Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 347
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000269

RESUMO

Gα13 and Gα12, encoded by the GNA13 and GNA12 genes, respectively, are members of the G12 family of Gα proteins that, along with their associated Gßγ subunits, mediate signaling from specific G protein-coupled receptors (GPCRs). Advanced prostate cancers have increased expression of GPCRs such as CXC Motif Chemokine Receptor 4 (CXCR4), lysophosphatidic acid receptor (LPAR), and protease activated receptor 1 (PAR-1). These GPCRs signal through either the G12 family, or through Gα13 exclusively, often in addition to other G proteins. The effect of Gα13 can be distinct from that of Gα12, and the role of Gα13 in prostate cancer initiation and progression is largely unexplored. The oncogenic effect of Gα13 on cell migration and invasion in prostate cancer has been characterized, but little is known about other biological processes such as mitochondrial function and oxidative stress. Current knowledge on the link between Gα13 and oxidative stress is based on animal studies in which GPCR-Gα13 signaling decreased superoxide levels, and the overexpression of constitutively active Gα13 promoted antioxidant gene activation. In human samples, mitochondrial superoxide dismutase 2 (SOD2) correlates with prostate cancer risk and prognostic Gleason grade. However, overexpression of SOD2 in prostate cancer cells yielded conflicting results on cell growth and survival under basal versus oxidative stress conditions. Hence, it is necessary to explore the effect of Gα13 on prostate cancer tumorigenesis, as well as the effect of Gα13 on SOD2 in prostate cancer cell growth under oxidative stress conditions.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP , Mitocôndrias , Estresse Oxidativo , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Mitocôndrias/metabolismo , Mitocôndrias/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Animais , Transdução de Sinais , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética
2.
Breast Cancer Res ; 26(1): 113, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965558

RESUMO

GNA13 (Gα13) is one of two alpha subunit members of the G12/13 family of heterotrimeric G-proteins which mediate signaling downstream of GPCRs. It is known to be essential for embryonic development and vasculogenesis and has been increasingly shown to be involved in mediating several steps of cancer progression. Recent studies found that Gα13 can function as an oncogene and contributes to progression and metastasis of multiple tumor types, including ovarian, head and neck and prostate cancers. In most cases, Gα12 and Gα13, as closely related α-subunits in the subfamily, have similar cellular roles. However, in recent years their differences in signaling and function have started to emerge. We previously identified that Gα13 drives invasion of Triple Negative Breast Cancer (TNBC) cells in vitro. As a highly heterogenous disease with various well-defined molecular subtypes (ER+ /Her2-, ER+ /Her2+, Her2+, TNBC) and subtype associated outcomes, the function(s) of Gα13 beyond TNBC should be explored. Here, we report the finding that low expression of GNA13 is predictive of poorer survival in breast cancer, which challenges the conventional idea of Gα12/13 being universal oncogenes in solid tumors. Consistently, we found that Gα13 suppresses the proliferation in multiple ER+ breast cancer cell lines (MCF-7, ZR-75-1 and T47D). Loss of GNA13 expression drives cell proliferation, soft-agar colony formation and in vivo tumor formation in an orthotopic xenograft model. To evaluate the mechanism of Gα13 action, we performed RNA-sequencing analysis on these cell lines and found that loss of GNA13 results in the upregulation of MYC signaling pathways in ER+ breast cancer cells. Simultaneous silencing of MYC reversed the proliferative effect from the loss of GNA13, validating the role of MYC in Gα13 regulation of proliferation. Further, we found Gα13 regulates the expression of MYC, at both the transcript and protein level in an ERα dependent manner. Taken together, our study provides the first evidence for a tumor suppressive role for Gα13 in breast cancer cells and demonstrates for the first time the direct involvement of Gα13 in ER-dependent regulation of MYC signaling. With a few exceptions, elevated Gα13 levels are generally considered to be oncogenic, similar to Gα12. This study demonstrates an unexpected tumor suppressive role for Gα13 in ER+ breast cancer via regulation of MYC, suggesting that Gα13 can have subtype-dependent tumor suppressive roles in breast cancer.


Assuntos
Proliferação de Células , Receptor alfa de Estrogênio , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-myc , Humanos , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Feminino , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Animais , Linhagem Celular Tumoral , Camundongos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Transdução de Sinais , Regulação para Cima
3.
Sci Rep ; 14(1): 11119, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750247

RESUMO

G-protein-coupled receptors (GPCRs) transduce diverse signals into the cell by coupling to one or several Gα subtypes. Of the 16 Gα subtypes in human cells, Gα12 and Gα13 belong to the G12 subfamily and are reported to be functionally different. Notably, certain GPCRs display selective coupling to either Gα12 or Gα13, highlighting their significance in various cellular contexts. However, the structural basis underlying this selectivity remains unclear. Here, using a Gα12-coupled designer receptor exclusively activated by designer drugs (DREADD; G12D) as a model system, we identified residues in the α5 helix and the receptor that collaboratively determine Gα12-vs-Gα13 selectivity. Residue-swapping experiments showed that G12D distinguishes differences between Gα12 and Gα13 in the positions G.H5.09 and G.H5.23 in the α5 helix. Molecular dynamics simulations observed that I378G.H5.23 in Gα12 interacts with N1032.39, S1693.53 and Y17634.53 in G12D, while H364G.H5.09 in Gα12 interact with Q2645.71 in G12D. Screening of mutations at these positions in G12D identified G12D mutants that enhanced coupling with Gα12 and to an even greater extent with Gα13. Combined mutations, most notably the dual Y17634.53H and Q2645.71R mutant, further enhanced Gα12/13 coupling, thereby serving as a potential Gα12/13-DREADD. Such novel Gα12/13-DREADD may be useful in future efforts to develop drugs that target Gα12/13 signaling as well as to identify their therapeutic indications.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP , Simulação de Dinâmica Molecular , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/química , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Células HEK293 , Drogas Desenhadas/química , Drogas Desenhadas/metabolismo , Ligação Proteica
4.
Sci Rep ; 14(1): 6335, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491049

RESUMO

Inflammatory bowel disease (IBD) pathogenesis involves complex inflammatory events and cell death. Although IBD involves mainly necrosis in the digestive tract, pyroptosis has also been recognized. Nonetheless, the underlying basis is elusive. Gα12/13 overexpression may affect endoplasmic reticulum (ER) stress. This study examined how Gα12/13 and ER stress affect pyroptosis using dextran sulfate sodium (DSS)-induced colitis models. Gα12/13 levels were increased in the distal and proximal colons of mice exposed to a single cycle of DSS, as accompanied by increases of IRE1α, ATF6, and p-PERK. Moreover, Il-6, Il-1ß, Ym1, and Arg1 mRNA levels were increased with caspase-1 and IL-1ß activation, supportive of pyroptosis. In the distal colon, RIPK1/3 levels were enhanced to a greater degree, confirming necroptosis. By contrast, the mice subjected to three cycles of DSS treatments showed decreases of Gα12/13, as accompanied by IRE1α and ATF6 suppression, but increases of RIPK1/3 and c-Cas3. AZ2 treatment, which inhibited Gα12, has an anti-pyroptotic effect against a single cycle of colitis. These results show that a single cycle of DSS-induced colitis may cause ER stress-induced pyroptosis as mediated by Gα12 overexpression in addition to necroptosis, but three cycles model induces only necroptosis, and that AZ2 may have an anti-pyroptotic effect.


Assuntos
Colite , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP , Animais , Camundongos , Colite/metabolismo , Colite/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Endorribonucleases/genética , Endorribonucleases/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Piroptose
5.
Scand J Gastroenterol ; 59(6): 710-721, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38357893

RESUMO

BACKGROUND: The lncRNA TRG-AS1 and its co-expressed gene P2RY10 are important for colorectal cancer (CRC) occurrence and development. The purpose of our research was to explore the roles of TRG-AS1 and P2RY10 in CRC progression. METHODS: The abundance of TRG-AS1 and P2RY10 in CRC cell lines (HT-29 and LoVo) and normal colon cells FHC was determined and difference between CRC cells and normal cells was compared. LoVo cells were transfected with si-TRG-AS1 and si-P2RY10 constructs. Subsequently, the viability, colony formation, and migration of the transfected cells were analyzed using cell counting kit-8, clonogenicity, and scratch-wound/Transwell® assays, respectively. Cells overexpressing GNA13 were used to further explore the relationship between TRG-AS1 and P2RY10 along with their downstream functions. Finally, nude mice were injected with different transfected cell types to observe tumor formation in vivo. RESULTS: TRG-AS1 and P2RY10 were significantly upregulated in HT-29 and LoVo compared to FHC cells. TRG-AS1 knockdown and P2RY10 silencing suppressed the viability, colony formation, and migration of LoVo cells. TRG-AS1 knockdown downregulated the expression of P2RY10, GNA12, and GNA13, while P2RY10 silencing downregulated the expression of TRG-AS1, GNA12, and GNA13. Additionally, GNA13 overexpression reversed the cell growth and gene expression changes in LoVo cells induced by TRG-AS1 knockdown or P2RY10 silencing. In vivo experiments revealed that CRC tumor growth was suppressed by TRG-AS1 knockdown and P2RY10 silencing. CONCLUSIONS: TRG-AS1 knockdown repressed the growth of HT-29 and LoVo by regulating P2RY10 and GNA13 expression.


Assuntos
Movimento Celular , Proliferação de Células , Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , RNA Longo não Codificante , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Células HT29 , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação para Cima
6.
Sci Rep ; 13(1): 22412, 2023 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104152

RESUMO

In silico interrogation of glioblastoma (GBM) in The Cancer Genome Atlas (TCGA) revealed upregulation of GNA12 (Gα12), encoding the alpha subunit of the heterotrimeric G-protein G12, concomitant with overexpression of multiple G-protein coupled receptors (GPCRs) that signal through Gα12. Glioma stem cell lines from patient-derived xenografts also showed elevated levels of Gα12. Knockdown (KD) of Gα12 was carried out in two different human GBM stem cell (GSC) lines. Tumors generated in vivo by orthotopic injection of Gα12KD GSC cells showed reduced invasiveness, without apparent changes in tumor size or survival relative to control GSC tumor-bearing mice. Transcriptional profiling of GSC-23 cell tumors revealed significant differences between WT and Gα12KD tumors including reduced expression of genes associated with the extracellular matrix, as well as decreased expression of stem cell genes and increased expression of several proneural genes. Thrombospondin-1 (THBS1), one of the genes most repressed by Gα12 knockdown, was shown to be required for Gα12-mediated cell migration in vitro and for in vivo tumor invasion. Chemogenetic activation of GSC-23 cells harboring a Gα12-coupled DREADD also increased THBS1 expression and in vitro invasion. Collectively, our findings implicate Gα12 signaling in regulation of transcriptional reprogramming that promotes invasiveness, highlighting this as a potential signaling node for therapeutic intervention.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Animais , Camundongos , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Glioblastoma/genética , Glioblastoma/patologia , Transdução de Sinais , Processos Neoplásicos , Regulação para Cima , Linhagem Celular Tumoral , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proliferação de Células
7.
J Neurosci ; 43(25): 4559-4579, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37225434

RESUMO

Previous studies have shown the essential roles of O-GlcNAc transferase (Ogt) and O-GlcNAcylation in neuronal development, function and neurologic diseases. However, the function of Ogt and O-GlcNAcylation in the adult cerebellum has not been well elucidated. Here, we have found that cerebellum has the highest level of O-GlcNAcylation relative to cortex and hippocampus of adult male mice. Specific deletion of Ogt in granule neuron precursors (GNPs) induces abnormal morphology and decreased size of the cerebellum in adult male Ogt deficient [conditional knock-out (cKO)] mice. Adult male cKO mice show the reduced density and aberrant distribution of cerebellar granule cells (CGCs), the disrupted arrangement of Bergman glia (BG) and Purkinje cells. In addition, adult male cKO mice exhibit aberrant synaptic connection, impaired motor coordination, and learning and memory abilities. Mechanistically, we have identified G-protein subunit α12 (Gα12) is modified by Ogt-mediated O-GlcNAcylation. O-GlcNAcylation of Gα12 facilitates its binding to Rho guanine nucleotide exchange factor 12 (Arhgef12) and consequently activates RhoA/ROCK signaling. RhoA/ROCK pathway activator LPA can rescue the developmental deficits of Ogt deficient CGCs. Therefore, our study has revealed the critical function and related mechanisms of Ogt and O-GlcNAcylation in the cerebellum of adult male mice.SIGNIFICANCE STATEMENT Cerebellar function are regulated by diverse mechanisms. To unveil novel mechanisms is critical for understanding the cerebellar function and the clinical therapy of cerebellum-related diseases. In the present study, we have shown that O-GlcNAc transferase gene (Ogt) deletion induces abnormal cerebellar morphology, synaptic connection, and behavioral deficits of adult male mice. Mechanistically, Ogt catalyzes O-GlcNAcylation of Gα12, which promotes the binding to Arhgef12, and regulates RhoA/ROCK signaling pathway. Our study has uncovered the important roles of Ogt and O-GlcNAcylation in regulating cerebellar function and cerebellum-related behavior. Our results suggest that Ogt and O-GlcNAcylation could be potential targets for some cerebellum-related diseases.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP , Transdução de Sinais , Camundongos , Masculino , Animais , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , N-Acetilglucosaminiltransferases/genética , Camundongos Knockout
8.
J Alzheimers Dis ; 93(2): 545-560, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37038813

RESUMO

BACKGROUND: Our previous studies indicated that anesthesia and surgery could aggravate cognitive impairment of 5XFAD transgenic (Tg) mice, and this aggravation was associated with tau hyperphosphorylation. We previously identified that GNA13 (the gene encoding Gα13) was a hub gene with tau hyperphosphorylation. OBJECTIVE: This study aims to further investigate the mechanism that whether the Gα13-mediated signaling pathway acts as an instigator to regulate cofilin activation and autophagy impairment in this process. METHODS: 5XFAD Tg mice and their littermate (LM) mice were randomly allocated into four groups: LM Control group, LM Anesthesia/Surgery group, AD Control group, and AD Anesthesia/Surgery group. For mice in the Anesthesia/Surgery groups, abdominal surgery was performed under 1.4% isoflurane anesthesia followed by sustaining anesthetic inhalation for up to 2 h. RESULTS: Compared with the AD Control group, protein levels of Gα13, ROCK2, LPAR5, and p-tau/tau46 ratio were increased, while p-cofilin/cofilin protein expression ratio was decreased in the AD Anesthesia/Surgery group. However, the differences in these protein levels were not significant among LM groups. CONCLUSION: This study demonstrated that anesthesia and surgery might exacerbate p-tau accumulation in 5XFAD Tg mice but not in LM mice. And this might be closely related to cofilin activation via Gα13-mediated signaling cascade.


Assuntos
Doença de Alzheimer , Anestesia , Camundongos , Animais , Camundongos Transgênicos , Doença de Alzheimer/patologia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Modelos Animais de Doenças
9.
Hypertension ; 80(2): 403-415, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36448462

RESUMO

BACKGROUND: Postsynaptic density 95/disk-large/ZO-1 Rho guanine nucleotide exchange factor (PDZ-RhoGEF, PRG) functions as a RhoGEF for activated Gα13 and transmits activation signals to downstream signaling pathways in various pathological processes. Although the prohypertrophic effect of activated Gα13 (guanine nucleotide binding protein alpha 13; a heterotrimeric G protein) is well-established, the role of PDZ-RhoGEF in pathological cardiac hypertrophy is still obscure. METHODS: Genetically engineered mice and neonatal rat ventricular myocytes were generated to investigate the function of PRG in pathological myocardial hypertrophy. The prohypertrophic stimuli-induced alternations in the morphology and intracellular signaling were measured in myocardium and neonatal rat ventricular myocytes. Furthermore, multiple molecular methodologies were used to identify the precise molecular mechanisms underlying PDZ-RhoGEF function. RESULTS: Increased PDZ-RhoGEF expression was documented in both hypertrophied hearts and neonatal rat ventricular myocytes. Upon prohypertrophic stimuli, the PDZ-RhoGEF-deficient hearts displayed alleviated cardiomyocyte enlargement and attenuated collagen deposition with improved cardiac function, whereas the adverse hypertrophic responses in hearts and neonatal rat ventricular myocytes were markedly exaggerated by PDZ-RhoGEF overexpression. Mechanistically, RhoA (ras homolog family member A)-dependent signaling pathways may function as the downstream effectors of PDZ-RhoGEF in hypertrophic remodeling, as confirmed by rescue experiments using a RhoA inhibitor and dominant-negative RhoA. Furthermore, PDZ-RhoGEF is associated with activated Gα13 and contributes to Gα13-mediated activation of RhoA-dependent signaling. CONCLUSIONS: Our data provide the first evidence that PDZ-RhoGEF promotes pathological cardiac hypertrophy by linking activated Gα13 to RhoA-dependent signaling pathways. Therefore, PDZ-RhoGEF has the potential to be a diagnostic marker or therapeutic target for pathological cardiac hypertrophy.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP , Transdução de Sinais , Animais , Camundongos , Ratos , Cardiomegalia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Domínios PDZ
10.
Cell Signal ; 102: 110534, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36442589

RESUMO

Gα13, a heterotrimeric G protein α subunit of the G12/13 subfamily, is an oncogenic driver in multiple cancer types. Unlike other G protein subfamilies that contribute to cancer progression via amino acid substitutions that abolish their deactivating, intrinsic GTPase activity, Gα13 rarely harbors such mutations in tumors and instead appears to stimulate aberrant cell growth via overexpression as a wildtype form. It is not known why this effect is exclusive to the G12/13 subfamily, nor has a mechanism been elucidated for overexpressed Gα13 promoting tumor progression. Using a reporter gene assay for serum response factor (SRF)-mediated transcription in HEK293 cells, we found that transiently expressed, wildtype Gα13 generates a robust SRF signal, approximately half the amplitude observed for GTPase-defective Gα13. When epitope-tagged, wildtype Gα13 was titrated upward in cells, a sharp increase in SRF stimulation was observed coincident with a "spillover" of Gα13 from membrane-associated to a soluble fraction. Overexpressing G protein ß and γ subunits caused both a decrease in this signal and a shift of wildtype Gα13 back to the membranous fraction, suggesting that stoichiometric imbalance in the αßγ heterotrimer results in aberrant subcellular localization and signalling by overexpressed Gα13. We also examined the acylation requirements of wildtype Gα13 for signalling to SRF. Similar to GTPase-defective Gα13, S-palmitoylation of the wildtype α subunit was necessary for SRF activation but could be replaced functionally by an engineered site for N-terminal myristoylation. However, a key difference was observed between wildtype and GTPase-defective Gα13: whereas the latter protein lacking palmitoylation sites was rescued in its SRF signalling by either an engineered polybasic sequence or a C-terminal isoprenylation site, these motifs failed to restore signalling by wildtype, non-palmitoylated Gα13. These findings illuminate several components of the mechanism in which overexpressed, wildtype Gα13 contributes to growth and tumorigenic signalling, and reveal greater stringency in its requirements for post-translational modification in comparison to GTPase-defective Gα13.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP , Neoplasias , Humanos , Citoplasma/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Fator de Resposta Sérica/metabolismo
11.
Mediators Inflamm ; 2022: 1818758, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248188

RESUMO

Lysophosphatidic acid (LPA) has disruptive effects on lumbar spinal stenosis (LSS). Recently, LPA has been reported to be involved in spinal cord neuronal injury and toxicity, promoting the pathogenesis of LSS. However, the exact effects of LPA on spinal cord neurons remain unknown. The purpose of this study is to investigate the effects of LPA (18 : 1) on spinal cord neuronal cytotoxicity, apoptosis, DNA damage, and oxidative stress. After clinical detection of LPA secretion, spinal cord neurons were treated with LPA (18 : 1); cell viability was analyzed by MTT assay, and LDH leakage was detected by LDH kit; cell apoptosis was detected by flow cytometry; ROS production was measured by DCFDA staining and MitoSOX Red Staining; the activation of the Gα12/Gα13 signaling pathway was detected by serum response factor response element (SRF-RE) luciferase reporter gene; the relationship among LPA, LPA4/6, and ROCK was examined by western blotting. In spinal cord neurons treated with LPA (18 : 1), cellular activity decreased and LDH release increased. The Rho kinase inhibitor (Y-27632) can attenuate LPA-induced apoptosis, DNA damage, and oxidative stress in spinal cord neurons. Moreover mechanistic investigation indicated that LPA (18 : 1) activates Gα12/13-Rho-ROCK2-induced apoptosis, DNA damage, and oxidative stress in spinal cord neurons by upregulating LPA4/LPA6 receptors. Further, the Rho kinase inhibitor Y-27632 attenuates the effects of LPA by downregulating LPA4/LPA6 receptors. Taken together, the possible mechanism by which LPA secretion in LSS patients aggravates patient injury was further elucidated using an LPA-induced spinal cord neuronal injury cell model in vitro.


Assuntos
Receptores de Ácidos Lisofosfatídicos , Traumatismos da Medula Espinal , Amidas , Apoptose , Dano ao DNA , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/farmacologia , Humanos , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Neurônios/metabolismo , Estresse Oxidativo , Piridinas , Espécies Reativas de Oxigênio/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores Purinérgicos P2/metabolismo , Fator de Resposta Sérica/metabolismo , Fator de Resposta Sérica/farmacologia , Medula Espinal/patologia , Traumatismos da Medula Espinal/metabolismo , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/farmacologia
12.
Cells ; 11(16)2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-36010639

RESUMO

Despite fully functional primary hemostasis, platelets of healthy neonates exhibit hypoaggregability and secretion defects, which may be adaptations to specific requirements in this developmental stage. The etiologies for reduced signal transduction vary with the type of agonist. The discovered peculiarities are lower receptor densities, reduced calcium mobilization, and functional impairments of G proteins. Reduced secretion of dense granules has been attributed to lower numbers of granules. Signaling studies with adult platelets have shown a regulating effect of the G12/13 signaling pathway on dense granule secretion via RhoA. We comparatively analyzed secretion profiles using flow cytometry and expression levels of Gq, Gi, and G12/13 using Western blot analysis in platelets from cord blood and adults. Furthermore, we evaluated Rho activation after in vitro platelet stimulation with thrombin using a pulldown assay. We observed a markedly reduced expression of the dense granule marker CD63 on neonatal platelets after thrombin stimulation. Gα12/13 expression was significantly decreased in neonatal platelets and correlated with lower Rho activation after thrombin stimulation. We conclude that lower expression of G12/13 in neonatal platelets results in attenuated activation of Rho and may contribute to reduced secretion of dense granules after exposure to thrombin.


Assuntos
Plaquetas , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Trombina , Plaquetas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Hemostasia , Humanos , Recém-Nascido , Transdução de Sinais , Trombina/farmacologia
13.
J Biol Chem ; 298(9): 102294, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35872018

RESUMO

Promiscuous G protein-coupled receptors (GPCRs) engage multiple Gα subtypes with different efficacies to propagate signals in cells. A mechanistic understanding of Gα selectivity by GPCRs is critical for therapeutic design, since signaling can be restrained by ligand-receptor complexes to preferentially engage specific G proteins. However, details of GPCR selectivity are unresolved. Here, we investigated cognate G protein selectivity using the prototypical promiscuous Gαq/11 and Gα12/13 coupling receptors, angiotensin II type I receptor (AT1R) and prostaglandin F2α receptor (FP), bioluminescence resonance energy transfer-based G protein and pathway-selective sensors, and G protein knockout cells. We determined that competition between G proteins for receptor binding occurred in a receptor- and G protein-specific manner for AT1R and FP but not for other receptors tested. In addition, we show that while Gα12/13 competes with Gαq/11 for AT1R coupling, the opposite occurs for FP, and Gαq-mediated signaling regulated G protein coupling only at AT1R. In cells, the functional modulation of biased ligands at FP and AT1R was contingent upon cognate Gα availability. The efficacy of AT1R-biased ligands, which poorly signal through Gαq/11, increased in the absence of Gα12/13. Finally, we show that a positive allosteric modulator of Gαq/11 signaling that also allosterically decreases FP-Gα12/13 coupling, lost its negative modulation in the absence of Gαq/11 coupling to FP. Together, our findings suggest that despite preferential binding of similar subsets of G proteins, GPCRs follow distinct selectivity rules, which may contribute to the regulation of ligand-mediated G protein bias of AT1R and FP.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Receptor Tipo 1 de Angiotensina , Receptores de Prostaglandina , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Ligantes , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores de Prostaglandina/metabolismo
14.
Biochem Pharmacol ; 201: 115069, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525325

RESUMO

We could previously show that thromboxane A2 receptor (TP) activation inhibits the angiogenic capacity of human endothelial cells, but the underlying mechanisms remained unclear. Therefore, the aim of this study was to elucidate TP signal transduction pathways relevant to angiogenic sprouting of human endothelial cells. To clarify this matter, we used RNAi-mediated gene silencing as well as pharmacological inhibition of potential TP downstream targets in human umbilical vein endothelial cells (HUVEC) and VEGF-induced angiogenic sprouting of HUVEC spheroids in vitro as a functional read-out. In this experimental set-up, the TP agonist U-46619 completely blocked VEGF-induced angiogenic sprouting of HUVEC spheroids. Moreover, in live-cell analyses TP activation induced endothelial cell contraction, sprout retraction as well as endothelial cell tension and focal adhesion dysregulation of HUVEC. These effects were reversed by pharmacological TP inhibition or TP knockdown. Moreover, we identified a TP-Gα13-RhoA/C-ROCK-LIMK2-dependent signal transduction pathway to be relevant for U-46619-induced inhibition of VEGF-mediated HUVEC sprouting. In line with these results, U-46619-mediated TP activation potently induced RhoA and RhoC activity in live HUVEC as measured by FRET biosensors. Interestingly, pharmacological inhibition of ROCK and LIMK2 also normalized U-46619-induced endothelial cell tension and focal adhesion dysregulation of HUVEC. In summary, our work reveals mechanisms by which the TP may disturb angiogenic endothelial function in disease states associated with sustained endothelial TP activation.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP , Células Endoteliais da Veia Umbilical Humana , Quinases Lim , Receptores de Tromboxano A2 e Prostaglandina H2 , Proteína rhoA de Ligação ao GTP , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Quinases Lim/metabolismo , Neovascularização Fisiológica , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Quinases Associadas a rho , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína de Ligação a GTP rhoC
15.
Tissue Cell ; 76: 101795, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35413491

RESUMO

The purpose of this study aimed to figure out the role of GNA13 in lung squamous cell carcinoma (LUSC) and the underlying mechanism. Male BALB/c mice were used to construct LUSC mouse model. Cell growth was examined using MTT and colony formation assay. Cell migration and invasion was determined using wound healing and transwell assay. The expression and phosphorylation of protein was detected by Western blotting assay. Immunohistochemistry staining was used to observe the tumor growth and metastasis. GNA13 was overexpressed in both LUSC tissues and LUSC cell lines. Knockdown of GNA13 in LUSC cells reduced cell viability and inhibited the formation of colonies in the SK-MES-1 and NCI-H520 cells. Cell migration and invasion was also prevented by inhibition of GNA13 in the LUSC cells. Phosphorylation of PI3K and AKT was downregulated by silencing GNA13 and upregulated by overexpression of GNA13 in the LUSC cells. In LUSC mouse model, tumor size and tumor weight were significantly decreased in si-GNA13 mice compared to control group. The expression of GNA13, Ki67, MMP2 and phosphorylation of AKT were significantly inhibited in si-GNA13 mice compared to control group. This study has demonstrated that knockdown of GNA13 could inhibit cell survival, migration and metastasis in LUSC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP , Neoplasias Pulmonares , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
16.
Mol Psychiatry ; 27(5): 2425-2438, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35393556

RESUMO

Latrophilin-3 (Lphn3; also known as ADGRL3) is a member of the adhesion G Protein Coupled Receptor subfamily, which participates in the stabilization and maintenance of neuronal networks by mediating intercellular adhesion through heterophilic interactions with transmembrane ligands. Polymorphisms modifying the Lphn3 gene are associated with attention-deficit/hyperactivity disorder (ADHD) in children and its persistence into adulthood. How these genetic alterations affect receptor function remains unknown. Here, we conducted the functional validation of distinct ADHD-related Lphn3 variants bearing mutations in the receptor's adhesion motif-containing extracellular region. We found that all variants tested disrupted the ability of Lphn3 to stabilize intercellular adhesion in a manner that was distinct between ligands classes, but which did not depend on ligand-receptor interaction parameters, thus pointing to altered intrinsic receptor signaling properties. Using G protein signaling biosensors, we determined that Lphn3 couples to Gαi1, Gαi2, Gαs, Gαq, and Gα13. However, all ADHD-related receptor variants consistently lacked intrinsic as well as ligand-dependent Gα13 coupling efficiency while maintaining unaltered coupling to Gαi, Gαs, and Gαq. Consistent with these alterations, actin remodeling functions as well as actin-relevant RhoA signaling normally displayed by the constitutively active Lphn3 receptor were impeded by select receptor variants, thus supporting additional signaling defects. Taken together, our data point to Gα13 selective signaling impairments as representing a disease-relevant pathogenicity pathway that can be inherited through Lphn3 gene polymorphisms. This study highlights the intricate interplay between Lphn3 GPCR functions and the actin cytoskeleton in modulating neurodevelopmental cues related to ADHD etiology.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Actinas , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/genética , Criança , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Humanos , Ligantes , Receptores Acoplados a Proteínas G/genética , Virulência
17.
Cell Rep ; 38(9): 110441, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235808

RESUMO

Gα13 transduces signals from G-protein-coupled receptors. While Gα13 functions as a tumor suppressor in lymphomas, it is not known whether Gα13 is pro-tumorigenic or tumor suppressive in genetically engineered mouse (GEM) models of epithelial cancers. Here, we show that loss of Gα13 in the Kras/Tp53 (KPC) GEM model promotes well-differentiated tumors and reduces survival. Mechanistically, tumors developing in KPC mice with Gα13 loss exhibit increased E-cadherin expression and mTOR signaling. Importantly, human pancreatic ductal adenocarcinoma (PDAC) tumors with low Gα13 expression also exhibit increased E-cadherin expression and mTOR signaling. Treatment with the mTOR inhibitor rapamycin decreases the growth of syngeneic KPC tumors with Gα13 loss by promoting cell death. This work establishes a tumor-suppressive role of Gα13 in pancreatic tumorigenesis in the KPC GEM model and suggests targeting mTOR in human PDAC tumors with Gα13 loss.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Caderinas/metabolismo , Carcinogênese , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Neoplasias Pancreáticas
18.
Science ; 375(6581): eabi5965, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35143305

RESUMO

Dendritic cells (DCs) are crucial for initiating adaptive immune responses. However, the factors that control DC positioning and homeostasis are incompletely understood. We found that type-2 conventional DCs (cDC2s) in the spleen depend on Gα13 and adhesion G protein-coupled receptor family member-E5 (Adgre5, or CD97) for positioning in blood-exposed locations. CD97 function required its autoproteolytic cleavage. CD55 is a CD97 ligand, and cDC2 interaction with CD55-expressing red blood cells (RBCs) under shear stress conditions caused extraction of the regulatory CD97 N-terminal fragment. Deficiency in CD55-CD97 signaling led to loss of splenic cDC2s into the circulation and defective lymphocyte responses to blood-borne antigens. Thus, CD97 mechanosensing of RBCs establishes a migration and gene expression program that optimizes the antigen capture and presentation functions of splenic cDC2s.


Assuntos
Células Dendríticas/fisiologia , Eritrócitos/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Baço/citologia , Baço/imunologia , Actinas/metabolismo , Animais , Apresentação de Antígeno , Antígenos/imunologia , Circulação Sanguínea , Antígenos CD55/sangue , Antígenos CD55/metabolismo , Movimento Celular , Células Dendríticas/imunologia , Eritrócitos/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Homeostase , Fatores Reguladores de Interferon/metabolismo , Ligantes , Camundongos , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Baço/irrigação sanguínea , Baço/metabolismo , Transcrição Gênica , Transcriptoma
19.
Int J Cancer ; 150(10): 1690-1705, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35020952

RESUMO

Hepatocellular carcinoma (HCC) is the second most common cancer worldwide, demonstrating aggressiveness and mortality more frequently in men than in women. Despite reports regarding the inhibitory ability of estrogen receptor alpha (ERα, ESR1) in certain cancer progression, targets and the basis of underlying gender disparity in HCC worsening remain elusive. Here, we report the ability of ERα to transcriptionally inhibit G protein subunit alpha 12 (Gα12) responsible for HCC worsening. First, using human samples and public database, the expression of ERα and Gα12 in HCC was examined. Then, quantitative real-time PCR, chromatin immunoprecipitation-assay, luciferase assay and immunoblottings of liver cancer cell lines confirmed the inhibitory ability of ERα on Gα12 and HCC progression. Gα12 promoted mesenchymal characteristics and amoeboidal movement, which was antagonized by ERα overexpression. Additionally, we found microRNA-141 and microRNA-200a as downstream targets of the Gα12 signaling axis for cancer malignancy regulation under the control of ERα. As for in-depth mechanism, PTP4A1 was found to be directly inhibited by microRNA-141 and microRNA-200a. Moreover, we found the inhibitory effect of ERα on amoeboidal movement by analyzing the morphology and blebbing of liver cancer cells and the active form of MLC levels. The identified targets and ESR1 levels are inversely correlated with human specimens, as well as with sex-biased survival rates of HCC patients. Collectively, ERα-dependent repression of Gα12 and consequent changes in the Gα12 signaling may explain the gender disparity in HCC, providing pharmacological clues for the control of metastatic HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Masculino , MicroRNAs/metabolismo
20.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34663730

RESUMO

GPCR-Gα protein-mediated signal transduction contributes to spatiotemporal interactions between immune cells to fine-tune and facilitate the process of inflammation and host protection. Beyond this, however, how Gα proteins contribute to the helper T cell subset differentiation and adaptive response have been underappreciated. Here, we found that Gα13 signaling in T cells plays a crucial role in inducing follicular helper T (Tfh) cell differentiation in vivo. T cell-specific Gα13-deficient mice have diminished Tfh cell responses in a cell-intrinsic manner in response to immunization, lymphocytic choriomeningitis virus infection, and allergen challenges. Moreover, Gα13-deficient Tfh cells express reduced levels of Bcl-6 and CXCR5 and are functionally impaired in their ability to adhere to and stimulate B cells. Mechanistically, Gα13-deficient Tfh cells harbor defective Rho-ROCK2 activation, and Rho agonist treatment recuperates Tfh cell differentiation and expression of Bcl-6 and CXCR5 in Tfh cells of T cell-specific Gα13-deficient mice. Conversely, ROCK inhibitor treatment hampers Tfh cell differentiation in wild-type mice. These findings unveil a crucial regulatory role of Gα13-Rho-ROCK axis in optimal Tfh cell differentiation and function, which might be a promising target for pharmacologic intervention in vaccine development as well as antibody-mediated immune disorders.


Assuntos
Diferenciação Celular , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Transdução de Sinais , Células T Auxiliares Foliculares/citologia , Animais , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Tecido Linfoide/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Receptores CXCR5/metabolismo , Timo/citologia , Timo/crescimento & desenvolvimento , Timo/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA