Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.642
Filtrar
1.
Geobiology ; 22(3): e12600, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725144

RESUMO

Microbial sulfate reduction is central to the global carbon cycle and the redox evolution of Earth's surface. Tracking the activity of sulfate reducing microorganisms over space and time relies on a nuanced understanding of stable sulfur isotope fractionation in the context of the biochemical machinery of the metabolism. Here, we link the magnitude of stable sulfur isotopic fractionation to proteomic and metabolite profiles under different cellular energetic regimes. When energy availability is limited, cell-specific sulfate respiration rates and net sulfur isotope fractionation inversely covary. Beyond net S isotope fractionation values, we also quantified shifts in protein expression, abundances and isotopic composition of intracellular S metabolites, and lipid structures and lipid/water H isotope fractionation values. These coupled approaches reveal which protein abundances shift directly as a function of energy flux, those that vary minimally, and those that may vary independent of energy flux and likely do not contribute to shifts in S-isotope fractionation. By coupling the bulk S-isotope observations with quantitative proteomics, we provide novel constraints for metabolic isotope models. Together, these results lay the foundation for more predictive metabolic fractionation models, alongside interpretations of environmental sulfur and sulfate reducer lipid-H isotope data.


Assuntos
Desulfovibrio vulgaris , Proteômica , Isótopos de Enxofre , Isótopos de Enxofre/análise , Isótopos de Enxofre/metabolismo , Desulfovibrio vulgaris/metabolismo , Proteoma/metabolismo , Proteoma/análise , Metabolismo Energético , Metaboloma , Proteínas de Bactérias/metabolismo , Oxirredução , Sulfatos/metabolismo
2.
Environ Microbiol ; 26(5): e16628, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38757470

RESUMO

The degradation of freshwater systems by salt pollution is a threat to global freshwater resources. Salinization is commonly identified by increased specific conductance (conductivity), a proxy for salt concentrations. However, conductivity fails to account for the diversity of salts entering freshwaters and the potential implications this has on microbial communities and functions. We tested 4 types of salt pollution-MgCl2, MgSO4, NaCl, and Na2SO4-on bacterial taxonomic and functional α-, ß-diversity of communities originating from streams in two distinct localities (Nebraska [NE] and Ohio [OH], USA). Community responses depended on the site of origin, with NE and OH exhibiting more pronounced decreases in community diversity in response to Na2SO4 and MgCl2 than other salt amendments. A closer examination of taxonomic and functional diversity metrics suggests that core features of communities are more resistant to induced salt stress and that marginal features at both a population and functional level are more likely to exhibit significant structural shifts based on salt specificity. The lack of uniformity in community response highlights the need to consider the compositional complexities of salinization to accurately identify the ecological consequences of instances of salt pollution.


Assuntos
Bactérias , Água Doce , Microbiota , Salinidade , Cloreto de Sódio , Água Doce/microbiologia , Bactérias/efeitos dos fármacos , Bactérias/classificação , Bactérias/genética , Microbiota/efeitos dos fármacos , Ohio , Sulfatos/metabolismo , Biodiversidade , Sulfato de Magnésio/farmacologia , Cloreto de Magnésio/farmacologia
3.
J Plant Physiol ; 297: 154260, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701679

RESUMO

Sulfur is an essential nutrient for all plants, but also crucial for the nitrogen fixing symbiosis between legumes and rhizobia. Sulfur limitation can hamper nodule development and functioning. Until now, it remained unclear whether sulfate uptake into nodules is local or mainly systemic via the roots, and if long-distance transport from shoots to roots and into nodules occurs. Therefore, this work investigates the systemic regulation of sulfur transportation in the model legume Lotus japonicus by applying stable isotope labeling to a split-root system. Metabolite and protein extraction together with mass spectrometry analyses were conducted to determine the plants molecular phenotype and relative isotope protein abundances. Data show that treatments of varying sulfate concentrations including the absence of sulfate on one side of a nodulated root was not affecting nodule development as long as the other side of the root system was provided with sufficient sulfate. Concentrations of shoot metabolites did not indicate a significant stress response caused by a lack of sulfur. Further, we did not observe any quantitative changes in proteins involved in biological nitrogen fixation in response to the different sulfate treatments. Relative isotope abundance of 34S confirmed a long-distance transport of sulfur from one side of the roots to the other side and into the nodules. Altogether, these results provide evidence for a systemic long-distance transport of sulfur via the upper part of the plant to the nodules suggesting a demand driven sulfur distribution for the maintenance of symbiotic N-fixation.


Assuntos
Lotus , Proteínas de Plantas , Nódulos Radiculares de Plantas , Enxofre , Simbiose , Nódulos Radiculares de Plantas/metabolismo , Enxofre/metabolismo , Proteínas de Plantas/metabolismo , Lotus/metabolismo , Transporte Biológico , Fixação de Nitrogênio , Sulfatos/metabolismo , Raízes de Plantas/metabolismo
4.
Sci Total Environ ; 931: 172898, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38697543

RESUMO

The production of short-chain fatty acids (SCFAs) is constrained by substrate availability and the increased fractional pressure of H2 emitted by acidogenic/fermentative bacteria during anaerobic fermentation of waste activated sludge (WAS). This study introduced a novel approach employing zero-valent iron (ZVI)-activated sulfite pretreatment combined with H2-consuming sulfate-reducing bacteria (SRB) mediation to improve SCFAs, especially acetate production from WAS fermentation. Experimental results showed that the combined ZVI-activated sulfite and incomplete-oxidative SRB (io-SRB) process achieved a peak SCFAs production of 868.11 mg COD/L, with acetate accounting for 80.55 %, which was 7.90- and 2.18-fold higher than that obtained from raw WAS fermentation, respectively. This could be firstly attributed to the SO4- and OH generated by ZVI-activated sulfite, which significantly promoted WAS decomposition, e.g., soluble proteins and carbohydrates increased 14.3- and 10.8-fold, respectively, over those in raw WAS. The biodegradation of dissolved organic matter was subsequently enhanced by the synergistic interaction and H2 transfer between anaerobic fermentation bacteria (AFB) and io-SRB. The positive and negative correlations among AFB, nitrate-reducing bacteria (NRB) and the io-SRB consortia were revealed by molecular ecological network (MEN) and Mantel test. Moreover, the expression of functional genes was also improved, for instance, in relation to acetate formation, the relative abundances of phosphate acetyltransferase and acetate kinase was 0.002 % and 0.005 % higher than that in the control test, respectively. These findings emphasized the importance of sulfate radicals-based oxidation pretreatment and the collaborative relationships of multifunctional microbes on the value-added chemicals and energy recovery from sludge fermentation.


Assuntos
Ácidos Graxos Voláteis , Fermentação , Esgotos , Sulfitos , Eliminação de Resíduos Líquidos , Esgotos/microbiologia , Sulfitos/metabolismo , Ácidos Graxos Voláteis/metabolismo , Eliminação de Resíduos Líquidos/métodos , Sulfatos/metabolismo , Hidrogênio/metabolismo , Bactérias/metabolismo , Ferro/metabolismo
5.
Environ Microbiol Rep ; 16(3): e13263, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705733

RESUMO

Deep-sea methane seeps are amongst the most biologically productive environments on Earth and are often characterised by stable, low oxygen concentrations and microbial communities that couple the anaerobic oxidation of methane to sulfate reduction or iron reduction in the underlying sediment. At these sites, ferrous iron (Fe2+) can be produced by organoclastic iron reduction, methanotrophic-coupled iron reduction, or through the abiotic reduction by sulfide produced by the abundant sulfate-reducing bacteria at these sites. The prevalence of Fe2+in the anoxic sediments, as well as the availability of oxygen in the overlying water, suggests that seeps could also harbour communities of iron-oxidising microbes. However, it is unclear to what extent Fe2+ remains bioavailable and in solution given that the abiotic reaction between sulfide and ferrous iron is often assumed to scavenge all ferrous iron as insoluble iron sulfides and pyrite. Accordingly, we searched the sea floor at methane seeps along the Cascadia Margin for microaerobic, neutrophilic iron-oxidising bacteria, operating under the reasoning that if iron-oxidising bacteria could be isolated from these environments, it could indicate that porewater Fe2+ can persist is long enough for biology to outcompete pyritisation. We found that the presence of sulfate in our enrichment media muted any obvious microbially-driven iron oxidation with most iron being precipitated as iron sulfides. Transfer of enrichment cultures to sulfate-depleted media led to dynamic iron redox cycling relative to abiotic controls and sulfate-containing cultures, and demonstrated the capacity for biogenic iron (oxyhydr)oxides from a methane seep-derived community. 16S rRNA analyses revealed that removing sulfate drastically reduced the diversity of enrichment cultures and caused a general shift from a Gammaproteobacteria-domainated ecosystem to one dominated by Rhodobacteraceae (Alphaproteobacteria). Our data suggest that, in most cases, sulfur cycling may restrict the biological "ferrous wheel" in contemporary environments through a combination of the sulfur-adapted sediment-dwelling ecosystems and the abiotic reactions they influence.


Assuntos
Bactérias , Sedimentos Geológicos , Ferro , Metano , Oxirredução , Enxofre , Metano/metabolismo , Ferro/metabolismo , Enxofre/metabolismo , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Água do Mar/microbiologia , Água do Mar/química , Sulfetos/metabolismo , Sulfatos/metabolismo , RNA Ribossômico 16S/genética , Filogenia
6.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38658197

RESUMO

The dihydrogen (H2) sector is undergoing development and will require massive storage solutions. To minimize costs, the conversion of underground geological storage sites, such as deep aquifers, used for natural gas storage into future underground hydrogen storage sites is the favored scenario. However, these sites contain microorganisms capable of consuming H2, mainly sulfate reducers and methanogens. Methanogenesis is, therefore expected but its intensity must be evaluated. Here, in a deep aquifer used for underground geological storage, 17 sites were sampled, with low sulfate concentrations ranging from 21.9 to 197.8 µM and a slow renewal of formation water. H2-selected communities mainly were composed of the families Methanobacteriaceae and Methanothermobacteriaceae and the genera Desulfovibrio, Thermodesulfovibrio, and Desulforamulus. Experiments were done under different conditions, and sulfate reduction, as well as methanogenesis, were demonstrated in the presence of a H2 or H2/CO2 (80/20) gas phase, with or without calcite/site rock. These metabolisms led to an increase in pH up to 10.2 under certain conditions (without CO2). The results suggest competition for CO2 between lithoautotrophs and carbonate mineral precipitation, which could limit microbial H2 consumption.


Assuntos
Água Subterrânea , Hidrogênio , Metano , Gás Natural , Metano/metabolismo , Água Subterrânea/microbiologia , Hidrogênio/metabolismo , Sulfatos/metabolismo , Methanobacteriaceae/metabolismo , Methanobacteriaceae/genética , Methanobacteriaceae/crescimento & desenvolvimento , Dióxido de Carbono/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Concentração de Íons de Hidrogênio , Microbiologia da Água
7.
Environ Sci Pollut Res Int ; 31(21): 31213-31223, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38625470

RESUMO

The establishment of sulfate (SO42-) reduction during methanogenesis may considerably hinder the efficient energetic exploitation of methane, once removing sulfide from biogas is obligate and can be costly. In addition, sulfide generation can negatively impact the performance of methanogens by triggering substrate competition and sulfide inhibition. This study investigated the impacts of removing SO42- during fermentation on the performance of a second-stage methanogenic continuous reactor (R2), comparing the results with those obtained in a single-stage system (R1) fed with SO42--rich wastewater (SO42- of up to 400 mg L-1, COD/SO42- of 3.12-12.50). The organic load (OL) was progressively increased to 5.0 g COD d-1 in both reactors, showing completely discrepant performances. Sulfate-reducing bacteria outperformed methanogens in the consumption for organic matter during the start-up phase (OL = 2.5 g COD d-1) in R1, directing up to 73% of the electron flow to SO42- reduction. An efficient methanogenic activity was established in R1 only after decreasing the OL to 0.625 g COD d-1, after which methanogenesis prevailed by consuming ca. 90% of the removed COD. Nevertheless, high sulfide proportions (up to 3.1%) were measured in biogas. Conversely, methanogenesis was promptly established in R2, resulting in a methane-rich (> 80%) and sulfide-free biogas regardless of the operating condition. From an economic perspective, processing the biogas evolved from R2 would be cheaper, although the techno-economic impacts of managing the sulfur pollution in the fermentative reactor still need to be understood.


Assuntos
Reatores Biológicos , Metano , Sulfetos , Metano/metabolismo , Águas Residuárias/química , Sulfatos/metabolismo , Separação de Fases
8.
Chemosphere ; 357: 142054, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642774

RESUMO

Anthropogenic sulfate loading into otherwise low-sulfate freshwater systems can cause significant ecological consequences as a biogeochemical stressor. To address this challenge, in situ bioremediation technologies have been developed to leverage naturally occurring microorganisms that transform sulfate into sulfide rather than implementing resource-intensive physio-chemical processes. However, bioremediation technologies often require the supply of electron donors to facilitate biological sulfate reduction. Bioelectrochemical systems (BES) can be an alternative approach for supplying molecular hydrogen as an electron donor for sulfate-reducing bacteria through water electrolysis. Although the fundamental mechanisms behind BESs have been studied, limited research has evaluated the design and operational parameters of treatment systems when developing BESs on a scale relevant to environmental systems. This study aimed to develop an application-based mathematical model to evaluate the performance of BESs across a range of reactor configurations and operational modes. The model was based on sulfate transformation by hydrogenotrophic sulfate-reducing bacteria coupled with the recovery of solid iron sulfide species formed by the oxidative dissolution of dissolved ferrous iron from a stainless steel anode. Sulfate removal closely corresponded to the rate of electrolytic hydrogen production and hydraulic residence time but was less sensitive to specific microbial rate constants. The mathematical model results were compared to experimental data from a pilot-scale BES tested with nonacidic mine drainage as a case study. The close agreement between the mathematical model and the pilot-scale BES experiment highlights the efficacy of using a mathematical model as a tool to develop a conceptual design of a scaled-up treatment system.


Assuntos
Biodegradação Ambiental , Água Doce , Modelos Teóricos , Sulfatos , Poluentes Químicos da Água , Sulfatos/metabolismo , Água Doce/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Reatores Biológicos , Ecossistema , Oxirredução , Técnicas Eletroquímicas/métodos
9.
Water Res ; 256: 121590, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631241

RESUMO

The high-concentration sulfate (SO42-) in the antibiotic production wastewater hinders the anerobic methanogenic process and also proposes possible environmental risk. In this study, a novel single-chamber up-flow anaerobic bioelectrochemical reactor (UBER) was designed to realize simultaneous SO42- removal and elemental sulfur (S0) recovery. With the carbon felt, the cathode was installed underneath and the anode above to meet the different biological niches for sulfate reducing bacteria (SRB) and sulfur oxidizing bacteria (SOB). The bio-anode UBER (B-UBER) demonstrated a much higher average SO42- removal rate (SRR) of 113.2 ± 5.7 mg SO42--S L-1 d-1 coupled with a S0 production rate (SPR) of 54.4 ± 5.8 mg S0-S L-1 d-1 at the optimal voltage of 0.8 V than that in the abio-anode UBER (control reactor) (SRR = 86.6 ± 13.4 mg SO42--S L-1 d-1; SPR = 25.5 ± 9.7 mg S0-S L-1 d-1) under long-term operation. A large amount of biogenic S0 (about 72.2 mg g-1 VSS) was recovered in the B-UBER. The bio-anode, dominated by Thiovirga (SOB genus) and Acinetobacter (electrochemically active bacteria genus), exhibited a higher current density, lower overpotential, and lower internal resistance. C-type cytochromes mainly served as the crucial electron transfer mediator for both direct and indirect electron transfer, so that significantly increasing electron transfer capacity and biogenic S0 recovery. The reaction pathways of the sulfur transformation in the B-UBER were hypothesized that SRB utilized acetate as the main electron donor for SO42- reduction in the cathode zone and SOB transferred electrons to the anode or oxygen to produce biogenic S0 in the anode zone. This study proved a new pathway for biogenic S0 recovery and sulfate removal from sulfate-laden antibiotic production wastewater using a well-designed single-chamber bioelectrochemical reactor.


Assuntos
Antibacterianos , Reatores Biológicos , Sulfatos , Enxofre , Águas Residuárias , Águas Residuárias/química , Enxofre/metabolismo , Sulfatos/metabolismo , Sulfatos/química , Eliminação de Resíduos Líquidos/métodos , Eletrodos
10.
Artigo em Inglês | MEDLINE | ID: mdl-38632039

RESUMO

The mutant strain Halomonas bluephagenesis (TDH4A1B5P) was found to produce PHA under low-salt, non-sterile conditions, but the yield was low. To improve the yield, different nitrogen sources were tested. It was discovered that urea was the most effective nitrogen source for promoting growth during the stable stage, while ammonium sulfate was used during the logarithmic stage. The growth time of H. bluephagenesis (TDH4A1B5P) and its PHA content were significantly prolonged by the presence of sulfate ions. After 64 hr in a 5-L bioreactor supplemented with sulfate ions, the dry cell weight (DCW) of H. bluephagenesis weighed 132 g/L and had a PHA content of 82%. To promote the growth and PHA accumulation of H. bluephagenesis (TDH4A1B5P), a feeding regimen supplemented with nitrogen sources and sulfate ions with ammonium sodium sulfate was established in this study. The DCW was 124 g/L, and the PHA content accounted for 82.3% (w/w) of the DCW, resulting in a PHA yield of 101 g/L in a 30-L bioreactor using the optimized culture strategy. In conclusion, stimulating H. bluephagenesis (TDH4A1B5P) to produce PHA is a feasible and suitable strategy for all H. bluephagenesis.


Assuntos
Reatores Biológicos , Meios de Cultura , Halomonas , Nitrogênio , Poli-Hidroxialcanoatos , Sulfatos , Halomonas/metabolismo , Halomonas/crescimento & desenvolvimento , Halomonas/genética , Sulfatos/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Meios de Cultura/química , Nitrogênio/metabolismo , Sulfato de Amônio/metabolismo , Ureia/metabolismo , Fermentação
11.
Sci Total Environ ; 929: 172572, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38641113

RESUMO

Carbonate bound arsenic act as an important reservoir for arsenic (As) in nature aquifers. Sulfate-reducing bacteria (SRB), one of the dominant bacterial species in reductive groundwater, profoundly affects the biogeochemical cycling of As. However, whether and how SRB act on the migration and transformation of carbonate bound arsenic remains to be elucidated. Batch culture experiment was employed using filed collected arsenic bearing calcite to investigate the release and species transformation of As by SRB. We found that arsenic in the carbonate samples mostly exist as inorganic As(V) (93.92 %) and As(III). The present of SRB significantly facilitated arsenic release from carbonates with a maximum of 22.3 µg/L. The main release mechanisms of As by SRB include 1) calcite dissolution and the liberate of arsenic in calcite lattices, and 2) the break of H-bonds frees arsenic absorbed on carbonate surface. A redistribution of arsenic during culture incubation took place which may due to the precipitation of As2Sx or secondary FeAl minerals. To our best knowledge, it is the first experimental study focusing on the release of carbonate bound arsenic by SRB. This study provides new insights into the fate and transport of arsenic mediated by microorganism within high arsenic groundwater-sediment system.


Assuntos
Arsênio , Carbonatos , Água Subterrânea , Sulfatos , Poluentes Químicos da Água , Arsênio/metabolismo , Água Subterrânea/química , Água Subterrânea/microbiologia , Poluentes Químicos da Água/metabolismo , Carbonatos/metabolismo , Sulfatos/metabolismo , Bactérias/metabolismo , Carbonato de Cálcio/metabolismo , Carbonato de Cálcio/química
12.
Bioresour Technol ; 401: 130747, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677382

RESUMO

Sulfur-driven autotrophic denitrification (SdAD) is a promising nitrogen removing process, but its applications were generally constrained by conventional electron donors (i.e., thiosulfate (Na2S2O3)) with high valence and limited bioavailability. Herein, an immobilized electron donor by loading elemental sulfur on the surface of polyurethane foam (PFSF) was developed, and its feasibility for SdAD was investigated. The denitrification efficiency of PFSF was 97.3%, higher than that of Na2S2O3 (91.1%). Functional microorganisms (i.e., Thiobacillus and Sulfurimonas) and their metabolic activities (i.e., nir and nor) were substantially enhanced by PFSF. PFSF resulted in the enrichment of sulfate-reducing bacteria, which can reduce sulfate (SO42-). It attenuated the inhibitory effect of SO42-, whereas the generated product (hydrogen sulfide) also served as an electron donor for SdAD. According to the economic evaluation, PFSF exhibited strong market potential. This study proposes an efficient and low-cost immobilized electron donor for SdAD and provides theoretical support to its practical applications.


Assuntos
Processos Autotróficos , Desnitrificação , Nitrogênio , Enxofre , Enxofre/metabolismo , Enxofre/química , Elétrons , Thiobacillus/metabolismo , Poliuretanos/química , Sulfatos/metabolismo , Bactérias/metabolismo , Tiossulfatos/química , Tiossulfatos/farmacologia
13.
J Water Health ; 22(4): 746-756, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38678427

RESUMO

Bacteriological studies of well water mainly focus on aerobic and facultative aerobic coliform bacteria. However, the presence of obligate anaerobic bacteria in well water, especially sulfate-reducing bacteria (SRB), possible causative agents of some diseases, is often ignored. In this study, the presence of SRB and coexisting anaerobic bacteria with SRB in sulfate-reducing enrichment cultures obtained from 10 well water samples in Istanbul was investigated. A nested polymerase chain reaction-denaturing gradient gel electrophoresis strategy was performed to characterize the bacterial community structure of the enrichments. The most probable number method was used to determine SRB number. Out of 10, SRB growth was observed in only one (10%) enrichment culture and the SRB number was low (<10 cells/mL). Community members were identified as Desulfolutivibrio sulfodismutans and Anaerosinus sp. The results show that SRB coexist with Anaerosinus sp., and this may indicate poor water quality, posing a risk to public health. Furthermore, Anaerosinus sp., found in the human intestinal tract, may be used as an alternative anaerobic fecal indicator. It is worth noting that the detection of bacteria using molecular analyzes following enrichment culture techniques can bring new perspectives to determine the possible origin and presence of alternative microbial indicators in aquatic environments.


Assuntos
Sulfatos , Sulfatos/metabolismo , Poços de Água , Bactérias Redutoras de Enxofre/isolamento & purificação , Bactérias Redutoras de Enxofre/genética , Turquia , Bactérias Anaeróbias/isolamento & purificação , Microbiologia da Água , Reação em Cadeia da Polimerase
14.
Nat Commun ; 15(1): 3607, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684658

RESUMO

Heterotrophic activity, primarily driven by sulfate-reducing prokaryotes, has traditionally been linked to nitrogen fixation in the root zone of coastal marine plants, leaving the role of chemolithoautotrophy in this process unexplored. Here, we show that sulfur oxidation coupled to nitrogen fixation is a previously overlooked process providing nitrogen to coastal marine macrophytes. In this study, we recovered 239 metagenome-assembled genomes from a salt marsh dominated by the foundation plant Spartina alterniflora, including diazotrophic sulfate-reducing and sulfur-oxidizing bacteria. Abundant sulfur-oxidizing bacteria encode and highly express genes for carbon fixation (RuBisCO), nitrogen fixation (nifHDK) and sulfur oxidation (oxidative-dsrAB), especially in roots stressed by sulfidic and reduced sediment conditions. Stressed roots exhibited the highest rates of nitrogen fixation and expression level of sulfur oxidation and sulfate reduction genes. Close relatives of marine symbionts from the Candidatus Thiodiazotropha genus contributed ~30% and ~20% of all sulfur-oxidizing dsrA and nitrogen-fixing nifK transcripts in stressed roots, respectively. Based on these findings, we propose that the symbiosis between S. alterniflora and sulfur-oxidizing bacteria is key to ecosystem functioning of coastal salt marshes.


Assuntos
Fixação de Nitrogênio , Oxirredução , Raízes de Plantas , Poaceae , Enxofre , Áreas Alagadas , Enxofre/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Poaceae/metabolismo , Filogenia , Simbiose , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Metagenoma , Sulfatos/metabolismo , Nitrogênio/metabolismo
15.
Nat Commun ; 15(1): 3616, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684689

RESUMO

SLC26A2 is a vital solute carrier responsible for transporting essential nutritional ions, including sulfate, within the human body. Pathogenic mutations within SLC26A2 give rise to a spectrum of human diseases, ranging from lethal to mild symptoms. The molecular details regarding the versatile substrate-transporter interactions and the impact of pathogenic mutations on SLC26A2 transporter function remain unclear. Here, using cryo-electron microscopy, we determine three high-resolution structures of SLC26A2 in complexes with different substrates. These structures unveil valuable insights, including the distinct features of the homodimer assembly, the dynamic nature of substrate binding, and the potential ramifications of pathogenic mutations. This structural-functional information regarding SLC26A2 will advance our understanding of cellular sulfate transport mechanisms and provide foundations for future therapeutic development against various human diseases.


Assuntos
Microscopia Crioeletrônica , Transportadores de Sulfato , Humanos , Transportadores de Sulfato/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/química , Mutação , Ligação Proteica , Modelos Moleculares , Sulfatos/metabolismo , Multimerização Proteica , Células HEK293 , Sítios de Ligação
16.
Chemosphere ; 358: 141959, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608772

RESUMO

The sulfate-reduction process plays a crucial role in the biological valorization of SOx gases. However, a complete understanding of the sulfidogenic process in bioreactors is limited by the lack of technologies for characterizing the sulfate-reducing activity of immobilized biomass. In this work, we propose a flow-cell bioreactor (FCB) for characterizing sulfate-reducing biomass using H2S microsensors to monitor H2S production in real-time within a biofilm. To replace natural immobilization through extracellular polymeric substance production, sulfidogenic sludge was artificially immobilized using polymers. Physical and sulfate-reducing activity studies were performed to select a polymer-biomass matrix that maintained sulfate-reducing activity of biomass while providing strong microbial retention and mechanical strength. Several operational conditions of the sulfidogenic reactor allowed to obtain a H2S profiles under different inlet sulfate loads and, additionally, 3D mapping was assessed in order to perform a hydraulic characterization. Besides, the effects of artificial immobilization on biodiversity were investigated through the characterization of microbial communities. This study demonstrated the appropriateness of immobilized-biomass for characterization of sulfidogenic biomass in FCB using H2S electrochemical microsensors, and beneficial microbiological communities shifts as well as enrichment of sulfate-reducing bacteria have been confirmed.


Assuntos
Reatores Biológicos , Sulfeto de Hidrogênio , Esgotos , Sulfatos , Reatores Biológicos/microbiologia , Esgotos/microbiologia , Sulfeto de Hidrogênio/análise , Sulfatos/metabolismo , Sulfatos/análise , Biomassa , Biofilmes , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Bactérias/metabolismo , Oxirredução
17.
Proc Natl Acad Sci U S A ; 121(13): e2320410121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38498718

RESUMO

Biofilms of sulfate-reducing bacterium (SRB) like Desulfovibrio vulgaris Hildenborough (DvH) can facilitate metal corrosion in various industrial and environmental settings leading to substantial economic losses. Although the mechanisms of biofilm formation by DvH are not yet well understood, recent studies indicate the large adhesin, DvhA, is a key determinant of biofilm formation. The dvhA gene neighborhood resembles the biofilm-regulating Lap system of Pseudomonas fluorescens but is curiously missing the c-di-GMP-binding regulator LapD. Instead, DvH encodes an evolutionarily unrelated c-di-GMP-binding protein (DVU1020) that we hypothesized is functionally analogous to LapD. To study this unusual Lap system and overcome experimental limitations with the slow-growing anaerobe DvH, we reconstituted its predicted SRB Lap system in a P. fluorescens strain lacking its native Lap regulatory components (ΔlapGΔlapD). Our data support the model that DvhA is a cell surface-associated LapA-like adhesin with a N-terminal "retention module" and that DvhA is released from the cell surface upon cleavage by the LapG-like protease DvhG. Further, we demonstrate DVU1020 (named here DvhD) represents a distinct class of c-di-GMP-binding, biofilm-regulating proteins that regulates DvhG activity in response to intracellular levels of this second messenger. This study provides insight into the key players responsible for biofilm formation by DvH, thereby expanding our understanding of Lap-like systems.


Assuntos
Pseudomonas fluorescens , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Sulfatos/metabolismo , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Biofilmes , Proteínas de Transporte/metabolismo , GMP Cíclico/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
18.
Clin Chim Acta ; 557: 117860, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508572

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is a common infertility disorder which affects reproductive-aged women. However, metabolic change profiles of follicular fluid (FF) in lean and obese women diagnosed with and without PCOS remains unclear. METHODS: 95 infertile women were divided into four subgroups: LC (lean control), OC (overweight control), LP (lean PCOS), and OP (overweight PCOS). The FF samples were collected during oocyte retrieval and assayed by ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) metabolomics. RESULTS: A total of 236 metabolites were identified by metabolic analysis. The pathway enrichment analysis revealed that the glycerophospholipid metabolism (impact = 0.11182), ether lipid metabolism (impact = 0.14458), and primary bile acid biosynthesis (impact = 0.03267) were related to metabolic pathway between PCOS and control. Correlation analyses showed that epitestosterone sulfate was found positively correlated with fertilization rate in PCOS, while falcarindione, lucidone C. and notoginsenoside I was found to be negatively correlated. The combined four biomarkers including lucidone C, epitestosterone sulfate, falcarindione, and notoginsenoside I was better in predicting live birth rate, with AUC of 0.779. CONCLUSION: The follicular fluid of women with PCOS showed unique metabolic characteristics. Our study provides better identification of PCOS follicular fluid metabolic dynamics, which may serve as potential biomarkers of live birth.


Assuntos
Ciclopentanos , Infertilidade Feminina , Síndrome do Ovário Policístico , Gravidez , Feminino , Humanos , Adulto , Líquido Folicular/metabolismo , Nascido Vivo , Síndrome do Ovário Policístico/diagnóstico , Síndrome do Ovário Policístico/metabolismo , Infertilidade Feminina/diagnóstico , Espectrometria de Massa com Cromatografia Líquida , Sobrepeso , Epitestosterona/análise , Epitestosterona/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Fertilização in vitro , Biomarcadores/análise , Sulfatos/análise , Sulfatos/metabolismo
19.
Microbiol Spectr ; 12(4): e0333523, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38426746

RESUMO

Seagrasses can enhance nutrient mobilization in their rhizosphere via complex interactions with sediment redox conditions and microbial populations. Yet, limited knowledge exists on how seagrass-derived rhizosphere dynamics affect nitrogen cycling. Using optode and gel-sampler-based chemical imaging, we show that radial O2 loss (ROL) from rhizomes and roots leads to the formation of redox gradients around below-ground tissues of seagrass (Zostera marina), which are co-localized with regions of high ammonium concentrations in the rhizosphere. Combining such chemical imaging with fine-scale sampling for microbial community and gene expression analyses indicated that multiple biogeochemical pathways and microbial players can lead to high ammonium concentration within the oxidized regions of the seagrass rhizosphere. Symbiotic N2-fixing bacteria (Bradyrhizobium) were particularly abundant and expressed the diazotroph functional marker gene nifH in Z. marina rhizosphere areas with high ammonium concentrations. Such an association between Z. marina and Bradyrhizobium can facilitate ammonium mobilization, the preferred nitrogen source for seagrasses, enhancing seagrass productivity within nitrogen-limited environments. ROL also caused strong gradients of sulfide at anoxic/oxic interfaces in rhizosphere areas, where we found enhanced nifH transcription by sulfate-reducing bacteria. Furthermore, we found a high abundance of methylotrophic and sulfide-oxidizing bacteria in rhizosphere areas, where O2 was released from seagrass rhizomes and roots. These bacteria could play a beneficial role for the plants in terms of their methane and sulfide oxidation, as well as their formation of growth factors and phytohormones. ROL from below-ground tissues of seagrass, thus, seems crucial for ammonium production in the rhizosphere via stimulation of multiple diazotrophic associations. IMPORTANCE: Seagrasses are important marine habitats providing several ecosystem services in coastal waters worldwide, such as enhancing marine biodiversity and mitigating climate change through efficient carbon sequestration. Notably, the fitness of seagrasses is affected by plant-microbe interactions. However, these microscale interactions are challenging to study and large knowledge gaps prevail. Our study shows that redox microgradients in the rhizosphere of seagrass select for a unique microbial community that can enhance the ammonium availability for seagrass. We provide first experimental evidence that Rhizobia, including the symbiotic N2-fixing bacteria Bradyrhizobium, can contribute to the bacterial ammonium production in the seagrass rhizosphere. The release of O2 from rhizomes and roots also caused gradients of sulfide in rhizosphere areas with enhanced nifH transcription by sulfate-reducing bacteria. O2 release from seagrass root systems thus seems crucial for ammonium production in the rhizosphere via stimulation of multiple diazotrophic associations.


Assuntos
Ecossistema , Rizosfera , Bactérias/genética , Bactérias/metabolismo , Oxirredução , Sulfetos/metabolismo , Nitrogênio/metabolismo , Sulfatos/metabolismo
20.
Sci Total Environ ; 925: 171763, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38494030

RESUMO

Microbial biofilms are behind microbiologically influenced corrosion (MIC). Sessile cells in biofilms are many times more concentrated volumetrically than planktonic cells in the bulk fluids, thus providing locally high concentrations of chemicals. More importantly, "electroactive" sessile cells in biofilms are capable of utilizing extracellularly supplied electrons (e.g., from elemental Fe) for intracellular reduction of an oxidant such as sulfate in energy metabolism. MIC directly caused by anaerobic biofilms is classified into two main types based on their mechanisms: extracellular electron transfer MIC (EET-MIC) and metabolite MIC (M-MIC). Sulfate-reducing bacteria (SRB) are notorious for their corrosivity. They can cause EET-MIC in carbon steel, but they can also secrete biogenic H2S to corrode other metals such as Cu directly via M-MIC. This study investigated the use of conductive magnetic nanowires as electron mediators to accelerate and thus identify EET-MIC of C1020 by Desulfovibrio vulgaris. The presence of 40 ppm (w/w) nanowires in ATCC 1249 culture medium at 37 °C resulted in 45 % higher weight loss and 57 % deeper corrosion pits after 7-day incubation. Electrochemical tests using linear polarization resistance and potentiodynamic polarization supported the weight loss data trend. These findings suggest that conductive magnetic nanowires can be employed to identify EET-MIC. The use of insoluble 2 µm long nanowires proved that the extracellular section of the electron transfer process is a bottleneck in SRB MIC of carbon steel.


Assuntos
Desulfovibrio vulgaris , Desulfovibrio , Nanofios , Humanos , Aço , Elétrons , Carbono/metabolismo , Biofilmes , Desulfovibrio/metabolismo , Corrosão , Sulfatos/metabolismo , Redução de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA