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/metabolismo , RNA Interferente Pequeno/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , RNA de Cadeia Dupla , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismoRESUMO
PURPOSE: Gene fusions are drivers of many pediatric tumors. In fibrolamellar hepatocellular carcinoma (FLC), a fusion of DNAJB1 and PRKACA is the dominant recurrent mutation. Expression of the DNAJB1-PRKACA fusion gene in mice results in a tumor that recapitulates FLC. However, it is not known whether transient expression of DNAJB1-PRKACA is sufficient only to trigger tumor formation or whether ongoing expression is necessary for maintenance and progression. EXPERIMENTAL DESIGN: We screened short hairpin RNAs (shRNA) tiled over the fusion junction and identified several potent and specific candidates in vitro and two independent FLC patient-derived xenografts (PDX). RESULTS: We show that continued DNAJB1-PRKACA expression is not only required for continued tumor growth, but additionally its inhibition results in cell death. Inhibition of DNAJB1-PRKACA by an inducible shRNA in cells of PDX of FLC resulted in cell death in vitro. Induction of the shRNA inhibits FLC tumors growing in mice with no effect on xenografts from a hepatocellular carcinoma cell line engineered to express DNAJB1-PRKACA. CONCLUSIONS: Our results validate DNAJB1-PRKACA as the oncogene in FLC and demonstrate both a continued requirement for the oncogene for tumor growth as well as an oncogenic addiction that can be exploited for targeted therapies. We anticipate our approach will be useful for investigations of other fusion genes in pediatric cancers and spur development of precision therapies.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Vício Oncogênico , RNA Interferente Pequeno/genética , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismoRESUMO
Aluminium (Al) is an environmental neurotoxin that humans are widely exposed to, but the molecular mechanism of its toxic effects is not fully understood. Many studies have shown that exposure to Al can cause abnormal phosphorylation of the tau protein that is believed as one of pathological features of Alzheimer's disease. Increasing evidence indicates that microRNAs (miRNAs) may be involved in the pathological processes of neurodegenerative diseases and are potential regulatory factors for related target genes. Phosphorylation at Ser-133 of cAMP response element-binding protein (CREB) is one of the major pathways of CREB activation, and phosphorylation at this site is controlled by protein kinase A (PKA). The catalytic subunit of PKA, cAMP-dependent protein kinase catalytic subunit beta (PRKACB), phosphorylates CREB. The target gene prediction software TargetScan showed that PRKACB was one of the target mRNAs of miR-200a-3p. The purpose of this study was to investigate whether miR-200a-3p regulates the PKA/CREB pathway by targeting PRKACB and leads to abnormal phosphorylation of the tau protein in nerve cells. The results showed that Al exposure increased the expression level of miR-200a-3p, and miR-200a-3p increased the expression of targeted downregulated PRKACB, and then decreased the PKA/CREB signalling pathway activity, leading to abnormal hyperphosphorylation of tau.
Assuntos
Alumínio , MicroRNAs , Ratos , Animais , Humanos , Células PC12 , Fosforilação , Alumínio/toxicidade , Proteínas tau/genética , Proteínas tau/metabolismo , Proteínas Quinases/metabolismo , Domínio Catalítico , MicroRNAs/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismoRESUMO
Intraductal oncocytic papillary neoplasms (IOPNs) of the pancreatobiliary system are tumors comprising oncocytic cells, in which three types of fusion genes involving -PRKACA/-PRKACB were recently identified. IOPNs infrequently combine with other histological subtypes of pancreatic intraductal papillary mucinous neoplasms (IPMNs) and intraductal papillary neoplasms of the bile duct (IPNBs). This study aimed to confirm the sensitivity/specificity of the fusion genes for IOPNs and to examine their significance in other oncocytic lesions. An RT-PCR, followed by DNA sequencing, was undertaken to examine the fusions in 18 histologically diagnosed IOPNs, including four combined IOPNs. Moreover, in two IOPN cases, invasive carcinomatous lesions were separately examined on their fusion status. Oncocytic thyroidal (n = 10), renal (n = 10), and salivary gland (n = 3) lesions and IPMNs (n = 9)/IPNBs (n = 4) with focal oncocytic changes were examined as controls. Fluorescence in situ hybridization using PRKACA break-apart probes was conducted for the combined IOPN cases. Target sequencing of KRAS exon2/3 and GNAS exon 8/9 was performed for IOPN cases. Fusions were detected in all IOPN cases including invasive lesions/none of the control cases. The fusion event was confirmed also in non-IOPN component in one of the four combined cases. Regarding mutation events, 5.6%/0% of IOPNs were KRAS-mt/GNAS-mt, respectively, and both components of combined IOPNs were all KRAS-wt/GNAS-wt. In conclusion, our study confirmed the sensitivity and specificity of these fusions for IOPNs. Here, we analyzed the roles of these fusion genes in combined IOPNs, proposing the possibility of IOPN development via IPMNs/IPNBs. Further studies with more combined cases are warranted.
Assuntos
Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico , Proteínas de Fusão Oncogênica , Neoplasias Intraductais Pancreáticas , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Hibridização in Situ Fluorescente , Neoplasias Intraductais Pancreáticas/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismoRESUMO
Fibrolamellar hepatocellular carcinoma (FL-HCC) is known as a highly aggressive liver cancer that typically affects young adults without virus infection. Since this type of cancer does not respond to chemotherapy, surgery is the only known effective therapeutic option. Most FL-HCC patients express the fusion gene DNAJB1-PRKACA, which has been recognized as the signature of FL-HCC. It has also been reported that PRKACA kinase activity is essential for its oncogenic activity, suggesting that PRKACA kinase inhibition could be considered as an useful therapeutic target. In this study, we established an evaluation system for PRKACA kinase inhibitors and synthesized DS89002333, a novel PRKACA inhibitor. DS89002333 showed potent PRKACA inhibitory activity and inhibited fusion protein-dependent cell growth both in vitro and in vivo. Furthermore, this compound showed anti-tumor activity in an FL-HCC patient-derived xenograft model expressing the DNAJB1-PRKACA fusion gene. Our data suggest that DS89002333 could be considered as a potential therapeutic agent for FL-HCC.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Domínio Catalítico , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Inibidores de Proteínas Quinases , Adulto JovemRESUMO
OBJECTIVE: The objectives of this study are to define the specificity of the DNAJB1-PRKACA fusion transcript for the fibrolamellar subtype of hepatocellular carcinoma (FL-HCC) by testing a targeted sampling of other hepatic neoplasms/proliferations and extrahepatic neoplasms seen in children and young adults and to develop a FISH assay using a commercially available PRKACA break apart probe for use in a CLIA-certified clinical laboratory. METHODS: Formalin fixed paraffin embedded tissue sections from 12 FL-HCC cases, 142 cases of other hepatic neoplasms/proliferations (conventional HCC, focal nodular hyperplasia (FNH), hepatocellular adenoma (HA) and hepatoblastoma (HB)) and extrahepatic neoplasms (neuroblastoma (NB), Wilms tumor (WT) and Gastrointestinal neuroendocrine tumor (GNET)) and 60 matched background normal control tissues underwent fluorescence in situ hybridization (FISH) testing using a break apart probe targeting the PRKACA gene locus on chromosome 19 using standard techniques. RESULTS: The PRKACA gene rearrangement was detected in 11/12 (92%) FL-HCC cases and 1/94 (1%) of conventional HCC cases. All other cases and background control tissues were negative for the PRKACA gene rearrangement. These findings establish a test sensitivity of 91.7% and specificity of 99.5%. CONCLUSION: This study shows that, using standard techniques, FISH testing with a commercially available break apart probe targeting the PRKACA gene can be used as a surrogate for the DNAJB1-PRKACA fusion commonly found in FL-HCC. Also, the PRKACA gene rearrangement is not expressed in other hepatic neo-plasms/proliferations or extrahepatic neoplasms seen in children and young adults. Finally, FISH testing can be used as a diagnostic tool to confirm the diagnosis of FL-HCC, in the appropriate clinical setting.
Assuntos
Carcinoma Hepatocelular , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Aberrações Cromossômicas , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Rearranjo Gênico/genética , Proteínas de Choque Térmico HSP40/genética , Humanos , Hibridização in Situ Fluorescente/métodos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologiaRESUMO
Fibrolamellar carcinoma (FLC) is a primary liver cancer that most commonly arises in adolescents and young adults in a background of normal liver tissue and has a poor prognosis due to lack of effective chemotherapeutic agents. The DNAJB1-PRKACA gene fusion (DP) has been reported in the majority of FLC tumors; however, its oncogenic mechanisms remain unclear. Given the paucity of cellular models, in particular FLC tumor cell lines, we hypothesized that engineering the DP fusion gene in HEK293T cells would provide insight into the cellular effects of the fusion gene. We used CRISPR/Cas9 to engineer HEK293T clones expressing DP fusion gene (HEK-DP) and performed transcriptomic, proteomic, and mitochondrial studies to characterize this cellular model. Proteomic analysis of DP interacting partners identified mitochondrial proteins as well as proteins in other subcellular compartments. HEK-DP cells demonstrated significantly elevated mitochondrial fission, which suggests a role for DP in altering mitochondrial dynamics. Transcriptomic analysis of HEK-DP cells revealed a significant increase in LINC00473 expression, similar to what has been observed in primary FLC samples. LINC00473 overexpression was reversible with siRNA targeting of PRKACA as well as pharmacologic targeting of PKA and Hsp40 in HEK-DP cells. Therefore, our model suggests that LINC00473 is a candidate marker for DP activity.
Assuntos
Carcinoma Hepatocelular/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Proteínas de Choque Térmico HSP40/genética , Proteínas de Fusão Oncogênica/genética , RNA Longo não Codificante/genética , Regulação para Cima , Sistemas CRISPR-Cas , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Proteínas de Choque Térmico HSP40/metabolismo , Humanos , Mitocôndrias/metabolismo , Modelos Biológicos , ProteômicaRESUMO
SIGNIFICANCE STATEMENT: We describe a mosaic PRKACA duplication in a young infant who presented with a Carney-like complex: bilateral non-pigmented micronodular adrenal hyperplasia, severe early-onset Cushing's syndrome, and distinct acral soft tissue overgrowth due to cutaneous mucinosis. This represents a novel manifestation of PRKACA disruption and broadens the extra-adrenal phenotype of PRKACA-associated Cushing's syndrome. Our data suggest that Cushing's syndrome phenotypes arising from somatic and germline PRKACA abnormalities can exist on a spectrum. We emphasise the value of ascertaining a genetic diagnosis for PRKACA-mediated adrenal and extra-adrenal disease to guide individualised and targeted care.