Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.045
Filtrar
1.
PLoS One ; 19(5): e0303516, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728330

RESUMO

Increasingly prevalent, nontuberculous mycobacteria (NTM) infections affect approximately 20% of people with cystic fibrosis (CF). Previous studies of CF sputum identified lower levels of the host metabolite itaconate in those infected with NTM. Itaconate can inhibit the growth of M. tuberculosis (MTB) in vitro via the inhibition of the glyoxylate cycle enzyme (ICL), but its impact on NTM is unclear. To test itaconic acid's (IA) effect on NTM growth, laboratory and CF clinical strains of Mycobacterium abscessus and Mycobacterium avium were cultured in 7H9 minimal media supplemented with 1-10 mM of IA and short-chain fatty acids (SCFA). M. avium and M. abscessus grew when supplemented with SCFAs, whereas the addition of IA (≥ 10 mM) completely inhibited NTM growth. NTM supplemented with acetate or propionate and 5 mM IA displayed slower growth than NTM cultured with SCFA and ≤ 1 mM of IA. However, IA's inhibition of NTM was pH dependent; as similar and higher quantities (100 mM) of pH adjusted IA (pH 7) did not inhibit growth in vitro, while in an acidic minimal media (pH 6.1), 1 to 5 mM of non-pH adjusted IA inhibited growth. None of the examined isolates displayed the ability to utilize IA as a carbon source, and IA added to M. abscessus isocitrate lyase (ICL) decreased enzymatic activity. Lastly, the addition of cell-permeable 4-octyl itaconate (4-OI) to THP-1 cells enhanced NTM clearance, demonstrating a potential role for IA/itaconate in host defense against NTM infections.


Assuntos
Succinatos , Succinatos/farmacologia , Succinatos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Micobactérias não Tuberculosas/efeitos dos fármacos , Micobactérias não Tuberculosas/crescimento & desenvolvimento , Células THP-1 , Infecções por Mycobacterium não Tuberculosas/microbiologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Mycobacterium avium/efeitos dos fármacos , Mycobacterium avium/crescimento & desenvolvimento , Mycobacterium abscessus/efeitos dos fármacos , Mycobacterium abscessus/crescimento & desenvolvimento , Mycobacterium abscessus/metabolismo
2.
Free Radic Biol Med ; 219: 64-75, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38604314

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of death globally, resulting in a major health burden. Thus, an urgent need exists for exploring effective therapeutic targets to block progression of CVDs and improve patient prognoses. Immune and inflammatory responses are involved in the development of atherosclerosis, ischemic myocardial damage responses and repair, calcification, and stenosis of the aortic valve. These responses can involve both large and small blood vessels throughout the body, leading to increased blood pressure and end-organ damage. While exploring potential avenues for therapeutic intervention in CVDs, researchers have begun to focus on immune metabolism, where metabolic changes that occur in immune cells in response to exogenous or endogenous stimuli can influence immune cell effector responses and local immune signaling. Itaconate, an intermediate metabolite of the tricarboxylic acid (TCA) cycle, is related to pathophysiological processes, including cellular metabolism, oxidative stress, and inflammatory immune responses. The expression of immune response gene 1 (IRG1) is upregulated in activated macrophages, and this gene encodes an enzyme that catalyzes the production of itaconate from the TCA cycle intermediate, cis-aconitate. Itaconate and its derivatives have exerted cardioprotective effects through immune modulation in various disease models, such as ischemic heart disease, valvular heart disease, vascular disease, heart transplantation, and chemotherapy drug-induced cardiotoxicity, implying their therapeutic potential in CVDs. In this review, we delve into the associated signaling pathways through which itaconate exerts immunomodulatory effects, summarize its specific roles in CVDs, and explore emerging immunological therapeutic strategies for managing CVDs.


Assuntos
Doenças Cardiovasculares , Succinatos , Humanos , Succinatos/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/patologia , Ciclo do Ácido Cítrico , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Carboxiliases
3.
Clin Transl Med ; 14(4): e1661, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644791

RESUMO

BACKGROUND: Spinal cord injury (SCI)-induced neuroinflammation and oxidative stress (OS) are crucial events causing neurological dysfunction. Aconitate decarboxylase 1 (ACOD1) and its metabolite itaconate (Ita) inhibit inflammation and OS by promoting alkylation of Keap1 to induce Nrf2 expression; however, it is unclear whether there is another pathway regulating their effects in inflammation-activated microglia after SCI. METHODS: Adult male C57BL/6 ACOD1-/- mice and their wild-type (WT) littermates were subjected to a moderate thoracic spinal cord contusion. The degree of neuroinflammation and OS in the injured spinal cord were assessed using qPCR, western blot, flow cytometry, immunofluorescence, and trans-well assay. We then employed immunoprecipitation-western blot, chromatin immunoprecipitation (ChIP)-PCR, dual-luciferase assay, and immunofluorescence-confocal imaging to examine the molecular mechanisms of ACOD1. Finally, the locomotor function was evaluated with the Basso Mouse Scale and footprint assay. RESULTS: Both in vitro and in vivo, microglia with transcriptional blockage of ACOD1 exhibited more severe levels of neuroinflammation and OS, in which the expression of p62/Keap1/Nrf2 was down-regulated. Furthermore, silencing ACOD1 exacerbated neurological dysfunction in SCI mice. Administration of exogenous Ita or 4-octyl itaconate reduced p62 phosphorylation. Besides, ACOD1 was capable of interacting with phosphorylated p62 to enhance Nrf2 activation, which in turn further promoted transcription of ACOD1. CONCLUSIONS: Here, we identified an unreported ACOD1-p62-Nrf2-ACOD1 feedback loop exerting anti-inflammatory and anti-OS in inflammatory microglia, and demonstrated the neuroprotective role of ACOD1 after SCI, which was different from that of endogenous and exogenous Ita. The present study extends the functions of ACOD1 and uncovers marked property differences between endogenous and exogenous Ita. KEY POINTS: ACOD1 attenuated neuroinflammation and oxidative stress after spinal cord injury. ACOD1, not itaconate, interacted with p-p62 to facilitate Nrf2 expression and nuclear translocation. Nrf2 was capable of promoting ACOD1 transcription in microglia.


Assuntos
Carboxiliases , Hidroliases , Microglia , Fator 2 Relacionado a NF-E2 , Traumatismos da Medula Espinal , Succinatos , Animais , Masculino , Camundongos , Carboxiliases/metabolismo , Carboxiliases/genética , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Proteína Sequestossoma-1/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/complicações , Succinatos/farmacologia , Succinatos/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(15): e2400675121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38564634

RESUMO

Atherosclerosis is fueled by a failure to resolve lipid-driven inflammation within the vasculature that drives plaque formation. Therapeutic approaches to reverse atherosclerotic inflammation are needed to address the rising global burden of cardiovascular disease (CVD). Recently, metabolites have gained attention for their immunomodulatory properties, including itaconate, which is generated from the tricarboxylic acid-intermediate cis-aconitate by the enzyme Immune Responsive Gene 1 (IRG1/ACOD1). Here, we tested the therapeutic potential of the IRG1-itaconate axis for human atherosclerosis. Using single-cell RNA sequencing (scRNA-seq), we found that IRG1 is up-regulated in human coronary atherosclerotic lesions compared to patient-matched healthy vasculature, and in mouse models of atherosclerosis, where it is primarily expressed by plaque monocytes, macrophages, and neutrophils. Global or hematopoietic Irg1-deficiency in mice increases atherosclerosis burden, plaque macrophage and lipid content, and expression of the proatherosclerotic cytokine interleukin (IL)-1ß. Mechanistically, absence of Irg1 increased macrophage lipid accumulation, and accelerated inflammation via increased neutrophil extracellular trap (NET) formation and NET-priming of the NLRP3-inflammasome in macrophages, resulting in increased IL-1ß release. Conversely, supplementation of the Irg1-itaconate axis using 4-octyl itaconate (4-OI) beneficially remodeled advanced plaques and reduced lesional IL-1ß levels in mice. To investigate the effects of 4-OI in humans, we leveraged an ex vivo systems-immunology approach for CVD drug discovery. Using CyTOF and scRNA-seq of peripheral blood mononuclear cells treated with plasma from CVD patients, we showed that 4-OI attenuates proinflammatory phospho-signaling and mediates anti-inflammatory rewiring of macrophage populations. Our data highlight the relevance of pursuing IRG1-itaconate axis supplementation as a therapeutic approach for atherosclerosis in humans.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Humanos , Camundongos , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Colesterol , Inflamação/metabolismo , Leucócitos Mononucleares/metabolismo , Lipídeos , Placa Aterosclerótica/tratamento farmacológico , Succinatos/metabolismo
5.
Nature ; 629(8010): 184-192, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600378

RESUMO

Glucocorticoids represent the mainstay of therapy for a broad spectrum of immune-mediated inflammatory diseases. However, the molecular mechanisms underlying their anti-inflammatory mode of action have remained incompletely understood1. Here we show that the anti-inflammatory properties of glucocorticoids involve reprogramming of the mitochondrial metabolism of macrophages, resulting in increased and sustained production of the anti-inflammatory metabolite itaconate and consequent inhibition of the inflammatory response. The glucocorticoid receptor interacts with parts of the pyruvate dehydrogenase complex whereby glucocorticoids provoke an increase in activity and enable an accelerated and paradoxical flux of the tricarboxylic acid (TCA) cycle in otherwise pro-inflammatory macrophages. This glucocorticoid-mediated rewiring of mitochondrial metabolism potentiates TCA-cycle-dependent production of itaconate throughout the inflammatory response, thereby interfering with the production of pro-inflammatory cytokines. By contrast, artificial blocking of the TCA cycle or genetic deficiency in aconitate decarboxylase 1, the rate-limiting enzyme of itaconate synthesis, interferes with the anti-inflammatory effects of glucocorticoids and, accordingly, abrogates their beneficial effects during a diverse range of preclinical models of immune-mediated inflammatory diseases. Our findings provide important insights into the anti-inflammatory properties of glucocorticoids and have substantial implications for the design of new classes of anti-inflammatory drugs.


Assuntos
Anti-Inflamatórios , Glucocorticoides , Inflamação , Macrófagos , Mitocôndrias , Succinatos , Animais , Feminino , Humanos , Masculino , Camundongos , Anti-Inflamatórios/farmacologia , Carboxiliases/metabolismo , Carboxiliases/antagonistas & inibidores , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ciclo do Ácido Cítrico/genética , Citocinas/imunologia , Citocinas/metabolismo , Glucocorticoides/farmacologia , Glucocorticoides/metabolismo , Hidroliases/deficiência , Hidroliases/genética , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Complexo Piruvato Desidrogenase/metabolismo , Receptores de Glucocorticoides/metabolismo , Succinatos/metabolismo , Ativação Enzimática/efeitos dos fármacos
6.
Neurosci Lett ; 828: 137741, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38521401

RESUMO

Itaconate has been found to have potent anti-inflammatory effects and is being explored as a potential treatment for inflammatory diseases. However, its ability to relieve nociception and the mechanisms behind it are not yet understood. Our research aims to investigate the nociception-relieving properties of dimethyl itaconate (DMI) in the formalin test and writhing test. In male Wistar rats, Itaconic acid was injected intraperitoneally (i.p.). The formalin test and writhing test were conducted to determine the nociceptive behaviors. The spinal cords were removed from the rats and analyzed for c-fos protein expression. The study found that administering DMI 10 and 20 mg/kg reduced nociception in formalin and writhing tests. Injection of formalin into the periphery of the body led to an increase in the expression of c-fos in the spinal cord, which was alleviated by DMI 20 mg/kg. Similarly, acetic acid injection into the peritoneal cavity caused an increase in c-fos expression in the spinal cord, which was then reduced by 20 mg/kg. According to our findings, DMI reduced nociception in rats during the formalin and writhing tests. One possible explanation for this outcome is that the decrease in c-fos protein expression may be attributed to the presence of DMI.


Assuntos
Dor , Proteínas Proto-Oncogênicas c-fos , Succinatos , Animais , Masculino , Ratos , Formaldeído/farmacologia , Dor/tratamento farmacológico , Dor/metabolismo , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Wistar , Medula Espinal/metabolismo , Succinatos/metabolismo , Succinatos/farmacologia
7.
PLoS Genet ; 20(3): e1011142, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38457455

RESUMO

Succinate is a potent immune signalling molecule that is present in the mammalian gut and within macrophages. Both of these infection niches are colonised by the pathogenic bacterium Salmonella enterica serovar Typhimurium during infection. Succinate is a C4-dicarboyxlate that can serve as a source of carbon for bacteria. When succinate is provided as the sole carbon source for in vitro cultivation, Salmonella and other enteric bacteria exhibit a slow growth rate and a long lag phase. This growth inhibition phenomenon was known to involve the sigma factor RpoS, but the genetic basis of the repression of bacterial succinate utilisation was poorly understood. Here, we use an experimental evolution approach to isolate fast-growing mutants during growth of S. Typhimurium on succinate containing minimal medium. Our approach reveals novel RpoS-independent systems that inhibit succinate utilisation. The CspC RNA binding protein restricts succinate utilisation, an inhibition that is antagonised by high levels of the small regulatory RNA (sRNA) OxyS. We discovered that the Fe-S cluster regulatory protein IscR inhibits succinate utilisation by repressing the C4-dicarboyxlate transporter DctA. Furthermore, the ribose operon repressor RbsR is required for the complete RpoS-driven repression of succinate utilisation, suggesting a novel mechanism of RpoS regulation. Our discoveries shed light on the redundant regulatory systems that tightly regulate the utilisation of succinate. We speculate that the control of central carbon metabolism by multiple regulatory systems in Salmonella governs the infection niche-specific utilisation of succinate.


Assuntos
Proteínas de Bactérias , Ácido Succínico , Animais , Proteínas de Bactérias/metabolismo , Ácido Succínico/metabolismo , Salmonella typhimurium/genética , Succinatos/metabolismo , Carbono/metabolismo , Fator sigma/genética , Fator sigma/metabolismo , Regulação Bacteriana da Expressão Gênica , Mamíferos/metabolismo
8.
Int J Mol Sci ; 25(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38397087

RESUMO

It is well known that in the heart and kidney mitochondria, more than 95% of ATP production is supported by the ß-oxidation of long-chain fatty acids. However, the ß-oxidation of fatty acids by mitochondria has been studied much less than the substrates formed during the catabolism of carbohydrates and amino acids. In the last few decades, several discoveries have been made that are directly related to fatty acid oxidation. In this review, we made an attempt to re-evaluate the ß-oxidation of long-chain fatty acids from the perspectives of new discoveries. The single set of electron transporters of the cardiac mitochondrial respiratory chain is organized into three supercomplexes. Two of them contain complex I, a dimer of complex III, and two dimers of complex IV. The third, smaller supercomplex contains a dimer of complex III and two dimers of complex IV. We also considered other important discoveries. First, the enzymes of the ß-oxidation of fatty acids are physically associated with the respirasome. Second, the ß-oxidation of fatty acids creates the highest level of QH2 and reverses the flow of electrons from QH2 through complex II, reducing fumarate to succinate. Third, ß-oxidation is greatly stimulated in the presence of succinate. We argue that the respirasome is uniquely adapted for the ß-oxidation of fatty acids. The acyl-CoA dehydrogenase complex reduces the membrane's pool of ubiquinone to QH2, which is instantly oxidized by the smaller supercomplex, generating a high energization of mitochondria and reversing the electron flow through complex II, which reverses the electron flow through complex I, increasing the NADH/NAD+ ratio in the matrix. The mitochondrial nicotinamide nucleotide transhydrogenase catalyzes a hydride (H-, a proton plus two electrons) transfer across the inner mitochondrial membrane, reducing the cytosolic pool of NADP(H), thus providing the heart with ATP for muscle contraction and energy and reducing equivalents for the housekeeping processes.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons , Ácidos Graxos , Ácidos Graxos/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Oxirredução , Mitocôndrias Cardíacas/metabolismo , Membranas Mitocondriais/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Ácido Succínico/metabolismo , Succinatos/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Trifosfato de Adenosina/metabolismo
9.
Mol Cell ; 84(5): 955-966.e4, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38325379

RESUMO

SUCNR1 is an auto- and paracrine sensor of the metabolic stress signal succinate. Using unsupervised molecular dynamics (MD) simulations (170.400 ns) and mutagenesis across human, mouse, and rat SUCNR1, we characterize how a five-arginine motif around the extracellular pole of TM-VI determines the initial capture of succinate in the extracellular vestibule (ECV) to either stay or move down to the orthosteric site. Metadynamics demonstrate low-energy succinate binding in both sites, with an energy barrier corresponding to an intermediate stage during which succinate, with an associated water cluster, unlocks the hydrogen-bond-stabilized conformationally constrained extracellular loop (ECL)-2b. Importantly, simultaneous binding of two succinate molecules through either a "sequential" or "bypassing" mode is a frequent endpoint. The mono-carboxylate NF-56-EJ40 antagonist enters SUCNR1 between TM-I and -II and does not unlock ECL-2b. It is proposed that occupancy of both high-affinity sites is required for selective activation of SUCNR1 by high local succinate concentrations.


Assuntos
Receptores Acoplados a Proteínas G , Ácido Succínico , Camundongos , Ratos , Animais , Humanos , Ácido Succínico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Simulação de Dinâmica Molecular , Succinatos/metabolismo , Estresse Fisiológico
10.
Cell Metab ; 36(3): 498-510.e11, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181789

RESUMO

Itaconate is a metabolite that synthesized from cis-aconitate in mitochondria and transported into the cytosol to exert multiple regulatory effects in macrophages. However, the mechanism by which itaconate exits from macrophages remains unknown. Using a genetic screen, we reveal that itaconate is exported from cytosol to extracellular space by ATP-binding cassette transporter G2 (ABCG2) in an ATPase-dependent manner in human and mouse macrophages. Elevation of transcription factor TFEB-dependent lysosomal biogenesis and antibacterial innate immunity are observed in inflammatory macrophages with deficiency of ABCG2-mediated itaconate export. Furthermore, deficiency of ABCG2-mediated itaconate export in macrophages promotes antibacterial innate immune defense in a mouse model of S. typhimurium infection. Thus, our findings identify ABCG2-mediated itaconate export as a key regulatory mechanism that limits TFEB-dependent lysosomal biogenesis and antibacterial innate immunity in inflammatory macrophages, implying the potential therapeutic utility of blocking itaconate export in treating human bacterial infections.


Assuntos
Imunidade Inata , Succinatos , Animais , Humanos , Camundongos , Antibacterianos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Lisossomos/metabolismo , Proteínas de Neoplasias/metabolismo , Succinatos/farmacologia , Succinatos/metabolismo
11.
Cell Death Differ ; 31(2): 239-253, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38182899

RESUMO

Efferocytosis and metabolic reprogramming of macrophages play crucial roles in myocardial infarction (MI) repair. TREM2 has been proven to participate in phagocytosis and metabolism, but how it modulates myocardial infarction remains unclear. In this study, we showed that macrophage-specific TREM2 deficiency worsened cardiac function and impaired post-MI repair. Using RNA-seq, protein and molecular docking, and Targeted Metabolomics (LC-MS), our data demonstrated that macrophages expressing TREM2 exhibited decreased SLC25A53 transcription through the SYK-SMAD4 signaling pathway after efferocytosis, which impaired NAD+ transport into mitochondria, downregulated SLC25A53 thereby causing the breakpoint in the TCA cycle and subsequently increased itaconate production. In vitro experiments confirmed that itaconate secreted by TREM2+ macrophages inhibited cardiomyocyte apoptosis and promoted fibroblast proliferation. Conversely, overexpression of TREM2 in macrophages could improve cardiac function. In summary, our study reveals a novel role for macrophage-specific TREM2 in MI, connecting efferocytosis to immune metabolism during cardiac repair.


Assuntos
Infarto do Miocárdio , Animais , Camundongos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Succinatos/metabolismo , Humanos
12.
Microb Cell Fact ; 23(1): 29, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245756

RESUMO

BACKGROUND: Industrial by-products accrue in most agricultural or food-related production processes, but additional value chains have already been established for many of them. Crude glycerol has a 60% lower market value than commercial glucose, as large quantities are produced in the biodiesel industry, but its valorisation is still underutilized. Due to its high carbon content and the natural ability of many microorganisms to metabolise it, microbial upcycling is a suitable option for this waste product. RESULTS: In this work, the use of crude glycerol for the production of the value-added compound itaconate is demonstrated using the smut fungus Ustilago maydis. Starting with a highly engineered strain, itaconate production from an industrial glycerol waste stream was quickly established on a small scale, and the resulting yields were already competitive with processes using commercial sugars. Adaptive laboratory evolution resulted in an evolved strain with a 72% increased growth rate on glycerol. In the subsequent development and optimisation of a fed-batch process on a 1.5-2 L scale, the use of molasses, a side stream of sugar beet processing, eliminated the need for other expensive media components such as nitrogen or vitamins for biomass growth. The optimised process was scaled up to 150 L, achieving an overall titre of 72 g L- 1, a yield of 0.34 g g- 1, and a productivity of 0.54 g L- 1 h- 1. CONCLUSIONS: Pilot-scale itaconate production from the complementary waste streams molasses and glycerol has been successfully established. In addition to achieving competitive performance indicators, the proposed dual feedstock strategy offers lower process costs and carbon footprint for the production of bio-based itaconate.


Assuntos
Glicerol , Succinatos , Glicerol/metabolismo , Succinatos/metabolismo , Glucose/metabolismo
13.
Sci Rep ; 14(1): 1729, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242919

RESUMO

Anoxia halts oxidative phosphorylation (OXPHOS) causing an accumulation of reduced compounds in the mitochondrial matrix which impedes dehydrogenases. By simultaneously measuring oxygen concentration, NADH autofluorescence, mitochondrial membrane potential and ubiquinone reduction extent in isolated mitochondria in real-time, we demonstrate that Complex I utilized endogenous quinones to oxidize NADH under acute anoxia. 13C metabolic tracing or untargeted analysis of metabolites extracted during anoxia in the presence or absence of site-specific inhibitors of the electron transfer system showed that NAD+ regenerated by Complex I is reduced by the 2-oxoglutarate dehydrogenase Complex yielding succinyl-CoA supporting mitochondrial substrate-level phosphorylation (mtSLP), releasing succinate. Complex II operated amphidirectionally during the anoxic event, providing quinones to Complex I and reducing fumarate to succinate. Our results highlight the importance of quinone provision to Complex I oxidizing NADH maintaining glutamate catabolism and mtSLP in the absence of OXPHOS.


Assuntos
Mitocôndrias , NAD , Humanos , NAD/metabolismo , Mitocôndrias/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Quinonas/metabolismo , Fosforilação Oxidativa , Succinatos/metabolismo , Hipóxia/metabolismo , Oxirredução
14.
Diabetologia ; 67(3): 430-442, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38182909

RESUMO

Beyond their conventional roles in intracellular energy production, some traditional metabolites also function as extracellular messengers that activate cell-surface G-protein-coupled receptors (GPCRs) akin to hormones and neurotransmitters. These signalling metabolites, often derived from nutrients, the gut microbiota or the host's intermediary metabolism, are now acknowledged as key regulators of various metabolic and immune responses. This review delves into the multi-dimensional aspects of succinate, a dual metabolite with roots in both the mitochondria and microbiome. It also connects the dots between succinate's role in the Krebs cycle, mitochondrial respiration, and its double-edge function as a signalling transmitter within and outside the cell. We aim to provide an overview of the role of the succinate-succinate receptor 1 (SUCNR1) axis in diabetes, discussing the potential use of succinate as a biomarker and the novel prospect of targeting SUCNR1 to manage complications associated with diabetes. We further propose strategies to manipulate the succinate-SUCNR1 axis for better diabetes management; this includes pharmacological modulation of SUCNR1 and innovative approaches to manage succinate concentrations, such as succinate administration and indirect strategies, like microbiota modulation. The dual nature of succinate, both in terms of origins and roles, offers a rich landscape for understanding the intricate connections within metabolic diseases, like diabetes, and indicates promising pathways for developing new therapeutic strategies.


Assuntos
Diabetes Mellitus Tipo 2 , Succinatos , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Succinatos/metabolismo
15.
Chin J Nat Med ; 22(1): 62-74, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38278560

RESUMO

Pathological vascular remodeling is a hallmark of various vascular diseases. Previous research has established the significance of andrographolide in maintaining gastric vascular homeostasis and its pivotal role in modulating endothelial barrier dysfunction, which leads to pathological vascular remodeling. Potassium dehydroandrographolide succinate (PDA), a derivative of andrographolide, has been clinically utilized in the treatment of inflammatory diseases precipitated by viral infections. This study investigates the potential of PDA in regulating pathological vascular remodeling. The effect of PDA on vascular remodeling was assessed through the complete ligation of the carotid artery in C57BL/6 mice. Experimental approaches, including rat aortic primary smooth muscle cell culture, flow cytometry, bromodeoxyuridine (BrdU) incorporation assay, Boyden chamber cell migration assay, spheroid sprouting assay, and Matrigel-based tube formation assay, were employed to evaluate the influence of PDA on the proliferation and motility of smooth muscle cells (SMCs). Molecular docking simulations and co-immunoprecipitation assays were conducted to examine protein interactions. The results revealed that PDA exacerbates vascular injury-induced pathological remodeling, as evidenced by enhanced neointima formation. PDA treatment significantly increased the proliferation and migration of SMCs. Further mechanistic studies disclosed that PDA upregulated myeloid differentiation factor 88 (MyD88) expression in SMCs and interacted with T-cadherin (CDH13). This interaction augmented proliferation, migration, and extracellular matrix deposition, culminating in pathological vascular remodeling. Our findings underscore the critical role of PDA in the regulation of pathological vascular remodeling, mediated through the MyD88/CDH13 signaling pathway.


Assuntos
Caderinas , Lesões das Artérias Carótidas , Diterpenos , Lesões do Sistema Vascular , Camundongos , Ratos , Animais , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Remodelação Vascular , Proliferação de Células , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologia , Lesões das Artérias Carótidas/patologia , Simulação de Acoplamento Molecular , Músculo Liso Vascular , Movimento Celular , Camundongos Endogâmicos C57BL , Transdução de Sinais , Succinatos/metabolismo , Succinatos/farmacologia , Potássio/metabolismo , Potássio/farmacologia , Células Cultivadas
16.
Clin Exp Immunol ; 215(2): 120-125, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38018224

RESUMO

Macrophage activation results in the accumulation of endogenous metabolites capable of adopting immunomodulatory roles; one such bioactive metabolite is itaconate. After macrophage stimulation, the TCA-cycle intermediate cis-aconitate is converted to itaconate (by aconitate decarboxylase-1, ACOD1) in the mitochondrial matrix. Recent studies have highlighted the potential of targeting itaconate as a therapeutic strategy for lung diseases such as asthma, idiopathic pulmonary fibrosis (IPF), and respiratory infections. This review aims to bring together evidence which highlights a role for itaconate in chronic lung diseases (such as asthma and pulmonary fibrosis) and respiratory infections (such as SARS-CoV-2, influenza and Mycobacterium tuberculosis infection). A better understanding of the role of itaconate in lung disease could pave the way for novel therapeutic interventions and improve patient outcomes in respiratory disorders.


Assuntos
Asma , Pneumopatias , Infecções Respiratórias , Humanos , Succinatos/metabolismo
17.
Cell Mol Biol Lett ; 28(1): 100, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042791

RESUMO

Metabolic states greatly influence functioning and differentiation of immune cells. Regulating the metabolism of immune cells can effectively modulate the host immune response. Itaconate, an intermediate metabolite derived from the tricarboxylic acid (TCA) cycle of immune cells, is produced through the decarboxylation of cis-aconitate by cis-aconitate decarboxylase in the mitochondria. The gene encoding cis-aconitate decarboxylase is known as immune response gene 1 (IRG1). In response to external proinflammatory stimulation, macrophages exhibit high IRG1 expression. IRG1/itaconate inhibits succinate dehydrogenase activity, thus influencing the metabolic status of macrophages. Therefore, itaconate serves as a link between macrophage metabolism, oxidative stress, and immune response, ultimately regulating macrophage function. Studies have demonstrated that itaconate acts on various signaling pathways, including Keap1-nuclear factor E2-related factor 2-ARE pathways, ATF3-IκBζ axis, and the stimulator of interferon genes (STING) pathway to exert antiinflammatory and antioxidant effects. Furthermore, several studies have reported that itaconate affects cancer occurrence and development through diverse signaling pathways. In this paper, we provide a comprehensive review of the role IRG1/itaconate and its derivatives in the regulation of macrophage metabolism and functions. By furthering our understanding of itaconate, we intend to shed light on its potential for treating inflammatory diseases and offer new insights in this field.


Assuntos
Fator 2 Relacionado a NF-E2 , Succinatos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Succinatos/farmacologia , Succinatos/metabolismo , Imunidade
18.
Nat Commun ; 14(1): 8154, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071226

RESUMO

Itaconate is a well-known immunomodulatory metabolite; however, its role in hepatocellular carcinoma (HCC) remains unclear. Here, we find that macrophage-derived itaconate promotes HCC by epigenetic induction of Eomesodermin (EOMES)-mediated CD8+ T-cell exhaustion. Our results show that the knockout of immune-responsive gene 1 (IRG1), responsible for itaconate production, suppresses HCC progression. Irg1 knockout leads to a decreased proportion of PD-1+ and TIM-3+ CD8+ T cells. Deletion or adoptive transfer of CD8+ T cells shows that IRG1-promoted tumorigenesis depends on CD8+ T-cell exhaustion. Mechanistically, itaconate upregulates PD-1 and TIM-3 expression levels by promoting succinate-dependent H3K4me3 of the Eomes promoter. Finally, ibuprofen is found to inhibit HCC progression by targeting IRG1/itaconate-dependent tumor immunoevasion, and high IRG1 expression in macrophages predicts poor prognosis in HCC patients. Taken together, our results uncover an epigenetic link between itaconate and HCC and suggest that targeting IRG1 or itaconate might be a promising strategy for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Neoplasias Hepáticas/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/genética , Receptor de Morte Celular Programada 1/metabolismo , Exaustão das Células T , Succinatos/farmacologia , Succinatos/metabolismo , Epigênese Genética
19.
Microb Cell Fact ; 22(1): 248, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38053179

RESUMO

Intracellular hyperaccumulation of phycocyanin (PC) and its high susceptibility to degradation at higher temperatures are major challenging problems associated with its production from cyanobacteria. The present study evaluated different concentrations of organic acids (1, 2, and 3 mM) (citric acid, acetic acid, succinic acid, fumaric acid, and oxalic acid) under fed-batch mode on the biomass and phycobiliproteins' production from Arthrospira platensis. Besides they were evaluated at 2.5-7.5 mM as preservative to stabilize PC at high temperatures. The incorporation of 3 mM of succinic acid into the cultivation medium enhanced the biomass and PC productivity to 164.05 and 26.70 mg L-1 day-1, which was ~ 2- and threefold higher than control, respectively. The produced PC in this treatment was food-grade with a 2.2 purity ratio. The use of organic acids also enhanced the thermal stability of PC. Citric acid (7.5 mM) markedly promoted the half-life values of PC to 189.44 min compared to 71.84 min in the control. The thermodynamic analysis confirmed higher thermostability of PC in the presence of organic acids and indicated the endothermic and non-spontaneity of the thermal denaturation process. The findings of the present study confirmed that organic acids could be utilized as cost effective and sustainable compounds for promoting not only phycobiliproteins' production but also the thermostability of PC for potential application in food industry.


Assuntos
Ficocianina , Spirulina , Spirulina/metabolismo , Ficobiliproteínas , Compostos Orgânicos/metabolismo , Ácido Cítrico/metabolismo , Succinatos/metabolismo
20.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958519

RESUMO

Altered hepatic mitochondrial fatty acid ß-oxidation and associated tricarboxylic acid (TCA) cycle activity contributes to lifestyle-related diseases, and circulating biomarkers reflecting these changes could have disease prognostic value. This study aimed to determine hepatic and systemic changes in TCA-cycle-related metabolites upon the selective pharmacologic enhancement of mitochondrial fatty acid ß-oxidation in the liver, and to elucidate the mechanisms and potential markers of hepatic mitochondrial activity. Male Wistar rats were treated with 3-thia fatty acids (e.g., tetradecylthioacetic acid (TTA)), which target mitochondrial biogenesis, mitochondrial fatty acid ß-oxidation, and ketogenesis predominantly in the liver. Hepatic and plasma concentrations of TCA cycle intermediates and anaplerotic substrates (LC-MS/MS), plasma ketones (colorimetric assay), and acylcarnitines (HPLC-MS/MS), along with associated TCA-cycle-related gene expression (qPCR) and enzyme activities, were determined. TTA-induced hepatic fatty acid ß-oxidation resulted in an increased ratio of plasma ketone bodies/nonesterified fatty acid (NEFA), lower plasma malonyl-CoA levels, and a higher ratio of plasma acetylcarnitine/palmitoylcarnitine (C2/C16). These changes were associated with decreased hepatic and increased plasma pyruvate concentrations, and increased plasma concentrations of succinate, malate, and 2-hydroxyglutarate. Expression of several genes encoding TCA cycle enzymes and the malate-oxoglutarate carrier (Slc25a11), glutamate dehydrogenase (Gdh), and malic enzyme (Mdh1 and Mdh2) were significantly increased. In conclusion, the induction of hepatic mitochondrial fatty acid ß-oxidation by 3-thia fatty acids lowered hepatic pyruvate while increasing plasma pyruvate, as well as succinate, malate, and 2-hydroxyglutarate.


Assuntos
Malatos , Ácido Pirúvico , Ratos , Animais , Masculino , Ratos Wistar , Malatos/metabolismo , Ácido Pirúvico/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Fígado/metabolismo , Ácidos Graxos/metabolismo , Oxirredução , Corpos Cetônicos/metabolismo , Succinatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA