Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.978
Filtrar
1.
J Orthop Surg (Hong Kong) ; 32(2): 10225536241254200, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38733211

RESUMO

PURPOSE: The primary objective of this study was to determine time to full weight-bearing after the use of a calcium-sulfate-calcium phosphate bone substitute (CaSO4/CaPO4) as a bone void filler in the treatment of primary benign bone tumours following intralesional curettage. The secondary objectives were to determine surgical complications and recurrence rates. METHODS: Retrospective review of patients identified from a surgeon-specific orthopaedic oncology database, who underwent curettage of benign bone tumours and subsequent bone void filling with CaSO4/CaPO4. RESULTS: A total of 39 patients (20 males, 19 females) met inclusion criteria with an average age of 31 years (range: 13 to 62 years), a median follow-up of 3.7 years, and a maximum follow-up of 11 years. The most common tumour diagnosis was giant cell tumour of bone (GCT) (n = 19), and the most common location was the proximal tibia (n = 9). The mean volume of tumour excised was 74.1 cm3 including extraosseous bone expansion due to tumour growth, with a mean of volume of 21.4 mL of CaSO4/CaPO4 used to fill the intraosseous cavitary defects to restore normal bone anatomy. None of the lesions required additional internal fixation. The primary outcome measure, average time to full weight-bearing/full range of motion, was 11 weeks and 6 weeks for upper and lower extremity lesions, respectively. Secondary outcomes included tumour recurrence requiring reoperation in five patients and infection requiring reoperation in two patients. CONCLUSION: This study demonstrates that CaSO4/CaPO4 is a viable option as a bone void filler in the reconstruction of cavitary defects following removal of primary benign bone tumours. CaSO4/CaPO4 provides sufficient bone regeneration early in the post-operative period to allow progression to full weight-bearing within weeks without the need for internal fixation. There were no graft-specific complications noted.


Assuntos
Neoplasias Ósseas , Substitutos Ósseos , Fosfatos de Cálcio , Sulfato de Cálcio , Curetagem , Suporte de Carga , Humanos , Masculino , Feminino , Adulto , Estudos Retrospectivos , Neoplasias Ósseas/cirurgia , Fosfatos de Cálcio/uso terapêutico , Pessoa de Meia-Idade , Adolescente , Substitutos Ósseos/uso terapêutico , Adulto Jovem , Fatores de Tempo
2.
J Hazard Mater ; 471: 134455, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38691931

RESUMO

Bacteria-driven strategies have gained attention because of their effectiveness, viability, and cost-efficiency in the soil formation process of bauxite residues. However, further investigation is needed to enhance the extreme environment of bauxite residues and facilitate long-term sustainable development of bacteria. Here, soil, phosphogypsum, and leaf litter were selected as amendments, and soil and leaf litter were also used as bacterial inoculants in a 12-month microcosm experiment with bauxite residues. The results showed significant improvements in physicochemical properties, including alkalinity, organic carbon content, nutrient availability, and physical structure, when bauxite residue was mixed with amendments, particularly when different amendments were combined. The diversity, structure, and function of the bacterial community were significantly enhanced with the amelioration of the physicochemical properties. In the treated samples, especially those treated with a combination of different amendments, the relative abundance (RA) of alkali-resistant bacterial taxa decreased, whereas the RA of some common taxa found in normal soil increased, and the structure of the bacterial community gradually changed towards that of normal soil. A strong correlation between physicochemical and biological properties was found. These findings suggest that rational application of soil, phosphogypsum, and leaf litter effectively improves the environmental conditions of bauxite residues and facilitate long-term sustainable bacterial communities.


Assuntos
Óxido de Alumínio , Bactérias , Microbiologia do Solo , Óxido de Alumínio/química , Folhas de Planta/química , Sulfato de Cálcio/química , Solo/química , Fósforo/química
3.
Geobiology ; 22(3): e12594, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38700397

RESUMO

Lehman Caves is an extensively decorated high desert cave that represents one of the main tourist attractions in Great Basin National Park, Nevada. Although traditionally considered a water table cave, recent studies identified abundant speleogenetic features consistent with a hypogenic and, potentially, sulfuric acid origin. Here, we characterized white mineral deposits in the Gypsum Annex (GA) passage to determine whether these secondary deposits represent biogenic minerals formed during sulfuric acid corrosion and explored microbial communities associated with these and other mineral deposits throughout the cave. Powder X-ray diffraction (pXRD), scanning electron microscopy with electron dispersive spectroscopy (SEM-EDS), and electron microprobe analyses (EPMA) showed that, while most white mineral deposits from the GA contain gypsum, they also contain abundant calcite, silica, and other phases. Gypsum and carbonate-associated sulfate isotopic values of these deposits are variable, with δ34SV-CDT between +9.7‰ and +26.1‰, and do not reflect depleted values typically associated with replacement gypsum formed during sulfuric acid speleogenesis. Petrographic observations show that the sulfates likely co-precipitated with carbonate and SiO2 phases. Taken together, these data suggest that the deposits resulted from later-stage meteoric events and not during an initial episode of sulfuric acid speleogenesis. Most sedimentary and mineral deposits in Lehman Caves have very low microbial biomass, with the exception of select areas along the main tour route that have been impacted by tourist traffic. High-throughput 16S rRNA gene amplicon sequencing showed that microbial communities in GA sediments are distinct from those in other parts of the cave. The microbial communities that inhabit these oligotrophic secondary mineral deposits include OTUs related to known ammonia-oxidizing Nitrosococcales and Thaumarchaeota, as well as common soil taxa such as Acidobacteriota and Proteobacteria. This study reveals microbial and mineralogical diversity in a previously understudied cave and expands our understanding of the geomicrobiology of desert hypogene cave systems.


Assuntos
Bactérias , Cavernas , Minerais , Cavernas/microbiologia , Minerais/análise , Bactérias/classificação , Bactérias/metabolismo , Nevada , Archaea/metabolismo , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Parques Recreativos , RNA Ribossômico 16S/genética , Ácidos Sulfúricos , Filogenia , Microbiota , Sulfato de Cálcio/química , Microscopia Eletrônica de Varredura
4.
Zhongguo Zhong Yao Za Zhi ; 49(4): 853-857, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621892

RESUMO

Gypsum Fibrosum, as a classic heat-clearing medicine, is widely used in the clinical practice of traditional Chinese medicine(TCM). However, debates exist about the material basis and mechanism of its efficacy. Therefore, this paper reviewed the recent research progress in the heat-clearing effect and mechanism of Gypsum Fibrosum and discussed the material basis for the heat-clearing effect of this medicine. Ca~(2+) may inhibit the upward movement of temperature set point by regulating the Na~+/Ca~(2+) level in the heat-regulating center. Moreover, trace elements may inhibit the rise of body temperature by regulating the immune system, promoting the absorption of Ca~(2+), and affecting the synthesis of prostaglandin E2(PGE2). This review aims to enrich the knowledge about the mechanism of Gypsum Fibrosum in clearing heat and provides a scientific basis for the clinical application and further development of Gypsum Fibrosum.


Assuntos
Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/farmacologia , Sulfato de Cálcio/farmacologia , Temperatura Alta , Medicina Tradicional Chinesa
5.
Bioresour Technol ; 400: 130680, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593965

RESUMO

This work investigated elemental sulfur (S0) biorecovery from Phosphogypsum (PG) using sulfur-oxidizing bacteria in an O2-based membrane biofilm reactor (MBfR). The system was first optimized using synthetic sulfide medium (SSM) as influent, then switched to biogenic sulfide medium (BSM) generated by biological reduction of PG alkaline leachate. The results using SSM had high sulfide-oxidation efficiency (98 %), sulfide to S0 conversion (∼90 %), and S0 production rate up to 2.7 g S0/(m2.d), when the O2/S ratio was ∼0.5 g O2/g S. With the BSM influent, the system maintained high sulfide-to-S0 conversion rate (97 %), and S0-production rate of 1.6 g S0/(m2.d). Metagenomic analysis revealed that Thauera was the dominant genus in SSM and BSM biofilms. Furthermore, influent composition affected the bacterial community structure and abundances of functional microbial sulfur genes, modifying the sulfur-transformation pathways in the biofilms. Overall, this work shows promise for O2-MBfR usage in S0 biorecovery from PG-leachate and other sulfidogenic effluents.


Assuntos
Biofilmes , Reatores Biológicos , Sulfato de Cálcio , Oxigênio , Fósforo , Enxofre , Reatores Biológicos/microbiologia , Enxofre/metabolismo , Oxigênio/metabolismo , Sulfato de Cálcio/química , Membranas Artificiais , Metagenômica/métodos , Bactérias/metabolismo , Bactérias/genética , Sulfetos , Oxirredução
6.
Environ Geochem Health ; 46(5): 170, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592402

RESUMO

This study used a new X-ray fluorescence (XRF)-based analytical method with better precision and sensitivity to evaluate the fluorine concentrations in soil. It was hypothesized that the XRF method with a pellet-synthesizing procedure may effectively analyze the fluorine concentrations in soil with ease and reliability. The total fluorine concentrations determined using XRF were compared with those determined using three different types of analytical protocols-incineration/distillation, alkaline fusion, and aqua regia extraction procedures. Among the three procedures, the incineration/distillation procedure did not show reliable precision and reproducibility. In contrast, the total fluorine concentrations determined using the XRF analysis were linearly correlated with those determined using the alkaline fusion and aqua regia extraction procedures. Based on the results of the Korean waste leaching procedure and toxicity characteristics leaching procedure, the leachability of fluorine from soil and waste was not directly related to total fluorine concentrations in soil. Risk assessment also revealed that the fluorine-rich soils did not show non-carcinogenic toxic effects, despite exceeding the regulation level (800 mg/kg) in South Korea for total fluorine concentrations in soil. Our results suggest that XRF analysis in combination with the newly developed pretreatment method may be a promising alternative procedure for easily and rapidly determining the total fluorine concentration in soil. However, further efforts are needed to evaluate fluorine leachability and its associated risks in fluorine-contaminated soils.


Assuntos
Sulfato de Cálcio , Ácido Clorídrico , Ácido Nítrico , Fosfatos , Flúor , Reprodutibilidade dos Testes , Solo , Instalações de Eliminação de Resíduos
7.
Waste Manag ; 182: 259-270, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38677143

RESUMO

Phosphogypsum (PG) presents considerable potential for agricultural applications as a secondary primary resource. However, it currently lacks environmentally friendly, economically viable, efficient, and sustainable reuse protocols. This study firstly developed a PG-based mineral slow-release fertilizer (MSRFs) by internalization and fixation of urea within the PG lattice via facet-engineering strategy. The molecular dynamics simulations demonstrated that the binding energy of urea to the (041) facet of PG surpassed that of the (021) and (020) facets, with urea's desorption energy on the (041) facet notably higher than on the (021) and (020) facets. Guided by these calculations, we selectively exposed the (041) dominant facet of PG, and then achieving complete urea fixation within the PG lattice to form urea-PG (UPG). UPG exhibited a remarkable 48-fold extension in N release longevity in solution and a 45.77% increase in N use efficiency by plants compared to conventional urea. The facet-engineering of PG enhances the internalization and fixation efficiency of urea for slow N delivery, thereby promoting nutrient uptake for plant growth. Furthermore, we elucidated the intricate interplay between urea and PG at the molecular level, revealing the involvement of hydrogen and ionic bonding. This specific bonding structure imparts exceptional thermal stability and water resistance to the urea within UPG under environmental conditions. This study has the potential to provide insights into the high-value utilization of PG and present innovative ideas for designing efficient MSRFs.


Assuntos
Sulfato de Cálcio , Fertilizantes , Fósforo , Sulfato de Cálcio/química , Fósforo/química , Ureia/química , Minerais/química , Nitrogênio/química , Simulação de Dinâmica Molecular , Agricultura/métodos , Nutrientes
8.
Molecules ; 29(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542902

RESUMO

The extraction of rare earth elements (REEs) from phosphogypsum (PG) is of great significance for the effective utilization of rare earth resources and enhancing the resource value of PG waste residues. This study used Aspergillus niger (A. niger) fungal culture filtrate as a leaching agent to investigate the behavior of extracting REEs from PG through direct and indirect contact methods. According to the ICP-MS results, direct leaching at a temperature of 30 °C, shaking speed of 150 rpm, and a solid-liquid ratio of 2:1, achieved an extraction rate of 74% for REEs, with the main elements being yttrium (Y), lanthanum (La), cerium (Ce), and neodymium (Nd). Under the same conditions, the extraction rate of REEs from phosphogypsum using an A. niger culture filtrate was 63.3% higher than that using the simulated organic acid-mixed solution prepared with the main organic acid components in the A. niger leachate. Moreover, the morphological changes observed in A. niger before and after leaching further suggest the direct involvement of A. niger's metabolic process in the extraction of REEs. When compared to using organic acids, A. niger culture filtrate exhibits higher leaching efficiency for extracting REEs from PG. Additionally, using A. niger culture filtrate is a more environmentally friendly method with the potential for industrial-scale applications than using inorganic acids for the leaching of REEs from PG.


Assuntos
Aspergillus niger , Metais Terras Raras , Fósforo , Lantânio , Sulfato de Cálcio
9.
Chemosphere ; 355: 141818, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548085

RESUMO

Skeleton builders were normally deemed to improve the high porosity and newly-generated permeability of sludge cakes by building water transfer channel during high pressure filtration, thus enhancing sludge dewaterability. However, currently a direct visualization proof of water transfer channel was still lacking. This study provided the direct proof for visualizing water transfer channel in dewatered sludge cakes conditioned with a typical skeleton builder (i.e., phosphogypsum (PG)) by X-ray micro-computed tomography (micro-CT) for the first time. After the addition of PG, the pixel value and image luminance increased significantly, indicating the presence of high density substances from both two-dimensional (2D) cross section and three-dimensional (3D) reconstruction CT images. Moreover, the CT numbers showed strong and negative correlations with specific resistance to filtration (SRF) (R = - 0.99, p < 0.05), capillary suction time (CST) (regression coefficient (R) = - 0.87, probability (p) < 0.05), and water content of the dewatered sludge cake (R = - 0.99, p < 0.05), respectively. These results indicated that the X-ray micro-CT could be a potential technique for analyzing the water distribution in sludge samples conditioned with skeleton builders.


Assuntos
Sulfato de Cálcio , Filtração , Fósforo , Esgotos , Microtomografia por Raio-X , Água , Esqueleto , Eliminação de Resíduos Líquidos/métodos
10.
J Environ Manage ; 357: 120706, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38554456

RESUMO

Amending agricultural fields with gypsum has been proposed as a cost-effective measure to reduce P load on coastal waters. We treated 1490 ha of clayey fields with phosphogypsum (4 t ha-1) in Southwest Finland and monitored the recipient river with online sensors and water sampling for the preceding spring and 5 years after the amendment. Gypsum immediately decreased the riverine fluxes, the effect lasting at least 5 years for particulate P (PP), total suspended solids (TSS), and dissolved organic C (DOC) and 1-2 years for dissolved reactive P (DRP). Compared with an upstream control area, the fluxes of PP, TSS, and DOC decreased by 15%, 25%, and 8.9%, respectively, as a 5-year average. Assuming the change in the fluxes occurred only due to gypsum, the amended fields showed 35%, 59%, and 64% lower losses for PP, TSS, and DOC than the unamended ones. More than half of the gypsum remained in the soil even after 5 years; thus, although the efficiency of gypsum lessened over time, its residual effect may be present. However, the difference in the erodibility between the control and treatment areas impacted the validity of the results, especially as the pre-gypsum period was short. In addition, the performance of gypsum showed spatial variation.


Assuntos
Sulfato de Cálcio , Solo , Fósforo , Argila , Estações do Ano
11.
Sci Total Environ ; 926: 172018, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38547988

RESUMO

The improper disposal of large amounts of phosphogypsum generated during the production process of the phosphorus chemical industry (PCI) still exists. The leachate formed by phosphogypsum stockpiles could pose a threat to the ecological environment and human health. Nevertheless, information regarding the harmful effects of phosphogypsum leachate on organisms is still limited. Herein, the physicochemical characteristics of phosphogypsum leachate were analyzed, and its toxicity effect on zebrafish (Danio rerio), particularly in terms of hepatotoxicity and potential mechanisms, were evaluated. The results indicated that P, NH3-N, TN, F-, As, Cd, Cr, Co, Ni, Zn, Mn, and Hg of phosphogypsum leachate exceeded the V class of surface water environmental quality standards (GB 3838-2002) to varying degrees. Acute toxicity test showed that the 96 h LC50 values of phosphogypsum leachate to zebrafish was 2.08 %. Under exposure to phosphogypsum leachate, zebrafish exhibited concentration-dependent liver damage, characterized by vacuolization and infiltration of inflammatory cells. The increased in Malondialdehyde (MDA) content and altered activities of antioxidant enzymes in the liver indicated the induction of oxidative stress and oxidative damage. The expression of apoptosis-related genes (P53, PUMA, Caspase3, Bcl-2, and Bax) were up-regulated at low dosage group and down-regulated at medium and high dosage groups, suggesting the occurrence of hepatocyte apoptosis or necrosis. Additionally, phosphogypsum leachate influenced the composition of the zebrafish gut microbiota by reducing the relative abundance of Bacteroidota, Aeromonas, Flavobacterium, Vibrio, and increasing that of Rhodobacter and Pirellula. Correlation analysis revealed that gut microbiota dysbiosis was associated with phosphogypsum leachate-induced hepatotoxicity. Altogether, exposure to phosphogypsum leachate caused liver damage in zebrafish, likely through oxidative stress and apoptosis, with the intestinal flora also playing a significant role. These findings contribute to understanding the ecological toxicity of phosphogypsum leachate and promote the sustainable development of PCI.


Assuntos
Sulfato de Cálcio , Doença Hepática Induzida por Substâncias e Drogas , Poluentes Químicos da Água , Animais , Humanos , Peixe-Zebra/metabolismo , Estresse Oxidativo , Fósforo/metabolismo , Poluentes Químicos da Água/metabolismo
12.
Ecotoxicol Environ Saf ; 275: 116265, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38547730

RESUMO

The utilization of gypsum and biomass in environmental remediation has become a novel approach to promote waste recycling. Generally, raw waste materials exhibit limited adsorption capacity for heavy metal ions (HMIs) and often result in poor solid-liquid separation. In this study, through co-pyrolysis with corncob waste, titanium gypsum (TiG) was transformed into magnetic adsorbents (GCx, where x denotes the proportion of corncob in the gypsum-corncob mixture) for the removal of Cd(II) and Pb(II). GC10, the optimal adsorbent, which was composed primarily of anhydrite, calcium sulfide, and magnetic Fe3O4, exhibited significantly faster adsorption kinetics (rate constant k1 was 218 times and 9 times of raw TiG for Cd(II) and Pb(II)) and higher adsorption capacity (Qe exceeded 200 mg/g for Cd(II) and 400 mg/g for Pb(II)) than raw TiG and previous adsorbents. Cd(II) removal was more profoundly inhibited in a Cd(II) + Pb(II) binary system, suggesting that GC10 showed better selectivity for Pb(II). Moreover, GC10 could be easily separated from purified water for further recovery, due to its high saturation magnetization value (6.3 emu/g). The superior removal capabilities of GC10 were due to adsorption and surface precipitation of metal sulfides and metal sulfates on the adsorbent surface. Overall, these waste-derived magnetic adsorbents provide a novel and sustainable approach to waste recycling and the deep purification of multiple HMIs.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Cádmio/análise , Sulfato de Cálcio , Zea mays , Chumbo , Poluentes Químicos da Água/análise , Titânio , Adsorção , Fenômenos Magnéticos , Cinética
13.
Chemosphere ; 353: 141645, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452977

RESUMO

Cadmium (Cd) toxicity has cropped up as an important menace in the soil-plant system. The use of industrial by-products to immobilise Cd in situ in polluted soils is an interesting remediation strategy. In the current investigation, two immobilizing amendments of Cd viz., Limestone (traditionally used) and Yellow gypsum (industrial by-product) have been used through a green-house pot culture experiment. Soil samples were collected from four locations based on four graded levels of DTPA extractable Cd as Site 1 (0.43 mg kg-1), Site 2 (0.92 mg kg-1), Site 3 (1.77 mg kg-1) and Site 4 (4.48 mg kg-1). The experiment was laid out in a thrice replicated Factorial Complete Randomized Design, with one factor as limestone (0, 250, 500 mg kg-1) and the other being yellow gypsum (0, 250, 500 mg kg-1) on the collected soils and groundnut was grown as a test crop. Results revealed that the DTPA-extractable Cd content in soil and Cd concentration in plants decreased significantly with the increasing doses of amendments irrespective of initial soil available Cd and types of amendment used. The effect of amendment was soil specific and in case of Site 1 (low initial Cd) the effect was more prominent. The reduction in DTPA-extractable Cd in combined application of limestone and yellow gypsum @500 mg kg-1 over the absolute control in soil under groundnut for the sites was by far the highest with the values of 83.72%, 77.17%, 48.59% and 40.63% respectively. With the combined application, Target Cancer Risk (TCR) of Cd was also reduced. Hence, combined application of limestone and yellow gypsum can be beneficial in the long run for mitigating Cd pollution.


Assuntos
Arachis , Cádmio , Poluentes do Solo , Cádmio/análise , Cádmio/toxicidade , Carbonato de Cálcio , Sulfato de Cálcio , Ácido Pentético , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Instalações de Eliminação de Resíduos
14.
Ecology ; 105(4): e4271, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38444180

RESUMO

Lichens are significant components of the biological soil crust communities in gypsum ecosystems and are involved in several processes related to ecosystem functioning, such as water and nutrient cycles or protection against soil erosion. Although numerous studies centered on lichen taxonomy and ecology have been performed in these habitats, global information about lichen species from gypsum substrates or their distributional ranges at a global scale is lacking. Thus, we compiled a global data set of recorded lichen species growing on gypsum. This review is based on systematic searches in two bibliographic databases (Web of Science and the more specialized database Mattick's Literature Index) using various keywords related to the substrate or ecology (i.e., gypsum, gypsiferous, semiarid, saxicolous, terricolous). In addition, we revised lichen literature from countries with gypsum soils using Mattick's, Hamburg University's Worldwide checklist, and different national lichen checklists. Ultimately the review includes a total of 321 studies. This data set included 6114 specimen records belonging to 336 recorded lichen species from 26 countries throughout the world. The results showed large differences in the number of species recorded among countries, reflecting differences in the sampling effort. We provide a table with the number of studies and species in relation to gypsum surface in order to account for the bias produced by sampling effort. The number of studies carried out per country was not related to the gypsum surface but probably to other factors, such as accessibility to field sampling, economic or political factors, or the presence of a wider community of lichenologists. Thus, Spain and Germany hosted the highest number of recorded species (160 and 114 species, respectively). Outside the European continent, only a few countries had a large number of species: Morocco (46), United States (42), and Iran (37). Remarkably, countries from the southern hemisphere (i.e., Australia, Chile, Namibia, and South Africa) showed a low number of studies from gypsum lands, supporting the stated biases observed in sampling efforts among countries. Considering the most studied countries, the results show that Teloschistaceae was the most represented family in gypsum ecosystems followed by Verrucariaceae and Cladoniaceae. Regarding particular species, Psora decipiens and Squamarina lentigera were some of the most widespread and abundant species in these habitats. This data set constitutes a basic and first step toward a much more comprehensive database, to be periodically updated in future releases, which also serves to identify countries or territories where future studies should be accomplished. There are no copyright restrictions on the data; please cite this data paper if the data are used in publications and teaching events.


Assuntos
Ecossistema , Líquens , Humanos , Sulfato de Cálcio , Solo , Biota
15.
J Environ Qual ; 53(3): 314-326, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38453693

RESUMO

Snowmelt runoff is a dominant pathway of phosphorus (P) losses from agricultural lands in cold climatic regions. Soil amendments effectively reduce P losses from soils by converting P to less soluble forms; however, changes in P speciation in cold climatic regions with fall-applied amendments have not been investigated. This study evaluated P composition in soils from a manured field with fall-amended alum (Al2(SO4)3·18H2O), gypsum (CaSO4·2H2O), or Epsom salt (MgSO4·7H2O) using three complementary methods: sequential P fractionation, scanning electron microscopy with energy-dispersive X-rays (SEM-EDX) spectroscopy, and P K-edge X-ray absorption near-edge structure spectroscopy (XANES). Plots were established in an annual crop field in southern Manitoba, Canada, with unamended and amended (2.5 Mg ha-1) treatments having four replicates in 2020 fall. Soil samples (0-10 cm) taken from each plot soon after spring snowmelt in 2021 were subjected to P fractionation. A composite soil sample for each treatment was analyzed using SEM-EDX and XANES. Alum- and Epsom salt-treated soils had significantly greater residual P fraction with a higher proportion of apatite-like P and a correspondingly lower proportion of P sorbed to calcite (CaCO3) than unamended and gypsum-amended soils. Backscattered electron imaging of SEM-EDX revealed that alum- and Epsom salt-amended treatments had P-enriched microsites frequently associated with aluminum (Al), iron (Fe), magnesium (Mg), and calcium (Ca), which was not observed in other treatments. Induced precipitation of apatite-like species may have been responsible for reduced P loss to snowmelt previously reported with fall application of amendments.


Assuntos
Compostos de Alúmen , Sulfato de Cálcio , Fósforo , Solo , Sulfato de Cálcio/química , Sulfato de Cálcio/análise , Solo/química , Fósforo/análise , Fósforo/química , Compostos de Alúmen/química , Fertilizantes/análise , Esterco/análise , Agricultura/métodos
16.
Int J Biol Macromol ; 262(Pt 2): 130106, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346628

RESUMO

An eco-friendly antimicrobial sulfur quantum dot scale inhibitor (CMC-SQDs) synthesized using carboxymethyl cellulose (CMC) showed strong inhibition of calcium sulfate (CaSO4) at a concentration just below 1 mg/L, with an inhibition efficiency exceeding 99 %. However, the precise interaction process between CMC-SQDs and CaSO4 remains unclear. This article investigates the effectiveness of SQDs in inhibiting the formation of CaSO4 and calcium carbonate (CaCO3) scales. Through static scale inhibition tests, molecular dynamics simulations, and quantum chemical calculations, the study aims to elucidate the different impacts of CMC-SQDs on CaSO4 and CaCO3 scale formation. The research focuses on understanding the relationship between the structural activity of CMC-SQDs and their scale-inhibiting performance and delving into the underlying mechanisms of scale inhibition. The findings describe the role of SQDs in a water-based solution, acting as persistent "nanodusts" that interact with calcium (Ca2+) ions and sulfate ions. CMC forms complexes with Ca2+ ions, and the presence of SQDs enhances the van der Waals force, indirectly increasing the resistance of associated ions and the binding energy on the surface of precipitated gypsum. Conversely, SQDs exhibit weak surface stability and have minimal binding energy when interacting with calcite, leading to limited occupation of available adsorption sites.


Assuntos
Carbonato de Cálcio , Pontos Quânticos , Carbonato de Cálcio/química , Sulfato de Cálcio/química , Carboximetilcelulose Sódica/química , Íons , Enxofre/química
17.
Toxicol Lett ; 394: 46-56, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408587

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are major organic pollutants attached to fine particulate matter in the atmosphere. They induce lung inflammation, asthma, and other lung diseases. Exploring the toxic mechanism of PAHs on lung epithelial cells may provide a theoretical basis for the prevention and treatment of respiratory diseases induced by PAHs. In our study, 16 human bronchial epithelial (16HBE) cells were exposed to different concentrations of gypsum dust, Benzo(a)pyrene (BaP), and BaP-loaded gypsum dust for 24 hours. Gypsum dust loaded with BaP significantly increased the cytotoxicity of 16HBE cells, enhanced the production of lactate dehydrogenase (LDH), interleukin-6 (IL-6) and interleukin-8 (IL-8), induced cell apoptosis, and upregulate the expression of hsa_circ_0008500 (circ_0008500). The mechanism was studied with a BaP-loaded gypsum dust concentration of 1.25 mg/mL. StemRegenin 1 (SR1) pretreat significantly reduced the release of LDH, IL-6, and IL-8 and decreased the protein levels of Ahr、XAP2, C-myc, and p53. Second-generation sequencing indicated that circ_0008500 was highly expressed after 16HBE induced by BaP-loaded gypsum dust. Functional experiments confirmed that circ_0008500 promoted the inflammation and apoptosis of 16HBE cells induced by BaP-loaded gypsum dust by regulating the Ahr signaling pathway. Our study showed that fine particulate matter adsorption of BaP significantly increased the toxic effect of BaP on cells. By activating the Ahr/C-myc pathway, circ_0008500 promoted inflammation and apoptosis of 16HBE cells induced by BaP-loaded gypsum dust.


Assuntos
Benzo(a)pireno , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Benzo(a)pireno/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Sulfato de Cálcio/metabolismo , Sulfato de Cálcio/farmacologia , Interleucina-6/genética , Interleucina-6/metabolismo , Células Epiteliais , Inflamação/induzido quimicamente , Inflamação/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poeira , Apoptose , Material Particulado/toxicidade
18.
Quintessence Int ; 55(4): 328-334, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38329717

RESUMO

OBJECTIVE: This study aimed to evaluate the effectiveness of biomaterials in bone healing of critical bone defects created by piezoelectric surgery in rat calvaria. METHOD AND MATERIALS: Histomorphologic analysis was performed to assess bone regeneration and tissue response. Fifty animals were randomized into five groups with one of the following treatments: Control group (n = 10), spontaneous blood clot formation with no bone fill; BO group (Bio-Oss, Geistlich Pharma; n = 10), defects were filled with bovine medullary bone substitute; BF group (Bonefill, Bionnovation; n = 10), defects were filled with bovine cortical bone substitute; hydroxyapatite group (n = 10), defects were filled with hydroxyapatite; calcium sulfate group (n = 10), defects were filled with calcium sulfate. Five animals from each group were euthanized at 30 and 45 days. The histomorphometry calculated the percentage of the new bone formation in the bone defect. RESULTS: All data obtained were evaluated statistically considering P < .05 as statistically significant. The results demonstrated the potential of all biomaterials for enhancing bone regeneration. The findings showed no statistical differences between all the biomaterials at 30 and 45 days including the control group without bone grafting. CONCLUSION: In conclusion, the tested biomaterials presented an estimated capacity of osteoconduction, statistically nonsignificant between them. In addition, the selection of biomaterial should consider the specific clinical aspect, resorption rates, size of the particle, and desired bone healing responses. It is important to emphasize that in some cases, using no bone filler might provide comparable results with reduced cost and possible complications questioning the very frequent use of ridge presentation procedures.


Assuntos
Regeneração Óssea , Substitutos Ósseos , Sulfato de Cálcio , Durapatita , Minerais , Distribuição Aleatória , Ratos Wistar , Crânio , Animais , Substitutos Ósseos/uso terapêutico , Substitutos Ósseos/farmacologia , Ratos , Regeneração Óssea/efeitos dos fármacos , Crânio/cirurgia , Sulfato de Cálcio/uso terapêutico , Sulfato de Cálcio/farmacologia , Durapatita/uso terapêutico , Minerais/uso terapêutico , Bovinos , Piezocirurgia/métodos , Masculino , Materiais Biocompatíveis/uso terapêutico , Matriz Óssea/transplante , Osteogênese/efeitos dos fármacos , Processo Alveolar/patologia
19.
Environ Sci Pollut Res Int ; 31(11): 16583-16600, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38321279

RESUMO

The exploitation of coal resources has disturbed the equilibrium of the original groundwater system, resulting in a perturbation of the deep groundwater dynamic conditions and hydrochemical properties. Exploring the formation of mine water chemistry under the conditions of deep coal seam mining in the Ordos Basin provides a theoretical basis for the identification of sources of mine water intrusion and the development and utilization of water resources. This paper takes Longwanggou Coal Mine as the research area, collects a total of 106 groups of water samples from the main water-filled aquifers, comprehensively uses Piper trilinear diagram, Gibbs diagram, ion correlation, ion ratio coefficient and mineral saturation index analysis, and carries out inverse geochemical modeling with PHREEQC software, so as to analyze the hydrochemical characteristics and causes of the main water-filled aquifers in deep-buried coal seams in the research area. The results show that the main hydrochemical processes in the study area are leaching and cation exchange, and the groundwater is affected by carbonate (calcite, dolomite), silicate (gypsum) and evaporite. Calculations of mineral saturation indices and PHREEQC simulations have led to the conclusion that the dissolution of rock salt and gypsum in groundwater accounts for most of the ionic action. Na+, Cl- and SO42- are mainly derived from the dissolution of rock salt and gypsum minerals, while Ca2+ and Mg2+ are mostly derived from the dissolution of dolomite and calcite. The results of the inverse geochemical modeling are consistent with the theoretical analysis.


Assuntos
Água Subterrânea , Magnésio , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Sulfato de Cálcio/análise , Poluentes Químicos da Água/análise , Água Subterrânea/química , Carbonato de Cálcio/análise , Água/análise , Carvão Mineral/análise
20.
Chemosphere ; 352: 141502, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382715

RESUMO

Soil arsenic (As) contamination associated with the demolition of smelting plants has received increasing attention. Soil As can source from different industrial processes, and also participate in soil weathering, making its speciation rather complex. This study combined the usage of chemical sequential extraction and advanced spectroscopic techniques, e.g., time of flight secondary ion mass spectrometry (ToF-SIMS), to investigate the mineralogical transformation of soil As at different processing sites from a typical copper smelting plant in China. Results showed that the stability of arsenic species decreased following the processes of storage, smelting, and flue gas treatment. Arsenic in the warehouse area was incorporated into pyrite (FeS2) as well as its secondary minerals such as jarosite (KFe3(SO4)2(OH)6). At the smelting area, a large proportion of As was adsorbed by iron oxides from smelting slags, while some As existed in stable forms like orpiment (As2S3). At the acid-making area, more than half of As was adsorbed on amorphous iron oxides, and some were adsorbed on the flue gas desulfurization gypsum. More importantly, over 86% of the As belonged to non-specifically and specifically adsorbed fractions was found to be bioaccessible, highlighting the gypsum-adsorbed As one of the most hazardous species in smelting plant soils. Our findings indicated the importance of iron oxides in As retention and suggested the potential health risk of gypsum-adsorbed As. Such detailed knowledge of As speciation and bioaccessibility is vital for the management and remediation of As-contaminated soils in smelting plants.


Assuntos
Arsênio , Compostos Férricos , Poluentes do Solo , Arsênio/análise , Cobre/análise , Sulfato de Cálcio , Ferro/química , Solo/química , Óxidos/análise , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA