Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
RNA ; 30(7): 770-778, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38570183

RESUMO

30S subunits become inactive upon exposure to low Mg2+ concentration, because of a reversible conformational change that entails nucleotides (nt) in the neck helix (h28) and 3' tail of 16S rRNA. This active-to-inactive transition involves partial unwinding of h28 and repairing of nt 921-923 with nt 1532-1534, which requires flipping of the 3' tail by ∼180°. Growing evidence suggests that immature 30S particles adopt the inactive conformation in the cell, and transition to the active state occurs at a late stage of maturation. Here, we target nucleotides that form the alternative helix (hALT) of the inactive state. Using an orthogonal ribosome system, we find that disruption of hALT decreases translation activity in the cell modestly, by approximately twofold, without compromising ribosome fidelity. Ribosomes carrying substitutions at positions 1532-1533 support the growth of Escherichia coli strain Δ7 prrn (which carries a single rRNA operon), albeit at rates 10%-20% slower than wild-type ribosomes. These mutant Δ7 prrn strains accumulate free 30S particles and precursor 17S rRNA, indicative of biogenesis defects. Analysis of purified control and mutant subunits suggests that hALT stabilizes the inactive state by 1.2 kcal/mol with little-to-no impact on the active state or the transition state of conversion.


Assuntos
Escherichia coli , Conformação de Ácido Nucleico , RNA Ribossômico 16S , Subunidades Ribossômicas Menores de Bactérias , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/genética , Biossíntese de Proteínas , Magnésio/metabolismo
2.
J Mol Biol ; 434(18): 167668, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35667471

RESUMO

Translational riboswitches are bacterial gene regulatory elements found in the 5'-untranslated region of mRNAs. They operate through a conformational refolding reaction that is triggered by a concentration change of a modulating small molecular ligand. The translation initiation region (TIR) is either released from or incorporated into base pairing interactions through the conformational switch. Hence, initiation of translation is regulated by the accessibility of the Shine-Dalgarno sequence and start codon. Interaction with the 30S ribosome is indispensable for the structural switch between functional OFF and ON states. However, on a molecular level it is still not fully resolved how the ribosome is accommodated near or at the translation initiation region in the context of translational riboswitches. The standby model of translation initiation postulates a binding site where the mRNA enters the ribosome and where it resides until the initiation site becomes unstructured and accessible. We here investigated the adenine-sensing riboswitch from Vibrio vulnificus. By application of a 19F labelling strategy for NMR spectroscopy that utilizes ligation techniques to synthesize differentially 19F labelled riboswitch molecules we show that nucleotides directly downstream of the riboswitch domain are first involved in productive interaction with the 30S ribosomal subunit. Upon the concerted action of ligand and the ribosomal protein rS1 the TIR becomes available and subsequently the 30S ribosome can slide towards the TIR. It will be interesting to see whether this is a general feature in translational riboswitches or if riboswitches exist where this region is structured and represent yet another layer of regulation.


Assuntos
Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA Bacteriano , Subunidades Ribossômicas Menores de Bactérias , Riboswitch , Vibrio vulnificus , Regiões 5' não Traduzidas/genética , Ligantes , Biossíntese de Proteínas/genética , RNA Bacteriano/química , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Vibrio vulnificus/genética , Vibrio vulnificus/metabolismo
3.
Nat Commun ; 12(1): 7236, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903725

RESUMO

During translation, a conserved GTPase elongation factor-EF-G in bacteria or eEF2 in eukaryotes-translocates tRNA and mRNA through the ribosome. EF-G has been proposed to act as a flexible motor that propels tRNA and mRNA movement, as a rigid pawl that biases unidirectional translocation resulting from ribosome rearrangements, or by various combinations of motor- and pawl-like mechanisms. Using time-resolved cryo-EM, we visualized GTP-catalyzed translocation without inhibitors, capturing elusive structures of ribosome•EF-G intermediates at near-atomic resolution. Prior to translocation, EF-G binds near peptidyl-tRNA, while the rotated 30S subunit stabilizes the EF-G GTPase center. Reverse 30S rotation releases Pi and translocates peptidyl-tRNA and EF-G by ~20 Å. An additional 4-Å translocation initiates EF-G dissociation from a transient ribosome state with highly swiveled 30S head. The structures visualize how nearly rigid EF-G rectifies inherent and spontaneous ribosomal dynamics into tRNA-mRNA translocation, whereas GTP hydrolysis and Pi release drive EF-G dissociation.


Assuntos
Microscopia Crioeletrônica , Guanosina Trifosfato/química , Fator G para Elongação de Peptídeos/química , Ribossomos/química , Escherichia coli/química , Escherichia coli/metabolismo , Guanosina Trifosfato/metabolismo , Fator G para Elongação de Peptídeos/metabolismo , Fosfatos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Subunidades Ribossômicas Menores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Ribossomos/metabolismo
4.
Nat Commun ; 12(1): 4723, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354064

RESUMO

Translational riboswitches are cis-acting RNA regulators that modulate the expression of genes during translation initiation. Their mechanism is considered as an RNA-only gene-regulatory system inducing a ligand-dependent shift of the population of functional ON- and OFF-states. The interaction of riboswitches with the translation machinery remained unexplored. For the adenine-sensing riboswitch from Vibrio vulnificus we show that ligand binding alone is not sufficient for switching to a translational ON-state but the interaction of the riboswitch with the 30S ribosome is indispensable. Only the synergy of binding of adenine and of 30S ribosome, in particular protein rS1, induces complete opening of the translation initiation region. Our investigation thus unravels the intricate dynamic network involving RNA regulator, ligand inducer and ribosome protein modulator during translation initiation.


Assuntos
Biossíntese de Proteínas , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Riboswitch/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Subunidades Ribossômicas Menores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/genética , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Ribossomos/química , Vibrio vulnificus/genética , Vibrio vulnificus/metabolismo
5.
Nucleic Acids Res ; 49(12): 6958-6970, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34161576

RESUMO

Initiation factor IF3 is an essential protein that enhances the fidelity and speed of bacterial mRNA translation initiation. Here, we describe the dynamic interplay between IF3 domains and their alternative binding sites using pre-steady state kinetics combined with molecular modelling of available structures of initiation complexes. Our results show that IF3 accommodates its domains at velocities ranging over two orders of magnitude, responding to the binding of each 30S ligand. IF1 and IF2 promote IF3 compaction and the movement of the C-terminal domain (IF3C) towards the P site. Concomitantly, the N-terminal domain (IF3N) creates a pocket ready to accept the initiator tRNA. Selection of the initiator tRNA is accompanied by a transient accommodation of IF3N towards the 30S platform. Decoding of the mRNA start codon displaces IF3C away from the P site and rate limits translation initiation. 70S initiation complex formation brings IF3 domains in close proximity to each other prior to dissociation and recycling of the factor for a new round of translation initiation. Altogether, our results describe the kinetic spectrum of IF3 movements and highlight functional transitions of the factor that ensure accurate mRNA translation initiation.


Assuntos
Proteínas de Bactérias/metabolismo , Iniciação Traducional da Cadeia Peptídica , Fator de Iniciação 3 em Procariotos/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Transferência Ressonante de Energia de Fluorescência , Cinética , Modelos Moleculares , Fator de Iniciação 1 em Procariotos/metabolismo , Fator de Iniciação 2 em Procariotos/metabolismo , Fator de Iniciação 3 em Procariotos/química , Ligação Proteica , Conformação Proteica , Domínios Proteicos , RNA de Transferência de Metionina/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo
6.
Proteins ; 89(9): 1111-1124, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33843105

RESUMO

The multi-domain bacterial S1 protein is the largest and most functionally important ribosomal protein of the 30S subunit, which interacts with both mRNA and proteins. The family of ribosomal S1 proteins differs in the classical sense from a protein with tandem repeats and has a "bead-on-string" organization, where each repeat is folded into a globular domain. Based on our recent data, the study of evolutionary relationships for the bacterial phyla will provide evidence for one of the proposed theories of the evolutionary development of proteins with structural repeats: from multiple repeats of assembles to single repeats, or vice versa. In this comparative analysis of 1333 S1 sequences that were identified in 24 different phyla, we demonstrate how such phyla can form independently/dependently during evolution. To the best of our knowledge, this work is the first study of the evolutionary history of bacterial ribosomal S1 proteins. The collected and structured data can be useful to computer biologists as a resource for determining percent identity, amino acid composition and logo motifs, as well as dN/dS ratio in bacterial S1 protein. The obtained research data indicate that the evolutionary development of bacterial ribosomal S1 proteins evolved from multiple assemblies to single repeat. The presented data are integrated into the server, which can be accessed at http://oka.protres.ru:4200.


Assuntos
Algoritmos , Bactérias/genética , Evolução Biológica , Genoma Bacteriano , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Menores de Bactérias/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Bactérias/classificação , Bactérias/metabolismo , Conjuntos de Dados como Assunto , Expressão Gênica , Metagenoma , Filogenia , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Software
7.
J Bacteriol ; 203(10)2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33649148

RESUMO

Ribosomal protein S14 can be classified into three types. The first, the C+ type has a Zn2+ binding motif and is ancestral. The second and third are the C- short and C- long types, neither of which contain a Zn2+ binding motif and which are ca. 90 residues and 100 residues in length, respectively. In the present study, the C+ type S14 from Bacillus subtilis ribosomes (S14BsC+) were completely replaced by the heterologous C- long type of S14 from Escherichia coli (S14Ec) or Synechococcus elongatus (S14Se). Surprisingly, S14Ec and S14Se were incorporated fully into 70S ribosomes in B. subtilis However, the growth rates as well as the sporulation efficiency of the mutants harboring heterologous S14 were significantly decreased. In these mutants, the polysome fraction was decreased and the 30S and 50S subunits accumulated unusually, indicating that cellular translational activity of these mutants was decreased. In vitro analysis showed a reduction in the translational activity of the 70S ribosome fraction purified from these mutants. The abundance of ribosomal proteins S2 and S3 in the 30S fraction in these mutants was reduced while that of S14 was not significantly decreased. It seems likely that binding of heterologous S14 changes the structure of the 30S subunit, which causes a decrease in the assembly efficiency of S2 and S3, which are located near the binding site of S14. Moreover, we found that S3 from S. elongatus cannot function in B. subtilis unless S14Se is present.IMPORTANCE S14, an essential ribosomal protein, may have evolved to adapt bacteria to zinc-limited environments by replacement of a zinc-binding motif with a zinc-independent sequence. It was expected that the bacterial ribosome would be tolerant to replacement of S14 because of the previous prediction that the spread of C- type S14 involved horizontal gene transfer. In this study, we completely replaced the C+ type of S14 in B. subtilis ribosome with the heterologous C- long type of S14 and characterized the resulting chimeric ribosomes. Our results suggest that the B. subtilis ribosome is permissive for the replacement of S14, but coevolution of S3 might be required to utilize the C- long type of S14 more effectively.


Assuntos
Bacillus subtilis/química , Proteínas de Bactérias/metabolismo , Evolução Molecular , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Escherichia coli/química , Filogenia , Biossíntese de Proteínas , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Esporos Bacterianos/fisiologia , Synechococcus/química , Zinco/metabolismo
8.
Mol Microbiol ; 115(6): 1292-1308, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33368752

RESUMO

The ribosomal protein uS12 is conserved across all domains of life. Recently, a heterozygous spontaneous mutation in human uS12 (corresponding to R49K mutation immediately downstream of the universally conserved 44 PNSA47 loop in Escherichia coli uS12) was identified for causing ribosomopathy, highlighting the importance of the PNSA loop. To investigate the effects of a similar mutation in the absence of any wild-type alleles, we mutated the rpsL gene (encoding uS12) in E. coli. Consistent with its pathology (in humans), we were unable to generate the R49K mutation in E. coli in the absence of a support plasmid. However, we were able to generate the L48K mutation in its immediate vicinity. The L48K mutation resulted in a cold sensitive phenotype and ribosome biogenesis defect in the strain. We show that the L48K mutation impacts the steps of initiation and elongation. Furthermore, the genetic interactions of the L48K mutation with RRF and Pth suggest a novel role of the PNSA loop in ribosome recycling. Our studies reveal new functions of the PNSA loop in uS12, which has so far been studied in the context of translation elongation.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Elongação Traducional da Cadeia Peptídica/genética , Iniciação Traducional da Cadeia Peptídica/genética , Proteínas Ribossômicas/genética , Escherichia coli/metabolismo , Humanos , Conformação Proteica , RNA Ribossômico 16S/genética , Subunidades Ribossômicas Menores de Bactérias/genética , Subunidades Ribossômicas Menores de Bactérias/metabolismo
9.
PLoS One ; 15(12): e0236850, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33315868

RESUMO

Ribosomes are the sophisticated machinery that is responsible for protein synthesis in a cell. Recently, quantitative mass spectrometry (qMS) have been successfully applied for understanding the dynamics of protein complexes. Here, we developed a highly specific and reproducible method to quantify all ribosomal proteins (r-proteins) by combining selected reaction monitoring (SRM) and isotope labeling. We optimized the SRM methods using purified ribosomes and Escherichia coli lysates and verified this approach as detecting 41 of the 54 r-proteins separately synthesized in E. coli S30 extracts. The SRM methods will enable us to utilize qMS as a highly specific analytical tool in the research of E. coli ribosomes, and this methodology have potential to accelerate the understanding of ribosome biogenesis, function, and the development of engineered ribosomes with additional functions.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Marcação por Isótopo/métodos , Espectrometria de Massas/métodos , Biossíntese de Proteínas/fisiologia , RNA Ribossômico/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo
10.
Nucleic Acids Res ; 48(21): 12336-12347, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33231643

RESUMO

In response to DNA damage, Escherichia coli cells activate the expression of the toxin gene tisB of the toxin-antitoxin system tisB-istR1. Of three isoforms, only the processed, highly structured +42 tisB mRNA is active. Translation requires a standby site, composed of two essential elements: a single-stranded region located 100 nucleotides upstream of the sequestered RBS, and a structure near the 5'-end of the active mRNA. Here, we propose that this 5'-structure is an RNA pseudoknot which is required for 30S and protein S1-alone binding to the mRNA. Point mutations that prevent formation of this pseudoknot inhibit formation of translation initiation complexes, impair S1 and 30S binding to the mRNA, and render the tisB mRNA non-toxic in vivo. A set of mutations created in either the left or right arm of stem 2 of the pseudoknot entailed loss of toxicity upon overexpression of the corresponding mRNA variants. Combining the matching right-left arm mutations entirely restored toxicity levels to that of the wild-type, active mRNA. Finally, since many pseudoknots have high affinity for S1, we predicted similar pseudoknots in non-homologous type I toxin-antitoxin systems that exhibit features similar to that of tisB-IstR1, suggesting a shared requirement for standby acting at great distances.


Assuntos
Toxinas Bacterianas/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Biossíntese de Proteínas , RNA Bacteriano/genética , RNA Mensageiro/genética , Sistemas Toxina-Antitoxina/genética , Toxinas Bacterianas/metabolismo , Pareamento de Bases , Sequência de Bases , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Conformação de Ácido Nucleico , Mutação Puntual , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Bactérias/genética , Subunidades Ribossômicas Menores de Bactérias/metabolismo
11.
J Biol Chem ; 295(38): 13314-13325, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32727850

RESUMO

Proline-rich antimicrobial peptides (PrAMPs) are cationic antimicrobial peptides unusual for their ability to penetrate bacterial membranes and kill cells without causing membrane permeabilization. Structural studies show that many such PrAMPs bind deep in the peptide exit channel of the ribosome, near the peptidyl transfer center. Biochemical studies of the particular synthetic PrAMP oncocin112 (Onc112) suggest that on reaching the cytoplasm, the peptide occupies its binding site prior to the transition from initiation to the elongation phase of translation, thus blocking further initiation events. We present a superresolution fluorescence microscopy study of the long-term effects of Onc112 on ribosome, elongation factor-Tu (EF-Tu), and DNA spatial distributions and diffusive properties in intact Escherichia coli cells. The new data corroborate earlier mechanistic inferences from studies in vitro Comparisons with the diffusive behavior induced by the ribosome-binding antibiotics chloramphenicol and kasugamycin show how the specific location of each agent's ribosomal binding site affects the long-term distribution of ribosomal species between 30S and 50S subunits versus 70S polysomes. Analysis of the single-step displacements from ribosome and EF-Tu diffusive trajectories before and after Onc112 treatment suggests that the act of codon testing of noncognate ternary complexes (TCs) at the ribosomal A-site enhances the dissociation rate of such TCs from their L7/L12 tethers. Testing and rejection of noncognate TCs on a sub-ms timescale is essential to enable incorporation of the rare cognate amino acids into the growing peptide chain at a rate of ∼20 aa/s.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fator Tu de Elongação de Peptídeos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Citoplasma/metabolismo
12.
Biochemistry (Mosc) ; 85(5): 545-552, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32571184

RESUMO

Ribosome-binding factor A (RbfA) from Staphylococcus aureus is a cold adaptation protein that is required for the growth of pathogenic cells at low temperatures (10-15°C). RbfA is involved in the processing of 16S rRNA, as well as in the assembly and stabilization of the small 30S ribosomal subunit. Structural studies of the 30S-RbfA complex will help to better understand their interaction, the mechanism of such complexes, and the fundamental process such as 30S subunit assembly that determines and controls the overall level of protein biosynthesis. This article describes protocols for preparation of RbfA and the small 30S ribosomal subunits and reconstitution and optimization of the 30S-RbfA complex to obtain samples suitable for cryo-electron microscopy studies.


Assuntos
Microscopia Crioeletrônica/métodos , Biossíntese de Proteínas , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Staphylococcus aureus/metabolismo , Temperatura Baixa , Técnicas In Vitro , Modelos Moleculares , Proteínas Ribossômicas/química , Subunidades Ribossômicas Menores de Bactérias/química , Staphylococcus aureus/crescimento & desenvolvimento
13.
Commun Biol ; 3(1): 142, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32214223

RESUMO

In vitro reconstitution is a powerful tool for investigating ribosome functions and biogenesis, as well as discovering new ribosomal features. In this study, we integrated all of the processes required for Escherichia coli small ribosomal subunit assembly. In our method, termed fully Recombinant-based integrated Synthesis, Assembly, and Translation (R-iSAT), assembly and evaluation of the small ribosomal subunits are coupled with ribosomal RNA (rRNA) synthesis in a reconstituted cell-free protein synthesis system. By changing the components of R-iSAT, including recombinant ribosomal protein composition, we coupled ribosomal assembly with ribosomal protein synthesis, enabling functional synthesis of ribosomal proteins and subsequent subunit assembly. In addition, we assembled and evaluated subunits with mutations in both rRNA and ribosomal proteins. The study demonstrated that our scheme provides new ways to comprehensively analyze any elements of the small ribosomal subunit, with the goal of improving our understanding of ribosomal biogenesis, function, and engineering.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Transcrição Gênica , Proteínas de Bactérias/genética , Escherichia coli/genética , Mutação , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Menores de Bactérias/genética
14.
J Biol Chem ; 294(46): 17642-17653, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31594862

RESUMO

Methylation of the small ribosome subunit rRNA in the ribosomal decoding center results in exceptionally high-level aminoglycoside resistance in bacteria. Enzymes that methylate 16S rRNA on N7 of nucleotide G1405 (m7G1405) have been identified in both aminoglycoside-producing and clinically drug-resistant pathogenic bacteria. Using a fluorescence polarization 30S-binding assay and a new crystal structure of the methyltransferase RmtC at 3.14 Å resolution, here we report a structure-guided functional study of 30S substrate recognition by the aminoglycoside resistance-associated 16S rRNA (m7G1405) methyltransferases. We found that the binding site for these enzymes in the 30S subunit directly overlaps with that of a second family of aminoglycoside resistance-associated 16S rRNA (m1A1408) methyltransferases, suggesting that both groups of enzymes may exploit the same conserved rRNA tertiary surface for docking to the 30S. Within RmtC, we defined an N-terminal domain surface, comprising basic residues from both the N1 and N2 subdomains, that directly contributes to 30S-binding affinity. In contrast, additional residues lining a contiguous adjacent surface on the C-terminal domain were critical for 16S rRNA modification but did not directly contribute to the binding affinity. The results from our experiments define the critical features of m7G1405 methyltransferase-substrate recognition and distinguish at least two distinct, functionally critical contributions of the tested enzyme residues: 30S-binding affinity and stabilizing a binding-induced 16S rRNA conformation necessary for G1405 modification. Our study sets the scene for future high-resolution structural studies of the 30S-methyltransferase complex and for potential exploitation of unique aspects of substrate recognition in future therapeutic strategies.


Assuntos
Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Metiltransferases/metabolismo , Proteus mirabilis/enzimologia , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Aminoglicosídeos/metabolismo , Aminoglicosídeos/farmacologia , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Cristalografia por Raios X , Humanos , Metiltransferases/química , Modelos Moleculares , Conformação Proteica , Infecções por Proteus/tratamento farmacológico , Infecções por Proteus/microbiologia , Proteus mirabilis/efeitos dos fármacos , Proteus mirabilis/metabolismo , RNA Ribossômico 16S/metabolismo , Subunidades Ribossômicas Menores de Bactérias/química , Especificidade por Substrato
15.
PLoS Genet ; 15(8): e1008346, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31465450

RESUMO

Ribosome assembly cofactors are widely conserved across all domains of life. One such group, the ribosome-associated GTPases (RA-GTPase), act as molecular switches to coordinate ribosome assembly. We previously identified the Staphylococcus aureus RA-GTPase Era as a target for the stringent response alarmone (p)ppGpp, with binding leading to inhibition of GTPase activity. Era is highly conserved throughout the bacterial kingdom and is essential in many species, although the function of Era in ribosome assembly is unclear. Here we show that Era is not essential in S. aureus but is important for 30S ribosomal subunit assembly. Protein interaction studies reveal that Era interacts with the 16S rRNA endonuclease YbeY and the DEAD-box RNA helicase CshA. We determine that both Era and CshA are required for growth at suboptimal temperatures and rRNA processing. Era and CshA also form direct interactions with the (p)ppGpp synthetase RelSau, with RelSau positively impacting the GTPase activity of Era but negatively affecting the helicase activity of CshA. We propose that in its GTP-bound form, Era acts as a hub protein on the ribosome to direct enzymes involved in rRNA processing/degradation and ribosome subunit assembly to their site of action. This activity is impeded by multiple components of the stringent response, contributing to the slowed growth phenotype synonymous with this stress response pathway.


Assuntos
Aclimatação/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação ao GTP/metabolismo , RNA Ribossômico/metabolismo , Staphylococcus aureus/fisiologia , Temperatura Baixa/efeitos adversos , RNA Helicases DEAD-box/metabolismo , Endonucleases/metabolismo , Ligases/metabolismo , Biogênese de Organelas , Ligação Proteica/fisiologia , Mapeamento de Interação de Proteínas , Subunidades Ribossômicas Menores de Bactérias/genética , Subunidades Ribossômicas Menores de Bactérias/metabolismo
16.
Nucleic Acids Res ; 47(15): 8301-8317, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31265110

RESUMO

Assembly factors provide speed and directionality to the maturation process of the 30S subunit in bacteria. To gain a more precise understanding of how these proteins mediate 30S maturation, it is important to expand on studies of 30S assembly intermediates purified from bacterial strains lacking particular maturation factors. To reveal the role of the essential protein Era in the assembly of the 30S ribosomal subunit, we analyzed assembly intermediates that accumulated in Era-depleted Escherichia coli cells using quantitative mass spectrometry, high resolution cryo-electron microscopy and in-cell footprinting. Our combined approach allowed for visualization of the small subunit as it assembled and revealed that with the exception of key helices in the platform domain, all other 16S rRNA domains fold even in the absence of Era. Notably, the maturing particles did not stall while waiting for the platform domain to mature and instead re-routed their folding pathway to enable concerted maturation of other structural motifs spanning multiple rRNA domains. We also found that binding of Era to the mature 30S subunit destabilized helix 44 and the decoding center preventing binding of YjeQ, another assembly factor. This work establishes Era's role in ribosome assembly and suggests new roles in maintaining ribosome homeostasis.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Homeostase , RNA Ribossômico 16S/metabolismo , Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Subunidades Ribossômicas Menores/metabolismo , Sequência de Bases , Sítios de Ligação , Microscopia Crioeletrônica , Proteínas de Escherichia coli/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/genética , Conformação de Ácido Nucleico , Ligação Proteica , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , Proteínas de Ligação a RNA/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores/genética , Subunidades Ribossômicas Menores/ultraestrutura , Subunidades Ribossômicas Menores de Bactérias/genética , Subunidades Ribossômicas Menores de Bactérias/ultraestrutura
17.
RNA Biol ; 16(10): 1346-1354, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31213125

RESUMO

Structural models of large and dynamic molecular complexes are appearing in increasing numbers, in large part because of recent technical advances in cryo-electron microscopy. However, the inherent complexity of such biological assemblies comprising dozens of moving parts often limits the resolution of structural models and leaves the puzzle as to how each functional configuration transitions to the next. Orthogonal biochemical information is crucial to understanding the molecular interactions that drive those rearrangements. We present a two-step method for chemical probing detected by tandem mass-spectrometry to globally assess the reactivity of lysine residues within purified macromolecular complexes. Because lysine side chains often balance the negative charge of RNA in ribonucleoprotein complexes, the method is especially useful for detecting changes in protein-RNA interactions. By probing the E. coli 30S ribosome subunit, we established that the reactivity pattern of lysine residues quantitatively reflects structure models derived from X-ray crystallography. We also used the strategy to assess differences in three conformations of purified human spliceosomes in the context of recent cryo-electron microscopy models. Our results demonstrate that the probing method yields powerful biochemical information that helps contextualize architectural rearrangements of intermediate resolution structures of macromolecular complexes, often solved in multiple conformations.


Assuntos
Lisina/química , Substâncias Macromoleculares/química , Modelos Moleculares , Conformação Molecular , Acetilação , Cristalografia por Raios X , Humanos , Peptídeos/química , RNA/química , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Spliceossomos/metabolismo , Espectrometria de Massas em Tandem
18.
Nat Commun ; 10(1): 2579, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31189921

RESUMO

When the ribosome encounters a stop codon, it recruits a release factor (RF) to hydrolyze the ester bond between the peptide chain and tRNA. RFs have structural motifs that recognize stop codons in the decoding center and a GGQ motif for induction of hydrolysis in the peptidyl transfer center 70 Å away. Surprisingly, free RF2 is compact, with only 20 Å between its codon-reading and GGQ motifs. Cryo-EM showed that ribosome-bound RFs have extended structures, suggesting that RFs are compact when entering the ribosome and then extend their structures upon stop codon recognition. Here we use time-resolved cryo-EM to visualize transient compact forms of RF1 and RF2 at 3.5 and 4 Å resolution, respectively, in the codon-recognizing ribosome complex on the native pathway. About 25% of complexes have RFs in the compact state at 24 ms reaction time, and within 60 ms virtually all ribosome-bound RFs are transformed to their extended forms.


Assuntos
Proteínas de Escherichia coli/ultraestrutura , Modelos Moleculares , Terminação Traducional da Cadeia Peptídica/fisiologia , Fatores de Terminação de Peptídeos/ultraestrutura , Domínios Proteicos/fisiologia , Sítios de Ligação/fisiologia , Códon de Terminação/metabolismo , Microscopia Crioeletrônica , Proteínas de Escherichia coli/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , RNA de Transferência/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Fatores de Tempo
19.
Nature ; 570(7761): 400-404, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31108498

RESUMO

The initiation of bacterial translation involves the tightly regulated joining of the 50S ribosomal subunit to an initiator transfer RNA (fMet-tRNAfMet)-containing 30S ribosomal initiation complex to form a 70S initiation complex, which subsequently matures into a 70S elongation-competent complex. Rapid and accurate formation of the 70S initiation complex is promoted by initiation factors, which must dissociate from the 30S initiation complex before the resulting 70S elongation-competent complex can begin the elongation of translation1. Although comparisons of the structures of the 30S2-5 and 70S4,6-8 initiation complexes have revealed that the ribosome, initiation factors and fMet-tRNAfMet can acquire different conformations in these complexes, the timing of conformational changes during formation of the 70S initiation complex, the structures of any intermediates formed during these rearrangements, and the contributions that these dynamics might make to the mechanism and regulation of initiation remain unknown. Moreover, the absence of a structure of the 70S elongation-competent complex formed via an initiation-factor-catalysed reaction has precluded an understanding of the rearrangements to the ribosome, initiation factors and fMet-tRNAfMet that occur during maturation of a 70S initiation complex into a 70S elongation-competent complex. Here, using time-resolved cryogenic electron microscopy9, we report the near-atomic-resolution view of how a time-ordered series of conformational changes drive and regulate subunit joining, initiation factor dissociation and fMet-tRNAfMet positioning during formation of the 70S elongation-competent complex. Our results demonstrate the power of time-resolved cryogenic electron microscopy to determine how a time-ordered series of conformational changes contribute to the mechanism and regulation of one of the most fundamental processes in biology.


Assuntos
Microscopia Crioeletrônica , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Iniciação Traducional da Cadeia Peptídica , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Escherichia coli/química , Elongação Traducional da Cadeia Peptídica , Conformação Proteica , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/ultraestrutura , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/ultraestrutura , Ribossomos/química , Fatores de Tempo
20.
Mol Cell ; 74(6): 1227-1238.e3, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31003868

RESUMO

rRNAs and tRNAs universally require processing from longer primary transcripts to become functional for translation. Here, we describe an unsuspected link between tRNA maturation and the 3' processing of 16S rRNA, a key step in preparing the small ribosomal subunit for interaction with the Shine-Dalgarno sequence in prokaryotic translation initiation. We show that an accumulation of either 5' or 3' immature tRNAs triggers RelA-dependent production of the stringent response alarmone (p)ppGpp in the Gram-positive model organism Bacillus subtilis. The accumulation of (p)ppGpp and accompanying decrease in GTP levels specifically inhibit 16S rRNA 3' maturation. We suggest that cells can exploit this mechanism to sense potential slowdowns in tRNA maturation and adjust rRNA processing accordingly to maintain the appropriate functional balance between these two major components of the translation apparatus.


Assuntos
Bacillus subtilis/genética , Regulação Bacteriana da Expressão Gênica , Guanosina Pentafosfato/biossíntese , Iniciação Traducional da Cadeia Peptídica , RNA Ribossômico 16S/genética , RNA de Transferência/genética , Bacillus subtilis/metabolismo , Sequência de Bases , Guanosina Pentafosfato/genética , Guanosina Trifosfato/metabolismo , Ligases/genética , Ligases/metabolismo , Conformação de Ácido Nucleico , RNA Ribossômico 16S/química , RNA Ribossômico 16S/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/genética , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/genética , Subunidades Ribossômicas Menores de Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA