Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 473
Filtrar
1.
Theriogenology ; 221: 47-58, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554613

RESUMO

Zinc, an essential trace mineral, exerts a pivotal influence in various biological processes. Through zinc concentration analysis, we found that the zinc concentration in the bovine embryo in vitro culture (IVC) medium was significantly lower than that in bovine follicular fluid. Therefore, this study explored the impact of zinc sulfate on IVC bovine embryo development and investigated the underlying mechanism. The results revealed a significant decline in zygote cleavage and blastocyst development rates when zinc deficiency was induced using zinc chelator N, N, N', N'-Tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) in culture medium during embryo in vitro culture. The influence of zinc-deficiency was time-dependent. Conversely, supplementing 0.8 µg/mL zinc sulfate to culture medium (CM) increased the cleavage and blastocyst formation rate significantly. Moreover, this supplementation reduced reactive oxygen species (ROS) levels, elevated the glutathione (GSH) levels in blastocysts, upregulated the mRNA expression of antioxidase-related genes, and activated the Nrf2-Keap1-ARE signaling pathways. Furthermore, 0.8 µg/mL zinc sulfate enhanced mitochondrial membrane potential, maintained DNA stability, and enhanced the quality of bovine (in vitro fertilization) IVF blastocysts. In conclusion, the addition of 0.8 µg/mL zinc sulfate to CM could enhance the antioxidant capacity, activates the Nrf2-Keap1-ARE signaling pathways, augment mitochondrial membrane potential, and stabilizes DNA, ultimately improving blastocyst quality and in vitro bovine embryo development.


Assuntos
Antioxidantes , Zinco , Feminino , Animais , Bovinos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Zinco/farmacologia , Zinco/metabolismo , Sulfato de Zinco/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Técnicas de Cultura Embrionária/veterinária , Desenvolvimento Embrionário , Fertilização in vitro/veterinária , Blastocisto/fisiologia , Glutationa/metabolismo , DNA/metabolismo
2.
PLoS One ; 19(3): e0295391, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38457380

RESUMO

Although maize is sensitive to zinc (Zn) deficiencies, the responses of maize cultivars to the foliar application of Zn sulfate (ZnSO4) may vary significantly. Here, we quantified the responses of grain yields and nitrogen (N), phosphorus (P), and potassium (K) absorption to ZnSO4 using 22 modern maize cultivars. The results revealed that 40.9% of the cultivars were not affected by foliar ZnSO4, whereas only 45.5% of the cultivars responded positively to ZnSO4, which was evidenced by increased grain numbers and shortened bald tip lengths. The impact of Zn fertilizer might be manifested in the dry biomass, from the 8-leaf stage (BBCH 18). For Zn-deficiency resistant cultivars, the foliar application of ZnSO4 enhanced N accumulation by 44.1%, while it reduced P and K absorption by 13.6% and 23.7%, respectively. For Zn-deficiency sensitive maize cultivars, foliar applied ZnSO4 improved the accumulation of N and K by 27.3% and 25.0%, respectively; however, it lowered their utilization efficiency. Hence, determining the optimized application of Zn fertilizer, while avoiding Zn toxicity, should not be based solely on the level of Zn deficiency in the soil, but also, take into consideration the sensitivity of some cultivars to Zn, Furthermore, the supplementation of Zn-deficiency sensitive maize cultivars with N and K is key to maximizing the benefits of Zn fertilization.


Assuntos
Sulfato de Zinco , Zinco , Sulfato de Zinco/farmacologia , Zinco/análise , Zea mays , Fertilizantes , Triticum , Minerais , Solo , Grão Comestível/química
3.
Sci Rep ; 14(1): 1067, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212358

RESUMO

A short shelf life usually limits the distribution and supply of pomegranate arils. Since zinc (Zn) has an indispensable role in the nutrient integrity of our diet and is effective in suppressing pathogens, this study was done as two separate experiments of pre-harvest spraying and postharvest dipping of arils with two zinc supplements, including nano zinc oxide (nZnO) and zinc sulfate (ZnSO4). The optimized concentration of both sources was used in the experiment. The pre-harvest treatment failed to extend the shelf life of arils, and, ultimately, the arils decayed after 15 days. However, the postharvest zinc treatment significantly (P < 0.01) affected all measured indices. Also, zinc sulfate was more effective than nZnO. Zn uptake was higher in postharvest treatments because exogenous Zn was in direct contact with the aril surface. After dissolving in water, Zn ions in sulfate bind to the membrane of microorganisms and thus delay cell division and microbial growth cycle. The solubility of zinc oxide nanoparticles in water is poor. Using the ZnSO4 treatment (0.8%W/V) effectively maintained the values of titratable acidity (TA), total phenolic content (TPC), total soluble solids (TSS), anthocyanin content, and antioxidant activity. Also, this treatment significantly controlled weight loss in the arils.


Assuntos
Lythraceae , Punica granatum , Conservação de Alimentos , Zinco/farmacologia , Zinco/metabolismo , Sulfato de Zinco/farmacologia , Lythraceae/metabolismo , Água/metabolismo
4.
Biol Trace Elem Res ; 202(1): 175-181, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37088827

RESUMO

To investigate the effect of different sources of zinc supplements on blood serum parameters, nutrient digestibility, growth performance, carcass characteristics, and intestinal morphology, 18 male Zandi lambs (with initial body weight of 31 ± 1.2 kg and 120 ± 8 days old) were divided into three groups, six animals each in a completely random design. Experimental treatments include (1) control treatment of basal diet without zinc supplementation, (2) basal diet with 40 mg/kg of zinc supplementation from zinc sulfate source, and (3) basal diet with 40 mg/kg of zinc supplementation with origin it was organic (Zn-peptide). All lambs were kept in individual pens with cemented floor and provision of individual feeding and watering. Mean daily weight gain increased with zinc supplementation (P < 0.05), but feed intake and feed conversion ratio were not affected by zinc supplementation in the diet. Zinc supplementation increased the apparent digestibility of the dry matter (P < 0.05), but the digestibility of dietary fat, neutral detergent fiber (NDF), and acid detergent fiber (ADF) were not affected by zinc supplementation. In this experiment, the addition of organic and inorganic supplements to the diet of fattening lambs had no significant effect on serum triglyceride, cholesterol, low-density lipoprotein (LDL), high-density lipoprotein (HDL) and glucose concentrations, and carcass traits. The concentration of aspartate aminotransferase (AST) enzyme in the zinc sulfate group was significantly higher than the control and organic zinc groups (P < 0.05). Concentrations of blood urea nitrogen were lower in zinc fed lambs, compared to control (P ≤ 0.05). The villi width in the duodenum was higher in the zinc supplementation treatments (P < 0.05). Also, in the ileum section, the height of the villi in the treatment of zinc sulfate supplement was higher, compared to the complement and control (P < 0.05). The results of this study showed that Zn supplementation, regardless of its source, improved growth performance in fattening lambs. However, no effect was observed on feed intake and efficiency, carcass traits, and blood parameters.


Assuntos
Sulfato de Zinco , Zinco , Ovinos , Animais , Masculino , Sulfato de Zinco/farmacologia , Detergentes , Suplementos Nutricionais , Dieta/veterinária , Carneiro Doméstico/metabolismo , Ração Animal/análise
5.
Int J Mol Sci ; 24(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38069066

RESUMO

This study aimed to determine the effects of Zn sources, used with potato fiber (PF) or lignocellulose (LC), on electrolyte concentration and the mucus layer in the large intestine of pigs. The experiment involved 24 barrows with an initial body weight of 10.8 ± 0.82 kg, divided into four groups fed the following diets: LC and ZnSO4, LC and Zn glycinate (ZnGly), PF and ZnSO4, or PF and ZnGly. Fiber supplements provided 10 g crude fiber/kg diet, while Zn additives introduced 120 mg Zn/kg diet. After four weeks of feeding, the pigs were sacrificed and digesta and tissue samples were taken from the cecum and colon. PF increased the water content and decreased the phosphorus concentration in the large intestine in comparison with LC. PF also increased calcium, iron, and chloride concentrations in the descending colon. Mucus layer thickness and histological parameters of the large intestine were not affected. ZnGly diets increased MUC12 expression in the cecum as compared to the LC-ZnSO4 group. In the ascending colon, the PF-ZnGly diet increased MUC5AC expression, while both PF groups had greater MUC20 expression in comparison with the LC-ZnSO4 group. In the transverse colon, the LC-ZnGly group and both PF groups had higher MUC5AC expression in comparison with the LC-ZnSO4 group, and both ZnGly groups had higher MUC20 expression than ZnSO4 groups. PF and ZnGly increased MUC4 and MUC5AC expression in the descending colon. PF and ZnGly may exert a beneficial effect on colon health in pigs by upregulating the expression of the MUC5AC and MUC20 genes and are more effective than LC and ZnSO4.


Assuntos
Sulfato de Zinco , Zinco , Suínos , Animais , Zinco/metabolismo , Sulfato de Zinco/farmacologia , Fibras na Dieta/farmacologia , Suplementos Nutricionais , Dieta , Intestino Grosso/metabolismo , Eletrólitos , Mucosa/metabolismo , Ração Animal
6.
PLoS One ; 18(12): e0295573, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38127967

RESUMO

The aim of this study was to investigate the effect of zinc sulphate on the activities of different enzymes and metabolites of Pholiota adiposa. In the experiment, we used the conventional enzyme activity assay to determine the changes of six indicators, including protein content, laccase activity, cellulase activity, amylase activity and polyphenol oxidase activity, under different concentrations of zinc sulphate treatment. The results showed that the activities of amylase, laccase, cellulase and peroxidase were Zn2+(200)>Zn2+(0)>Zn2+(400)>Zn2+(800).The activities of catalase and superoxide dismutase were Zn2+(200)>Zn2+(400)>Zn2+(800), and zinc sulfate could significantly affect the activity of polylipic squamase in a dose-dependent manner. Further correlation analysis showed that all six enzyme activities were significantly correlated with each other (P<001); the results of the statistical model test showed that the regression model constructed was statistically significant; overall the residuals met the conditions of normal distribution, and the corresponding points of different enzyme activities Q-Q' were more evenly distributed around y = x, and all fell in the 90% acceptance interval, thus the series was considered to obey normal distribution; the results of the principal The results of the principal component analysis showed that principal component 1 was positively correlated with amylase, laccase and cellulase. Principal component 2 was positively correlated with superoxide dismutase and catalase, and negatively correlated with peroxidase. The analysis of Metabonomic data revealed that zinc sulfate had a significant impact on the expression of metabolites in the mycelium. Moreover, varying concentrations of zinc sulfate exerted significant effects on the levels of amino acids, organic acids, and gluconic acid. This conclusion was confirmed by other experimental data. The results of the study provide a scientific reference for better research, development and utilization of Pholiota adiposa.


Assuntos
Celulases , Sulfato de Zinco , Sulfato de Zinco/farmacologia , Catalase/metabolismo , Lacase , Superóxido Dismutase/metabolismo , Peroxidases , Peroxidase , Zinco , Amilases , Micélio/metabolismo
7.
Chemosphere ; 327: 138479, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36965530

RESUMO

Salinization causes the degradation of the soil and threatening the global food security but the application of essential micronutrients like zinc (Zn), improve the plant growth by stabilizing the plant cell and root development. Keeping in view the above-mentioned scenario, an experiment was conducted to compare the efficiency of conventional Zn fertilizers like zinc sulphate (ZnSO4), zinc ethylene diamine tetra acetic acid (Zn-EDTA) and advance nano Zn fertilizers such as zinc sulphate nanoparticles (ZnSO4NPs), and zinc oxide nanoparticles (ZnONPs) (applied at the rate of 5 and 10 mg/kg) in saline-sodic soil. Results revealed that the maximum plant height (67%), spike length (72%), root length (162%), number of tillers (71%), paddy weight (100%), shoot dry weight (158%), and root dry weight (119%) was found in ZnSO4NPs applied at the rate of 10 mg/kg (ZnSO4NPs-10) as compared to salt-affected control (SAC). Similarly, the plants physiological attributes like chlorophyll contents (91%), photosynthesis rate (113%), transpiration rate (106%), stomatal conductance (56%) and internal CO2 (11%) were increased by the application of ZnSO4NPs-10, as compared to SAC. The maximum Zn concentration in root (153%), shoot (205%) and paddy (167%) found in ZnSO4NPs-10, as compared to control. In the body of rice plants, other nutrients like phosphorus and potassium were also increased by the application of ZnSO4NPs-10 and soil chemical attributes such as sodium and sodium adsorption ratio were decreased. The current experiment concluded that the application of ZnSO4NPs at the rate of 10 mg/kg in salt-affected paddy soil increased the growth, physiology, up take of essential nutrients and yield of rice by balancing the cationic ratio under salt stress.


Assuntos
Oryza , Zinco , Zinco/metabolismo , Oryza/metabolismo , Solo/química , Fertilizantes , Sulfato de Zinco/farmacologia , Sulfato de Zinco/metabolismo , Estresse Salino , Sódio
8.
Behav Brain Res ; 438: 114175, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36309244

RESUMO

Alzheimer's disease is associated with marked olfactory dysfunction observed in the early stages. Clinical studies reported that acetylcholinesterase inhibitor donepezil (DNP) attenuated this deficit; however, the underlying mechanism remains unclear. Herein, we aimed to examine the effects and underlying mechanisms of DNP on olfactory deficits in zinc sulfate (ZnSO4) nasal-treated mice, which were used as a model of reversible olfactory impairment. We evaluated olfactory function using the buried food finding test and neurogenesis in the subventricular zone (SVZ) using immunohistochemistry. Finally, we measured the expression of doublecortin (DCX), neuronal nuclear antigen (NeuN), olfactory marker protein, tyrosine hydroxylase (TH), tryptophan hydroxylase 2, glutamic acid decarboxylase 67, p-α-synuclein (Ser129), α-synuclein, p-AMPK, p-p70S6 kinase (p70S6K) (Thr389), LC3 Ⅱ/Ⅰ, and p-p62 in the olfactory bulb (OB) by western blotting. On day 7 after treatment, ZnSO4-treated mice exhibited prolonged time to find the buried food, cell proliferation enhancement in the SVZ, increased NeuN, p-α-synuclein (Ser129), and α-synuclein levels, and decreased DCX and TH levels in the OB; except for TH, these changes normalized on day 14 after treatment. Repeated administration of DNP prevented the ZnSO4-induced changes on day 7 after treatment. Moreover, DNP increased p-AMPK and LC3 Ⅱ/Ⅰ, and decreased p-p70S6K and p-p62 (Ser351) levels in the OB, suggesting that DNP enhances autophagy in the OB. These findings indicate that DNP may help prevent olfactory dysfunction by autophagy that reduces α-synuclein aggregation via the AMPK/mTOC1 pathway.


Assuntos
Transtornos do Olfato , Bulbo Olfatório , Animais , Camundongos , Bulbo Olfatório/metabolismo , alfa-Sinucleína/metabolismo , Donepezila/farmacologia , Sulfato de Zinco/farmacologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Acetilcolinesterase/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Autofagia
9.
Vet Med Sci ; 8(5): 2040-2049, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35925611

RESUMO

BACKGROUND: There have been some reports indicating that supplementation of zinc could alleviate the negative effects of age on egg quality in laying hens. However, information regarding these positive effects on health and zinc deposition in the body is limited. OBJECTIVES: The aim of the present study was to investigate the effect of organic and inorganic sources of zinc on the antioxidant activity, bone strength, and zinc deposition in the tissues of older laying hens. METHODS: In a completely randomized design, 175 Leghorn laying hens (w36) aged 80 weeks were allocated into seven treatment groups and five replications: control (without zinc supplementation), zinc sulphate treatments (15, 30, and 45 mg/kg), and organic zinc treatments (15, 30, and 45 mg/kg). RESULTS: There was a significant increase in feed intake in the zinc sulphate and organic zinc treatments compared to the control treatment (p < 0.05). The egg mass in organic and sulphate zinc showed a significant increase. The feed conversion ratio was decreased significantly in the organic zinc treatments (p < 0.05). Both organic and sulphate zinc supplements enhanced serum superoxide dismutase activity as an antioxidant index (p < 0.05). The cortical thickness of the tibia was improved in laying hens receiving 30 mg/kg organic zinc. Supplementation of zinc could lead to an increase in zinc deposition in tissues, and organic zinc boosts bone strength. CONCLUSION: Zinc supplementation can improve antioxidant activity, feed intake, and feed conversion ratio and enhance egg mass and optimal absorption of zinc in tissues. The use of 30 mg/kg organic zinc is recommended for improving the cortical thickness of the tibia in aged laying hens.


Assuntos
Antioxidantes , Galinhas , Ração Animal/análise , Animais , Suplementos Nutricionais , Feminino , Superóxido Dismutase , Zinco , Sulfato de Zinco/farmacologia
10.
Andrologia ; 54(9): e14508, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35842931

RESUMO

The therapeutic efficacy of N-acetylcysteine (NAC) and zinc sulphate on di-(2-ethylhexyl) phthalate (DEHP)-induced testicular oxido-nitrergic stress in rats was investigated in 36 male Wistar rats (170 ± 10 g) randomly assigned into one of six groups (n = 6). Group 1 (control) received 2.5 ml/kg of distilled water for 42 days, while group 2 (vehicle) received 2.5 ml/kg of corn oil for 42 days. Groups 3,4,5, and 6 were administered DEHP (750 mg/kg/day) for 21 days, after which groups 4, 5, and 6 received zinc sulphate (0.5 mg/kg/day), NAC (100 mg/kg/day), and zinc sulphate (0.5 mg/kg/day) + NAC (100 mg/kg/day) for an additional 21 days respectively. After the experimental period, the animals were euthanized by light thiopental sodium, and their testes were carefully dissected out for histological and biochemical assays. The result shows a significant alteration in testicular levels of malondialdehyde, nitric oxide, antioxidant enzymes, total antioxidant capacity, sulphydryl levels, dehydrogenases and testicular architecture following the administration of DEHP. These effects were reversed by coadministration of NAC and zinc sulphate in the study. We therefore concluded that the combined effects of NAC and ZnSO4 effectively improved testicular antioxidant status and reduced testicular nitregic stress, thus improving testicular architecture and functions.


Assuntos
Dietilexilftalato , Testículo , Animais , Masculino , Ratos , Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Dietilexilftalato/toxicidade , Ácidos Ftálicos , Ratos Wistar , Sulfato de Zinco/farmacologia
11.
Reprod Domest Anim ; 57(6): 567-576, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35147249

RESUMO

This study was aimed to investigate the combined effect of zinc sulphate and folic acid (ZnF) dietary supplementation on testicular haemodynamics (TH), testicular volume (TV), plasma testosterone levels (T) and semen quality of rams under heat stress conditions. Fifteen Ossimi rams were allocated to three groups: (1) G0 (n = 5) received only basic diet; (2) G1 (n = 5) received basic diet +ZnF (Zn, 0.4 mg/kg bw; F, 0.02 mg/kg bw) and (3) G2 (n = 5) received basic diet +ZnF (Zn, 0.8 mg/kg bw; F, 0.04 mg/kg bw) daily for 60 days. TH was evaluated using colour (testicular coloration, TC) and spectral modes [resistive index (RI) and pulsatility index (PI)] Doppler of the supra-testicular arteries (proximal and distal parts, STA). Semen traits including progressive motility (PM), alive sperm % (AS), sperm viability (SV), sperm abnormalities (SA) and acrosome integrity (AI) were also assessed. The examinations were carried out one month before (D-30), the beginning of ZnF inclusion in the diet (D 0) and continued for the successive two months (D 30 and D 60). TH was significantly (p < .05) improved at D 30 and D 60, evidenced by lowering both RI and PI and increasing of TC in G1 compared to G0 and G2. In addition, both TV and serum T levels were elevated (p < .05) at D 30 and D 60 in G1 compared to other groups. Semen quality parameters (PM, AS, SV and AI) were significantly (p < .05) augmented in the same trend as TH, TV and T in G1 versus G0 and G2. A marked decrease (p < .05) in SA % was noticed at Days 30 and 60 after ZnF inclusion in G1 compared to G0 and G2. In conclusion, supplementation of the summer diet with ZnF improved the whole reproductive functions such as testicular haemodynamics and semen quality of rams housed in heat stress conditions.


Assuntos
Análise do Sêmen , Sulfato de Zinco , Animais , Dieta/veterinária , Ácido Fólico/farmacologia , Resposta ao Choque Térmico , Hemodinâmica , Masculino , Sêmen , Análise do Sêmen/veterinária , Ovinos , Carneiro Doméstico , Sulfatos/farmacologia , Testículo/irrigação sanguínea , Testosterona , Zinco/farmacologia , Sulfato de Zinco/farmacologia
12.
Biol Trace Elem Res ; 200(9): 4171-4174, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34738226

RESUMO

Zinc incorporation and the growth of Saccharomyces cerevisiae were investigated in a culture supplemented with three inorganic zinc salts, i.e. zinc sulphate, zinc chloride and zinc nitrate. The cultivation was performed on a yeast extract peptone dextrose (YEPD) broth medium. The growth of yeast was carried out at different concentrations of zinc, i.e. 0, 30, 60, 90 and 120 mg 100 ml-1. It was found that the addition of different zinc sources at 30 mg 100 ml-1 concentration produced higher biomass yield ranging 1.00-1.03 g from 100 ml-1 of cultivation medium, while higher zinc concentration in the medium caused significantly lower yields of yeast biomass. The amount of zinc in yeast cells was determined by an atomic absorption spectrometer (AAS). The highest amount of zinc in yeast cells was achieved when added in the form of zinc sulphate at a concentration of 120 mg 100 ml-1. The increment of intracellular zinc was up to 9889.67 mg kg-1 of biomass.


Assuntos
Saccharomyces cerevisiae , Fermento Seco , Biomassa , Meios de Cultura/farmacologia , Saccharomyces cerevisiae/metabolismo , Zinco/metabolismo , Zinco/farmacologia , Sulfato de Zinco/farmacologia
13.
Biol Trace Elem Res ; 200(3): 1321-1330, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33954866

RESUMO

This experiment was conducted to investigate the effect of the supplementation of hot-melt extrusion (HME) processed zinc sulfate (ZnSO4) on the growth performance, antioxidative activity, pancreatic digestive enzyme, small intestinal morphology, nutrient digestibility, and Zn content in broilers. The chicks were allocated to three treatments, each of which had five replicates of 15 chicks per replicate. The broiler chickens were assigned to three dietary treatments: the control (without supplemental Zn), IN-Zn (ZnSO4, 80 mg/kg), and HME-Zn (HME processed ZnSO4 as nano-Zn, 80 mg/kg). The broilers fed diets supplemented with 80 mg/kg of HME-Zn improved the BWG (P < 0.05) and FCR (P < 0.05) compared to the broilers fed the control and IN-Zn diets in phase 2. The Zn supplementation significantly enhanced the superoxide dismutase (SOD) activity in the serum (P < 0.05) and liver (P < 0.05), and HME-Zn supplementation significantly increased the SOD in the liver compared to the IN-Zn supplementation. Reduced malondialdehyde (MDA) concentration was seen with the Zn supplementation compared to the control (P < 0.05). The chickens fed diets supplemented with the HME-Zn had higher activity of amylase (P < 0.05) and trypsin (P < 0.05) than those of the chickens fed the control and IN-Zn diets. The villus height (VH) in the duodenum (P < 0.05) and jejunum (P < 0.05) increased with the ZnSO4 and HME-Zn supplementation compared to the control. The VH and crypt depth rate (VH:CD) in the jejunum improved with the HME-Zn compared to the control (P < 0.05). The HME-Zn significantly increased the apparent ileal digestible crude protein (CP) (P < 0.05) and energy corrected by nitrogen (AIDEn) (P < 0.05) compared to the control or IN-Zn. In phases 1 and 2, the HME-Zn significantly increased Zn concentration in the liver and tibia compared to control and IN-Zn (P < 0.05). The excretion of Zn was significantly decreased in the HME-Zn compared to the IN-Zn (P < 0.05). In conclusion, supplementation of 80 mg/kg of HME-Zn in diets improved the growth performance, antioxidative activity, pancreatic enzyme activity, intestinal villus height, and nutrient digestibility with the improved Zn bioavailability in broilers.


Assuntos
Galinhas , Sulfato de Zinco , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Antioxidantes , Disponibilidade Biológica , Dieta , Suplementos Nutricionais , Nutrientes , Zinco/farmacologia , Sulfato de Zinco/farmacologia
14.
Molecules ; 26(24)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34946758

RESUMO

Biofortification of pulse crops with Zn and Fe is a viable approach to combat their widespread deficiencies in humans. Lentil (Lens culinaris Medik.) is a widely consumed edible crop possessing a high level of Zn and Fe micronutrients. Thus, the present study was conducted to examine the influence of foliar application of Zn and Fe on productivity, concentration, uptake and the economics of lentil cultivation (LL 931). For this, different treatment combinations of ZnSO4·7H2O (0.5%) and FeSO4·7H2O (0.5%), along with the recommended dose of fertilizer (RDF), were applied to the lentil. The results of study reported that the combined foliar application of ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at pre-flowering (S1) and pod formation (S2) stages was most effective in enhancing grain and straw yield, Zn and Fe concentration, and uptake. However, the outcome of this treatment was statistically on par with the results obtained under the treatment ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at S1 stage. A single spray of ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at S1 stage enhanced the grain and straw yield up to 39.6% and 51.8%, respectively. Similarly, Zn and Fe concentrations showed enhancement in grain (10.9% and 20.4%, respectively) and straw (27.5% and 27.6% respectively) of the lentil. The increase in Zn and Fe uptake by grain was 54.8% and 68.0%, respectively, whereas uptake by straw was 93.6% and 93.7%, respectively. Also the benefit:cost was the highest (1.96) with application of ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at S1 stage. Conclusively, the combined use of ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at S1 stage can contribute significantly towards yield, Zn and Fe concentration, as well as uptake and the economic returns of lentil to remediate the Zn and Fe deficiency.


Assuntos
Grão Comestível/efeitos dos fármacos , Compostos Ferrosos/farmacologia , Fertilizantes/análise , Lens (Planta)/efeitos dos fármacos , Micronutrientes/farmacologia , Sulfato de Zinco/farmacologia , Biofortificação , Grão Comestível/metabolismo , Compostos Ferrosos/química , Compostos Ferrosos/metabolismo , Lens (Planta)/metabolismo , Micronutrientes/química , Micronutrientes/metabolismo , Sulfato de Zinco/química , Sulfato de Zinco/metabolismo
15.
PLoS One ; 16(12): e0260662, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34941898

RESUMO

Human population is exceeding beyond the carrying capacity of earth resources and stresses like water shortage faced by the plants is jeopardizing the food security. Current research study was aimed to investigate the potentials of Zn-Aspartate (Zn-Asp), Zn-Sulphate (ZnSO4) and L-Aspartate (L-Asp) to be used as osmolytes and role of various levels of these chemicals in combating drought stress in maize plants in Punjab, Pakistan. Study was performed on two plots corresponding to drought and controlled environments. The lamina of maize plants was sprinkled row wise with various treatments including No spray (NS), water sprinkle (WS), sprinkle with ZnSO4 0.25% and 0.50%, sprinkle with Zn-Asp 0.25% and 0.50% and Foliar sprinkle of L-Asp 0.5% and 1%, respectively. Role of major osmoprotectants and secondary metabolites was analyzed and positive changes were found in total soluble sugars (41.16), flavonoids (5387.74), tocopherol content (9089.18), ascorbic acid (645.27) and anthocyanin (14.84) conc. which assists in mitigating drought menace on maize. Shoot mineral ions (Ca, K, Zn, P, Mg and N) status of water stressed maize plants was also analyzed and it was found that application experimental dose enhanced their availability to crop. Physio-biochemical studies were performed on antioxidants enzymes like superoxide dismutase (SOD), peroxidase (POD), carotenoid content (CC), malondialdehyde, hydrogen peroxide, aspartate and free amino acid contents. The activity of SOD was increased by 28.5% and activity of POD was increased by 33.33% due to foliar applied 0.5% Zn-Asp under drought stress. Photosynthetic pigments (chlorophyll A, B and total chlorophyll content) analysis was also carried out in this study. It was found that conc. of different chlorophylls pigments increased (chl-A: 2.24, chl-B: 25.12, total chl: 24.30) which enhanced photosynthetic activity culminating into better growth and yield). The level of malondialdehyde and hydrogen peroxide decreased by 43.9% and 32.8% respectively on treatment with 0.5% Zn-Asp proving the efficacy of the treatment in drought amelioration. Study reveals that Zn-Asp induced modulations are far better than conventional sulphate salts in mitigating water scarce environment. Current study recommends the use of the Zn-Asp to meet the global food and agricultural challenges as compared to ZnSO4 and L-Asp due to its better drought amelioration properties. This research provides valuable informations which can used for future research and practical use in agriculture fields by indigenous and other people to enhance yield of maize to meet the food necessities of country.


Assuntos
Ácido Aspártico/análogos & derivados , Ácido Aspártico/farmacologia , Secas , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Compostos de Zinco/farmacologia , Sulfato de Zinco/farmacologia , Antioxidantes/farmacologia , Carboidratos , Caseínas/metabolismo , Peroxidação de Lipídeos , Lipídeos , Fotossíntese , Proteínas de Vegetais Comestíveis/metabolismo , Zea mays/metabolismo
16.
PLoS One ; 16(10): e0257774, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34624042

RESUMO

Previously we have shown that trypsin, a protein typically involved in digestion, is released from gills of both fresh and saltwater fishes into surrounding water under stress or injury. We have also shown that each species produces trypsin with different specific activities. In this report, using zebrafish as a model, we identified that trypsin induces an aversive response in zebrafish larvae and adult zebrafish. Since Protease-Activated Receptor 2 (PAR2) responds to trypsin, we tested whether the aversive response is dependent on the activation of PAR2 located on the zebrafish skin cells. Zebrafish larvae treated separately with neomycin and zinc sulfate also showed aversive response indicating neuromast, and olfactory cells are not involved in this aversion. Cultured keratinocytes from zebrafish showed a response to trypsin. Zebrafish larvae subjected to knockdown of par2a also exhibited reduced escape response. Similarly, par2a-deficient mutant larvae displayed no response to trypsin. Since it has been shown that stress activates PAR2 and sends signals to the brain as shown by the increased c-fos expression, we tested c-fos expression in adult zebrafish brains after trypsin treatment of adults and found enhanced c-fos expression by qRT-PCR. Taken together, our results show that the trypsin activates PAR2 on keratinocytes signaling the brain, and this pathway of trypsin-induced escape response will provide a unique communication mechanism in zebrafish. Furthermore, since PAR2 activation also occurs in pain/pruritus sensing, this model might be useful in elucidating components of signaling pathways in pain/pruritus.


Assuntos
Receptor PAR-2/genética , Pele/metabolismo , Tripsina/metabolismo , Peixe-Zebra/genética , Animais , Linhagem Celular , Brânquias/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Larva/efeitos dos fármacos , Larva/genética , Neomicina/farmacologia , Receptor PAR-2/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Pele/efeitos dos fármacos , Tripsina/efeitos adversos , Peixe-Zebra/metabolismo , Sulfato de Zinco/farmacologia
17.
Braz J Biol ; 83: e244593, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34468512

RESUMO

': Kinnow' mandarin (Citrus nobilis L.× Citrus deliciosa T.) is an important marketable fruit of the world. It is mainstay of citrus industry in Pakistan, having great export potential. But out of total production of the country only 10% of the produce meets the international quality standard for export. Pre-harvest fruit drop and poor fruit quality could be associated with various issues including the plant nutrition. Most of the farmers do not pay attention to the supply of micro nutrients which are already deficient in the soil. Furthermore, their mobility within plants is also a question. Zinc (Zn) is amongst those micronutrients which affect the quality and postharvest life of the fruit and its deficiency in Pakistani soils is already reported by many researchers. Therefore, this study was carried out to evaluate the influence of pre-harvest applications of zinc sulfate (ZnSO4; 0, 0.4%, 0.6% or 0.8%) on pre-harvest fruit drop, yield and fruit quality of 'Kinnow' mandarin at harvest. The treatments were applied during the month of October i.e. 4 months prior to harvest. The applied Zn sprays had significant effect on yield and quality of the "Kinnow" fruit. Amongst different foliar applications of ZnSO4applied four months before harvest, 0.6% ZnSO4 significantly reduced pre-harvest fruit drop (10.08%) as compared to untreated control trees (46.45%). Similarly, the maximum number of fruits harvested per tree (627), fruit weight (192.9 g), juice percentage (42.2%), total soluble solids (9.5 °Brix), ascorbic acid content (35.5 mg 100 g-1) and sugar contents (17.4) were also found significantly higher with 0.6% ZnSO4 treatment as compared to rest of treatments and control. Foliar application of 0.6% ZnSO4 also significantly improved total antioxidants (TAO) and total phenolic contents (TPC) in fruit. In conclusion, foliar spray of ZnSO4 (0.6%) four months prior to harvest reduced pre-harvest fruit drop, increase yield with improved quality of 'Kinnow' mandarin fruit.


Assuntos
Citrus , Frutas , Antioxidantes , Ácido Ascórbico , Sulfato de Zinco/farmacologia
18.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361755

RESUMO

Zinc (Zn) is an essential micronutrient for plant growth, and Zn deficiency is a global issue, especially in tropical soils. This study aimed to investigate the effects of humic acid (HA) and the Zn addition (Zn sulfate + HA) on the growth of maize and brachiaria in two contrasting Oxisols. The potential complexation of Zn sulfate by HA was evaluated by Fourier-transform infrared (FTIR) spectroscopy analysis. Zinc content and its availability in solution and the shoot and root biomass of maize and brachiaria were determined. FTIR spectroscopy revealed the complexation of Zn sulfate by HA through its S and C functional groups. In both Oxisols, solution Zn increased due to the combined use of Zn and HA. In a soil type-dependent manner, maize biomass and Zn in its shoots were affected only by the exclusive use of Zn fertilization. In the Yellow Oxisol, brachiaria growth and Zn accumulated in its shoot were positively affected by the combined use of Zn fertilization with HA. In the Oxisol with lower organic matter content, HA can assure adequate supplying of residual Zn, while increasing growth of brachiaria cultivated in sequence to maize.


Assuntos
Brachiaria/efeitos dos fármacos , Substâncias Húmicas/análise , Solo/química , Zea mays/efeitos dos fármacos , Sulfato de Zinco/farmacologia , Brachiaria/crescimento & desenvolvimento , Brasil , Fertilizantes/análise , Concentração de Íons de Hidrogênio , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Análise de Componente Principal , Espectroscopia de Infravermelho com Transformada de Fourier , Zea mays/crescimento & desenvolvimento , Sulfato de Zinco/análise , Sulfato de Zinco/química
19.
Eur Rev Med Pharmacol Sci ; 25(10): 3908-3913, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34109605

RESUMO

OBJECTIVE: Coronavirus 2019 (COVID-19) has now been declared as a worldwide pandemic. Currently, no drugs have been endorsed for its treatment; in this manner, a pressing need has been developed for any antiviral drugs that will treat COVID-19. Coronaviruses require the SARS-CoV-2 3CL-Protease (3CL-protease) for cleavage of its polyprotein to yield a single useful protein and assume a basic role in the disease progression. In this study, we demonstrated that punicalagin, the fundamental active element of pomegranate in addition to the combination of punicalagin with zinc (Zn) II, appear to show powerful inhibitory activity against SARS-CoV-2. MATERIALS AND METHODS: The 3CL protease assay kit was used to quantify 3CL protease action. The tetrazolium dye, MTS, was used to evaluate cytotoxicity. RESULTS: Punicalagin showed inhibitory action against the 3CL-protease in a dose-dependent manner, and IC50 was found to be 6.192 µg/ml for punicalagin. Punicalagin (10 µg/mL) demonstrated a significant inhibitory activity toward 3CL-protease activity (p < 0.001), yet when punicalagin is combined with zinc sulfate monohydrate (punicalagin/Zn-II) extremely strong 3CL-protease activity (p < 0.001) was obtained. The action of 3CL-protease with punicalagin/Zn-II was decreased by approximately 4.4-fold in contrast to only punicalagin (10 µg/mL). Likewise, we did not notice any significant cytotoxicity caused by punicalagin, Zn-II, or punicalagin/Zn-II. CONCLUSIONS: We suggest that these compounds could be used as potential antiviral drugs against COVID-19.


Assuntos
Proteases 3C de Coronavírus/metabolismo , Taninos Hidrolisáveis/química , SARS-CoV-2/enzimologia , Sulfato de Zinco/química , Animais , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacologia , COVID-19/patologia , COVID-19/virologia , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Proteases 3C de Coronavírus/antagonistas & inibidores , Sinergismo Farmacológico , Humanos , Taninos Hidrolisáveis/metabolismo , Taninos Hidrolisáveis/farmacologia , SARS-CoV-2/isolamento & purificação , Células Vero , Sulfato de Zinco/metabolismo , Sulfato de Zinco/farmacologia
20.
Molecules ; 26(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916062

RESUMO

The objective of this study was to determine the oxidative stress and the physiological and antioxidant responses of coriander plants (Coriandrum sativum) grown for 58 days in soil with zinc oxide nanoparticles (ZnO NPs) and zinc sulfate (ZnSO4) at concentrations of 0, 100, 200, 300, and 400 mg of Zn/kg of soil. The results revealed that all Zn compounds increased the total chlorophyll content (CHLt) by at least 45%, compared to the control group; however, with 400 mg/kg of ZnSO4, chlorophyll accumulation decreased by 34.6%. Zn determination by induction-plasma-coupled atomic emission spectrometry (ICP-AES) showed that Zn absorption in roots and shoots occurred in plants exposed to ZnSO4 at all concentrations, which resulted in high levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Only at 400 mg/kg of ZnSO4, a 78.6% decrease in the MDA levels was observed. According to the results, the ZnSO4 treatments were more effective than the ZnO NPs to increase the antioxidant activity of catalase (CAT), ascorbate peroxidase (APX), and peroxidases (POD). The results corroborate that phytotoxicity was higher in plants subjected to ZnSO4 compared to treatments with ZnO NPs, which suggests that the toxicity was due to Zn accumulation in the tissues by absorbing dissolved Zn++ ions.


Assuntos
Coriandrum/crescimento & desenvolvimento , Coriandrum/metabolismo , Peroxidação de Lipídeos , Nanopartículas Metálicas/química , Desenvolvimento Vegetal , Óxido de Zinco/química , Sulfato de Zinco/química , Antioxidantes/metabolismo , Biomarcadores , Coriandrum/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Nanopartículas Metálicas/ultraestrutura , Oxirredução , Fotossíntese , Compostos Fitoquímicos/química , Desenvolvimento Vegetal/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Análise Espectral , Óxido de Zinco/metabolismo , Óxido de Zinco/farmacologia , Sulfato de Zinco/metabolismo , Sulfato de Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA