Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 41(1): e33-e45, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33267659

RESUMO

OBJECTIVE: 12-LOX (12-lipoxygenase) produces a number of bioactive lipids including 12(S)-HETE that are involved in inflammation and platelet reactivity. The GPR31 (G-protein-coupled receptor 31) is the proposed receptor of 12(S)-HETE; however, it is not known whether the 12(S)-HETE-GPR31 signaling axis serves to enhance or inhibit platelet activity. Approach and Results: Using pepducin technology and biochemical approaches, we provide evidence that 12(S)-HETE-GPR31 signals through Gi to enhance PAR (protease-activated receptor)-4-mediated platelet activation and arterial thrombosis using both human platelets and mouse carotid artery injury models. 12(S)-HETE suppressed AC (adenylyl cyclase) activity through GPR31 and resulted in Rap1 (Ras-related protein 1) and p38 activation and low but detectable calcium flux but did not induce platelet aggregation. A GPR31 third intracellular (i3) loop-derived pepducin, GPR310 (G-protein-coupled receptor 310), significantly inhibited platelet aggregation in response to thrombin, collagen, and PAR4 agonist, AYPGKF, in human and mouse platelets but relative sparing of PAR1 agonist SFLLRN in human platelets. GPR310 treatment gave a highly significant 80% protection (P=0.0018) against ferric chloride-induced carotid artery injury in mice by extending occlusion time, without any effect on tail bleeding. PAR4-mediated dense granule secretion and calcium flux were both attenuated by GPR310. Consistent with these results, GPR310 inhibited 12(S)-HETE-mediated and PAR4-mediated Rap1-GTP and RASA3 translocation to the plasma membrane and attenuated PAR4-Akt and ERK activation. GPR310 caused a right shift in thrombin-mediated human platelet aggregation, comparable to the effects of inhibition of the Gi-coupled P2Y12 receptor. Co-immunoprecipitation studies revealed that GPR31 and PAR4 form a heterodimeric complex in recombinant systems. CONCLUSIONS: The 12-LOX product 12(S)-HETE stimulates GPR31-Gi-signaling pathways, which enhance thrombin-PAR4 platelet activation and arterial thrombosis in human platelets and mouse models. Suppression of this bioactive lipid pathway, as exemplified by a GPR31 pepducin antagonist, may provide beneficial protective effects against platelet aggregation and arterial thrombosis with minimal effect on hemostasis.


Assuntos
Plaquetas/metabolismo , Trombose das Artérias Carótidas/sangue , Hemostasia , Agregação Plaquetária , Receptores Acoplados a Proteínas G/sangue , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/sangue , Animais , Células CHO , Trombose das Artérias Carótidas/prevenção & controle , Cricetulus , Modelos Animais de Doenças , Feminino , Fibrinolíticos/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/sangue , Humanos , Masculino , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores de Trombina/sangue , Transdução de Sinais , Trombina/metabolismo
2.
Medicina (Kaunas) ; 55(5)2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31121943

RESUMO

Background and objectives: Alzheimer's disease (AD) is a progressive neurodegenerative disease that results in severe dementia. Having ischemic strokes (IS) is one of the risk factors of the AD, but the molecular mechanisms that underlie IS and AD are not well understood. We thus aimed to identify common molecular biomarkers and pathways in IS and AD that can help predict the progression of these diseases and provide clues to important pathological mechanisms. Materials and Methods: We have analyzed the microarray gene expression datasets of IS and AD. To obtain robust results, combinatorial statistical methods were used to analyze the datasets and 26 transcripts (22 unique genes) were identified that were abnormally expressed in both IS and AD. Results: Gene Ontology (GO) and KEGG pathway analyses indicated that these 26 common dysregulated genes identified several altered molecular pathways: Alcoholism, MAPK signaling, glycine metabolism, serine metabolism, and threonine metabolism. Further protein-protein interactions (PPI) analysis revealed pathway hub proteins PDE9A, GNAO1, DUSP16, NTRK2, PGAM2, MAG, and TXLNA. Transcriptional and post-transcriptional components were then identified, and significant transcription factors (SPIB, SMAD3, and SOX2) found. Conclusions: Protein-drug interaction analysis revealed PDE9A has interaction with drugs caffeine, γ-glutamyl glycine, and 3-isobutyl-1-methyl-7H-xanthine. Thus, we identified novel putative links between pathological processes in IS and AD at transcripts levels, and identified possible mechanistic and gene expression links between IS and AD.


Assuntos
Doença de Alzheimer/sangue , Biomarcadores/sangue , Isquemia Encefálica/sangue , 3',5'-AMP Cíclico Fosfodiesterases/análise , 3',5'-AMP Cíclico Fosfodiesterases/sangue , Doença de Alzheimer/complicações , Biomarcadores/análise , Isquemia Encefálica/complicações , Fosfatases de Especificidade Dupla/análise , Fosfatases de Especificidade Dupla/sangue , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/análise , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/sangue , Humanos , Glicoproteínas de Membrana/análise , Glicoproteínas de Membrana/sangue , Fosfatases da Proteína Quinase Ativada por Mitógeno/análise , Fosfatases da Proteína Quinase Ativada por Mitógeno/sangue , Glicoproteína Associada a Mielina/análise , Glicoproteína Associada a Mielina/sangue , Receptor trkB/análise , Receptor trkB/sangue , Transdução de Sinais/fisiologia , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/complicações , Proteínas de Transporte Vesicular/análise , Proteínas de Transporte Vesicular/sangue
3.
J Thromb Haemost ; 13(4): 643-50, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25556537

RESUMO

BACKGROUND: Inherited platelet function disorders (PFDs) are heterogeneous, and identification of the underlying genetic defects is difficult when based solely on phenotypic and clinical features of the patient. OBJECTIVE: To analyze 329 genes regulating platelet function, number, and size in order to identify candidate gene defects in patients with PFDs. PATIENTS/METHODS: Targeted analysis of candidate PFD genes was undertaken after next-generation sequencing of exomic DNA from 18 unrelated index cases with PFDs who were recruited into the UK Genotyping and Phenotyping of Platelets (GAPP) study and diagnosed with platelet abnormalities affecting either Gi signaling (n = 12) or secretion (n = 6). The potential pathogenicity of candidate gene defects was assessed using computational predictive algorithms. RESULTS: Analysis of the 329 candidate PFD genes identified 63 candidate defects, affecting 40 genes, among index cases with Gi signaling abnormalities, while 53 defects, within 49 genes, were identified among patients with secretion abnormalities. Homozygous gene defects were more commonly associated with secretion abnormalities. Functional annotation analysis identified distinct gene clusters in the two patient subgroups. Thirteen genes with significant annotation enrichment for 'intracellular signaling' harbored 16 of the candidate gene defects identified in nine index cases with Gi signaling abnormalities. Four gene clusters, representing 14 genes, with significantly associated gene ontology annotations were identified among the cases with secretion abnormalities, the most significant association being with 'establishment of protein localization.' CONCLUSION: Our findings demonstrate the genetic complexity of PFDs and highlight plausible candidate genes for targeted analysis in patients with platelet secretion and Gi signaling abnormalities.


Assuntos
Transtornos Plaquetários/genética , Análise Mutacional de DNA , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Transtornos Plaquetários/sangue , Transtornos Plaquetários/diagnóstico , Plaquetas/metabolismo , Criança , Análise por Conglomerados , Biologia Computacional , Exoma , Feminino , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/sangue , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Estudos de Associação Genética , Marcadores Genéticos , Predisposição Genética para Doença , Hereditariedade , Heterozigoto , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Valor Preditivo dos Testes , Transdução de Sinais/genética , Reino Unido , Adulto Jovem
4.
J Vis Exp ; (80): e50768, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24192997

RESUMO

This protocol details the experimental and analytical procedure for a cell-based assay developed in our laboratory as a functional test to predict the prognosis of idiopathic scoliosis in asymptomatic and affected children. The assay consists of the evaluation of the functional status of Gi and Gs proteins in peripheral blood mononuclear cells (PBMCs) by cellular dielectric spectroscopy (CDS), using an automated CDS-based instrument, and the classification of children into three functional groups (FG1, FG2, FG3) with respect to the profile of imbalance between the degree of response to Gi and Gs proteins stimulation. The classification is further confirmed by the differential effect of osteopontin (OPN) on response to Gi stimulation among groups and the severe progression of disease is referenced by FG2. Approximately, a volume of 10 ml of blood is required to extract PBMCs by Ficoll-gradient and cells are then stored in liquid nitrogen. The adequate number of PBMCs to perform the assay is obtained after two days of cell culture. Essentially, cells are first incubated with phytohemmaglutinin (PHA). After 24 hr incubation, medium is replaced by a PHA-free culture medium for an additional 24 hr prior to cell seeding and OPN treatment. Cells are then spectroscopically screened for their responses to somatostatin and isoproterenol, which respectively activate Gi and Gs proteins through their cognate receptors. Both somatostatin and isoproterenol are simultaneously injected with an integrated fluidics system and the cells' responses are monitored for 15 min. The assay can be performed with fresh or frozen PBMCs and the procedure is completed within 4 days.


Assuntos
Escoliose/diagnóstico , Análise Espectral/métodos , Estudos de Casos e Controles , Criança , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/sangue , Subunidades alfa Gs de Proteínas de Ligação ao GTP/sangue , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/patologia , Osteopontina/farmacologia , Prognóstico , Escoliose/sangue , Escoliose/patologia
5.
Circulation ; 126(6): 697-706, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22732314

RESUMO

BACKGROUND: Takotsubo cardiomyopathy is an acute heart failure syndrome characterized by myocardial hypocontractility from the mid left ventricle to the apex. It is precipitated by extreme stress and can be triggered by intravenous catecholamine administration, particularly epinephrine. Despite its grave presentation, Takotsubo cardiomyopathy is rapidly reversible, with generally good prognosis. We hypothesized that this represents switching of epinephrine signaling through the pleiotropic ß(2)-adrenergic receptor (ß(2)AR) from canonical stimulatory G-protein-activated cardiostimulant to inhibitory G-protein-activated cardiodepressant pathways. METHODS AND RESULTS: We describe an in vivo rat model in which a high intravenous epinephrine, but not norepinephrine, bolus produces the characteristic reversible apical depression of myocardial contraction coupled with basal hypercontractility. The effect is prevented via G(i) inactivation by pertussis toxin pretreatment. ß(2)AR number and functional responses were greater in isolated apical cardiomyocytes than in basal cardiomyocytes, which confirmed the higher apical sensitivity and response to circulating epinephrine. In vitro studies demonstrated high-dose epinephrine can induce direct cardiomyocyte cardiodepression and cardioprotection in a ß(2)AR-Gi-dependent manner. Preventing epinephrine-G(i) effects increased mortality in the Takotsubo model, whereas ß-blockers that activate ß(2)AR-G(i) exacerbated the epinephrine-dependent negative inotropic effects without further deaths. In contrast, levosimendan rescued the acute cardiac dysfunction without increased mortality. CONCLUSIONS: We suggest that biased agonism of epinephrine for ß(2)AR-G(s) at low concentrations and for G(i) at high concentrations underpins the acute apical cardiodepression observed in Takotsubo cardiomyopathy, with an apical-basal gradient in ß(2)ARs explaining the differential regional responses. We suggest this epinephrine-specific ß(2)AR-G(i) signaling may have evolved as a cardioprotective strategy to limit catecholamine-induced myocardial toxicity during acute stress.


Assuntos
Modelos Animais de Doenças , Epinefrina/sangue , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/fisiologia , Receptores Adrenérgicos beta 2/fisiologia , Cardiomiopatia de Takotsubo/sangue , Animais , Antiarrítmicos/administração & dosagem , Antiarrítmicos/sangue , Células Cultivadas , Epinefrina/administração & dosagem , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/agonistas , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/sangue , Humanos , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
6.
Biochem J ; 429(2): 369-77, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20441566

RESUMO

PI3Ks (phosphoinositide 3-kinases) play a critical role in platelet functional responses. PI3Ks are activated upon P2Y12 receptor stimulation and generate pro-aggregatory signals. P2Y12 receptor has been shown to play a key role in the platelet aggregation and thromboxane A2 generation caused by co-stimulation with Gq or Gz, or super-stimulation of Gi pathways. In the present study, we evaluated the role of specific PI3K isoforms alpha, beta, gamma and delta in platelet aggregation, thromboxane A2 generation and ERK (extracellular-signal-regulated kinase) activation. Our results show that loss of the PI3K signal impaired the ability of ADP to induce platelet aggregation, ERK phosphorylation and thromboxane A2 generation. We also show that Gq plus Gi- or Gi plus Gz-mediated platelet aggregation, ERK phosphorylation and thromboxane A2 generation in human platelets was inhibited by TGX-221, a PI3Kbeta-selective inhibitor, but not by PIK75 (a PI3Kalpha inhibitor), AS252424 (a PI3Kgamma inhibitor) or IC87114 (a PI3Kdelta inhibitor). TGX-221 also showed a similar inhibitory effect on the Gi plus Gz-mediated platelet responses in platelets from P2Y1-/- mice. Finally, 2MeSADP (2-methyl-thio-ADP)-induced Akt phosphorylation was significantly inhibited in the presence of TGX-221, suggesting a critical role for PI3Kbeta in Gi-mediated signalling. Taken together, our results demonstrate that PI3Kbeta plays an important role in ADP-induced platelet aggregation. Moreover, PI3Kbeta mediates ADP-induced thromboxane A2 generation by regulating ERK phosphorylation.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/sangue , Fosfatidilinositol 3-Quinases/sangue , Agregação Plaquetária/fisiologia , Tromboxano A2/sangue , Difosfato de Adenosina/farmacologia , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Humanos , Técnicas In Vitro , Isoenzimas/antagonistas & inibidores , Isoenzimas/sangue , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Knockout , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Agregação Plaquetária/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirimidinonas/farmacologia , Receptores Purinérgicos P2/deficiência , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2Y1 , Transdução de Sinais/efeitos dos fármacos
7.
Exp Biol Med (Maywood) ; 235(2): 256-62, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20404042

RESUMO

In non-erythroid cells, insulin stimulates a signal transduction pathway that results in the activation of phosphoinositide 3-kinase (PI3K) and subsequent phosphorylation of phosphodiesterase 3 (PDE3). Erythrocytes possess insulin receptors, PI3K and PDE3B. These cells release adenosine triphosphate (ATP) when exposed to reduced O(2) tension via a signaling pathway that requires activation of the G protein, Gi, as well as increases in cAMP. Although insulin inhibits ATP release from human erythrocytes in response to Gi activation by mastoparan 7 (Mas 7), no effect on cAMP was described. Here, we investigated the hypothesis that insulin activates PDE3 in human erythrocytes via a PI3K-mediated mechanism resulting in cAMP hydrolysis and inhibition of ATP release. Incubation of human erythrocytes with Mas 7 resulted in a 62 +/- 7% increase in cAMP (n = 9, P < 0.05) and a 306 +/- 69% increase in ATP release (n = 9, P < 0.05), both of which were attenuated by pre-treatment with insulin. Selective inhibitors of PDE3 (cilostazol) or PI3K (LY294002) rescued these effects of insulin. These results support the hypothesis that insulin activates PDE3 in erythrocytes via a PI3K-dependent mechanism. Once activated, PDE3 limits Mas 7-induced increases in intracellular cAMP. This effect of insulin leads, ultimately, to decreased ATP release in response to Mas 7. Activation of Gi is required for reduced O(2) tension-induced ATP release from erythrocytes and this ATP release has been shown to participate in the matching of O(2) supply with demand in skeletal muscle. Thus, pathological increases in circulating insulin could, via activation of PDE3 in erythrocytes, inhibit ATP release from these cells, depriving the peripheral circulation of one mechanism that could aid in the regulation of the delivery of O(2) to meet tissue metabolic need.


Assuntos
Trifosfato de Adenosina/sangue , AMP Cíclico/sangue , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/sangue , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Insulina/farmacologia , Fosfatidilinositol 3-Quinases/sangue , Adulto , Cromonas/farmacologia , Cilostazol , Inibidores Enzimáticos/farmacologia , Feminino , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/sangue , Humanos , Técnicas In Vitro , Insulina/sangue , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Morfolinas/farmacologia , Oxigênio/sangue , Peptídeos/farmacologia , Inibidores da Fosfodiesterase 3 , Inibidores de Fosfoinositídeo-3 Quinase , Transdução de Sinais/efeitos dos fármacos , Tetrazóis/farmacologia
8.
Blood ; 112(5): 1696-703, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18544684

RESUMO

Second messenger-mediated inside-out activation of integrin alphaIIbbeta3 is a key step in platelet aggregation. We recently showed strongly impaired but not absent alphaIIbbeta3-mediated aggregation of CalDAG-GEFI-deficient platelets activated with various agonists. Here we further evaluated the roles of CalDAG-GEFI and protein kinase C (PKC) for alphaIIbbeta3 activation in platelets activated with a PAR4 receptor-specific agonist, GYPGKF (PAR4p). Compared with wild-type controls, platelets treated with the PKC inhibitor Ro31-8220 or CalDAG-GEFI-deficient platelets showed a marked defect in aggregation at low (< 1mM PAR4p) but not high PAR4p concentrations. Blocking of PKC function in CalDAG-GEFI-deficient platelets, how-ever, strongly decreased aggregation at all PAR4p concentrations, demonstrating that CalDAG-GEFI and PKC represent separate, but synergizing, pathways important for alphaIIbbeta3 activation. PAR4p-induced aggregation in the absence of CalDAG-GEFI required cosignaling through the Galphai-coupled receptor for ADP, P2Y12. Independent roles for CalDAG-GEFI and PKC/Galphai signaling were also observed for PAR4p-induced activation of the small GTPase Rap1, with CalDAG-GEFI mediating the rapid but reversible activation of this small GTPase. In summary, our study identifies CalDAG-GEFI and PKC as independent pathways leading to Rap1 and alphaIIbbeta3 activation in mouse platelets activated through the PAR4 receptor.


Assuntos
Plaquetas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/sangue , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Proteína Quinase C/sangue , Difosfato de Adenosina/sangue , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/fisiologia , Degranulação Celular/efeitos dos fármacos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/sangue , Fatores de Troca do Nucleotídeo Guanina/deficiência , Fatores de Troca do Nucleotídeo Guanina/genética , Cinética , Camundongos , Camundongos Knockout , Modelos Biológicos , Oligopeptídeos/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/fisiologia , Proteína Quinase C/antagonistas & inibidores , Receptores de Trombina/sangue , Receptores de Trombina/efeitos dos fármacos , Transdução de Sinais , Proteínas rap1 de Ligação ao GTP/sangue
9.
Diabetes ; 55(12): 3588-93, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17130508

RESUMO

Human erythrocytes, by virtue of their ability to release ATP in response to physiological stimuli, have been proposed to participate in the regulation of local blood flow. A signal transduction pathway that relates these stimuli to ATP release has been described and includes the heterotrimeric G protein G(i) and adenylyl cyclase (AC). In this cell, G(i) activation results in increases in cAMP and, ultimately, ATP release. It has been reported that G(i) expression is decreased in animal models of diabetes and in platelets of humans with type 2 diabetes. Here, we report that G(i2) expression is selectively decreased in erythrocytes of humans with type 2 diabetes and that this defect is associated with reductions in cAMP accumulation and ATP release in response to incubation of erythrocytes with mastoparan 7 (10 micromol/l), an activator of G(i). Importantly, this defect in ATP release correlates inversely with the adequacy of glycemic control as determined by levels of HbA(1c) (A1C). These results demonstrate that in erythrocytes of humans with type 2 diabetes, both G(i) expression and ATP release in response to mastoparan 7 are impaired, which is consistent with the hypothesis that this defect in erythrocyte physiology could contribute to the vascular disease associated with this clinical condition.


Assuntos
Trifosfato de Adenosina/sangue , AMP Cíclico/sangue , Diabetes Mellitus Tipo 2/sangue , Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/sangue , Hemoglobinas Glicadas , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos/farmacologia , Valores de Referência
10.
J Biol Chem ; 279(6): 4186-95, 2004 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-14623889

RESUMO

The serine-threonine kinase Akt has been established as an important signaling intermediate in regulating cell survival, cell cycle progression, as well as agonist-induced platelet activation. Stimulation of platelets with various agonists including thrombin results in Akt activation. As thrombin can stimulate multiple G protein signaling pathways, we investigated the mechanism of thrombin-induced activation of Akt. Stimulation of platelets with a PAR1-activating peptide (SFLLRN), PAR4-activating peptide (AYPGKF), and thrombin resulted in Thr308 and Ser473 phosphorylation of Akt, which results in its activation. This phosphorylation and activation of Akt were dramatically inhibited in the presence of AR-C69931MX, a P2Y12 receptor-selective antagonist, or GF 109203X, a protein kinase C inhibitor, but Akt phosphorylation was restored by supplemental Gi or Gz signaling. Unlike wild-type mouse platelets, platelets from Galphaq-deficient mice failed to trigger Akt phosphorylation by thrombin and AYPGKF, whereas Akt phosphorylation was not affected by these agonists in platelets from mice that lack P2Y1 receptor. However, ADP caused Akt phosphorylation in Galphaq- and P2Y1-deficient platelets, which was completely blocked by AR-C69931MX. In contrast, ADP failed to cause Akt phosphorylation in platelets from mice treated with clopidogrel, and thrombin and AYPGKF induced minimal phosphorylation of Akt, which was not affected by AR-C69931MX in these platelets. These data demonstrate that Gi, but not Gq or G12/13, signaling pathways are required for activation of Akt in platelets, and Gi signaling pathways, stimulated by secreted ADP, play an essential role in the activation of Akt in platelets.


Assuntos
Plaquetas/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/sangue , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas/sangue , Ticlopidina/análogos & derivados , Difosfato de Adenosina/farmacologia , Animais , Plaquetas/efeitos dos fármacos , Clopidogrel , Ativação Enzimática/efeitos dos fármacos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/deficiência , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Humanos , Técnicas In Vitro , Camundongos , Camundongos Knockout , Oligopeptídeos/farmacologia , Fragmentos de Peptídeos/farmacologia , Fosforilação , Proteína Quinase C/sangue , Proteínas Proto-Oncogênicas c-akt , Receptores Purinérgicos P2/sangue , Receptores Purinérgicos P2/deficiência , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2Y1 , Transdução de Sinais , Trombina/farmacologia , Ticlopidina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA