Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37.809
Filtrar
1.
Math Biosci Eng ; 21(4): 5446-5455, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38872543

RESUMO

We study an extension of the stochastic SIS (Susceptible-Infectious-Susceptible) model in continuous time that accounts for variation amongst individuals. By examining its limiting behaviour as the population size grows we are able to exhibit conditions for the infection to become endemic.


Assuntos
Doenças Transmissíveis , Simulação por Computador , Epidemias , Processos Estocásticos , Humanos , Epidemias/estatística & dados numéricos , Doenças Transmissíveis/epidemiologia , Suscetibilidade a Doenças/epidemiologia , Densidade Demográfica , Número Básico de Reprodução/estatística & dados numéricos , Modelos Epidemiológicos , Algoritmos , Modelos Biológicos
2.
Gut Microbes ; 16(1): 2361490, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38860456

RESUMO

The role of gut microbiota in host defense against nontuberculous mycobacterial lung disease (NTM-LD) was poorly understood. Here, we showed significant gut microbiota dysbiosis in patients with NTM-LD. Reduced abundance of Prevotella copri was significantly associated with NTM-LD and its disease severity. Compromised TLR2 activation activity in feces and plasma in the NTM-LD patients was highlighted. In the antibiotics-treated mice as a study model, gut microbiota dysbiosis with reduction of TLR2 activation activity in feces, sera, and lung tissue occurred. Transcriptomic analysis demonstrated immunocompromised in lung which were closely associated with increased NTM-LD susceptibility. Oral administration of P. copri or its capsular polysaccharides enhanced TLR2 signaling, restored immune response, and ameliorated NTM-LD susceptibility. Our data highlighted the association of gut microbiota dysbiosis, systematically compromised immunity and NTM-LD development. TLR2 activation by P. copri or its capsular polysaccharides might help prevent NTM-LD.


Assuntos
Disbiose , Microbioma Gastrointestinal , Infecções por Mycobacterium não Tuberculosas , Receptor 2 Toll-Like , Disbiose/microbiologia , Animais , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Humanos , Camundongos , Masculino , Feminino , Infecções por Mycobacterium não Tuberculosas/microbiologia , Pessoa de Meia-Idade , Fezes/microbiologia , Idoso , Prevotella , Pneumopatias/microbiologia , Micobactérias não Tuberculosas , Suscetibilidade a Doenças , Camundongos Endogâmicos C57BL , Pulmão/microbiologia
3.
J Med Virol ; 96(6): e29751, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38884384

RESUMO

During the COVID-19 pandemic, non-pharmaceutical interventions were introduced to reduce exposure to respiratory viruses. However, these measures may have led to an "immunity debt" that could make the population more vulnerable. The goal of this study was to examine the transmission dynamics of seasonal influenza in the years 2023-2024. Respiratory samples from patients with influenza-like illness were collected and tested for influenza A and B viruses. The electronic medical records of index cases from October 2023 to March 2024 were analyzed to determine their clinical and epidemiological characteristics. A total of 48984 positive cases were detected, with a pooled prevalence of 46.9% (95% CI 46.3-47.5). This season saw bimodal peaks of influenza activity, with influenza A peaked in week 48, 2023, and influenza B peaked in week 1, 2024. The pooled positive rates were 28.6% (95% CI 55.4-59.6) and 18.3% (95% CI 18.0-18.7) for influenza A and B viruses, respectively. The median values of instantaneous reproduction number were 5.5 (IQR 3.0-6.7) and 4.6 (IQR 2.4-5.5), respectively. The hospitalization rate for influenza A virus (2.2%, 95% CI 2.0-2.5) was significantly higher than that of influenza B virus (1.1%, 95% CI 0.9-1.4). Among the 17 clinical symptoms studied, odds ratios of 15 symptoms were below 1 when comparing influenza A and B positive inpatients, with headache, weakness, and myalgia showing significant differences. This study provides an overview of influenza dynamics and clinical symptoms, highlighting the importance for individuals to receive an annual influenza vaccine.


Assuntos
Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza B , Influenza Humana , Estações do Ano , Humanos , Influenza Humana/epidemiologia , Masculino , Feminino , Vírus da Influenza B/isolamento & purificação , Vírus da Influenza B/genética , Adulto , Pessoa de Meia-Idade , Adolescente , Adulto Jovem , Criança , Idoso , Pré-Escolar , Pequim/epidemiologia , Lactente , COVID-19/epidemiologia , COVID-19/transmissão , Prevalência , Recém-Nascido , Suscetibilidade a Doenças , Idoso de 80 Anos ou mais , SARS-CoV-2
4.
Sci Rep ; 14(1): 13177, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849503

RESUMO

Overconsumption of dietary sugar can lead to many negative health effects including the development of Type 2 diabetes, metabolic syndrome, cardiovascular disease, and neurodegenerative disorders. Recently, the human intestinal microbiota, strongly associated with our overall health, has also been known to be affected by diet. However, mechanistic insight into the importance of the human intestinal microbiota and the effects of chronic sugar ingestion has not been possible largely due to the complexity of the human microbiome which contains hundreds of types of organisms. Here, we use an interspecies C. elegans/E. coli system, where E. coli are subjected to high sugar, then consumed by the bacterivore host C. elegans to become the microbiota. This glucose-fed microbiota results in a significant lifespan reduction accompanied by reduced healthspan (locomotion), reduced stress resistance, and changes in behavior and feeding. Lifespan reduction is also accompanied by two potential major contributors: increased intestinal bacterial density and increased concentration of reactive oxygen species. The glucose-fed microbiota accelerated the age-related development of intestinal cell permeability, intestinal distention, and dysregulation of immune effectors. Ultimately, the changes in the intestinal epithelium due to aging with the glucose-fed microbiota results in increased susceptibility to multiple bacterial pathogens. Taken together, our data reveal that chronic ingestion of sugar, such as a Western diet, has profound health effects on the host due to changes in the microbiota and may contribute to the current increased incidence of ailments including inflammatory bowel diseases as well as multiple age-related diseases.


Assuntos
Caenorhabditis elegans , Escherichia coli , Microbioma Gastrointestinal , Glucose , Mucosa Intestinal , Caenorhabditis elegans/microbiologia , Animais , Glucose/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Longevidade , Suscetibilidade a Doenças
5.
Zhonghua Yi Xue Za Zhi ; 104(22): 2041-2050, 2024 Jun 11.
Artigo em Chinês | MEDLINE | ID: mdl-38858214

RESUMO

Objective: To develop and evaluate the simplified Chinese versions of motion sickness susceptibility questionnaire (MSSQ)-long (MSSQ-L) and MSSQ-short (MSSQ-S). Methods: A cross-sectional study was conducted in May 2023 among 3 426 university students at North China University of Science and Technology. The Chinese versions of MSSQ-L and MSSQ-S were distributed, and item selection for Simplified Chinese versions of MSSQ-L and MSSQ-S was performed based on item response rates, item-total correlations, Cronbach's alpha coefficients, and standard deviations. Forty-five male and forty-five female participants were recruited from the initial survey population to complete Coriolis acceleration endurance testing and fill out the simplified Chinese versions of MSSQ-L and MSSQ-S, and Graybiel symptom severity score questionnaire. Internal consistency, external consistency, criterion validity, discriminant validity, and predictive accuracy for motion sickness severity were assessed. Results: A total of 3 111 valid responses were received for the Chinese versions of MSSQ, yielding an effective response rate of 90.8% (3 111/3 426). Among the 3 111 students surveyed, there were 965 males and 2 146 females, with a mean age of (19.5±1.4) years. The highest usage rates for item were observed for cars (98.9%, 3 077/3 111) and buses (98.8%, 3 073/3 111). The simplified Chinese versions of MSSQ-L and MSSQ-S consisted of four and eight items, respectively. The Cronbach's alpha coefficients were 0.900 and 0.953 for the simplified Chinese versions of MSSQ-S and MSSQ-L, respectively, with test-retest reliabilities of 0.895 and 0.908. Criterion validity coefficients were 0.814 and 0.765 for the simplified Chinese versions of MSSQ-S and MSSQ-L, respectively. In terms of discriminant validity, significant differences were observed between mild and moderate susceptibility groups [0(0, 3) vs 6(2, 10), P=0.006] and between moderate and severe susceptibility groups [6(2, 10) vs 9(6, 13), P=0.030] for the simplified Chinese version of MSSQ-S. Significant differences were also observed between mild and moderate susceptibility groups [5(0, 3) vs 7(3, 10), P=0.001], but not between moderate and severe susceptibility groups [7(3, 10) vs 7(3, 10), P=0.081] for simplified Chinese version of MSSQ-L. The overall predictive accuracy for motion sickness severity improved from 55.6% (50/90) to 62.2% (56/90) for the simplified Chinese version of MSSQ-S and from 54.4% (49/90) to 58.9% (53/90) for the simplified Chinese version of MSSQ-L, but with no statistically significant differences (both P>0.05). Conclusions: The simplified Chinese versions of MSSQ-L and MSSQ-S demonstrates good reliability and validity. The simplified Chinese version of MSSQ-S exhibits satisfactory discriminant validity, and can serve as a simple and efficient tool for assessing motion sickness susceptibility.


Assuntos
Enjoo devido ao Movimento , Humanos , Masculino , Feminino , Inquéritos e Questionários , Estudos Transversais , China , Adulto Jovem , Enjoo devido ao Movimento/diagnóstico , Reprodutibilidade dos Testes , Suscetibilidade a Doenças , Estudantes , Idioma , Povo Asiático
6.
Sci Rep ; 14(1): 12908, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839831

RESUMO

Avoiding physical contact is regarded as one of the safest and most advisable strategies to follow to reduce pathogen spread. The flip side of this approach is that a lack of social interactions may negatively affect other dimensions of health, like induction of immunosuppressive anxiety and depression or preventing interactions of importance with a diversity of microbes, which may be necessary to train our immune system or to maintain its normal levels of activity. These may in turn negatively affect a population's susceptibility to infection and the incidence of severe disease. We suggest that future pandemic modelling may benefit from relying on 'SIR+ models': epidemiological models extended to account for the benefits of social interactions that affect immune resilience. We develop an SIR+ model and discuss which specific interventions may be more effective in balancing the trade-off between minimizing pathogen spread and maximizing other interaction-dependent health benefits. Our SIR+ model reflects the idea that health is not just the mere absence of disease, but rather a state of physical, mental and social well-being that can also be dependent on the same social connections that allow pathogen spread, and the modelling of public health interventions for future pandemics should account for this multidimensionality.


Assuntos
Saúde Pública , Humanos , Suscetibilidade a Doenças , Modelos Epidemiológicos , Pandemias/prevenção & controle , Interação Social , COVID-19/epidemiologia , COVID-19/prevenção & controle
7.
BMC Plant Biol ; 24(1): 515, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851681

RESUMO

BACKGROUND: Plant-parasitic root-knot nematode (Meloidogyne incognita) causes global yield loss in agri- and horticultural crops. Nematode management options rely on chemical method. However, only a handful of nematicides are commercially available. Resistance breeding efforts are not sustainable because R gene sources are limited and nematodes have developed resistance-breaking populations against the commercially available Mi-1.2 gene-expressing tomatoes. RNAi crops that manage nematode infection are yet to be commercialized because of the regulatory hurdles associated with transgenic crops. The deployment of the CRISPR/Cas9 system to improve nematode tolerance (by knocking out the susceptibility factors) in plants has emerged as a feasible alternative lately. RESULTS: In the present study, a M. incognita-responsive susceptibility (S) gene, amino acid permease (AAP6), was characterized from the model plant Arabidodpsis thaliana by generating the AtAAP6 overexpression line, followed by performing the GUS reporter assay by fusing the promoter of AtAAP6 with the ß-glucuronidase (GUS) gene. Upon challenge inoculation with M. incognita, overexpression lines supported greater nematode multiplication, and AtAAP6 expression was inducible to the early stage of nematode infection. Next, using CRISPR/Cas9, AtAAP6 was selectively knocked out without incurring any growth penalty in the host plant. The 'Cas9-free' homozygous T3 line was challenge inoculated with M. incognita, and CRISPR-edited A. thaliana plants exhibited considerably reduced susceptibility to nematode infection compared to the non-edited plants. Additionally, host defense response genes were unaltered between edited and non-edited plants, implicating the direct role of AtAAP6 towards nematode susceptibility. CONCLUSION: The present findings enrich the existing literature on CRISPR/Cas9 research in plant-nematode interactions, which is quite limited currently while compared with the other plant-pathogen interaction systems.


Assuntos
Arabidopsis , Sistemas CRISPR-Cas , Doenças das Plantas , Tylenchoidea , Animais , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Arabidopsis/genética , Arabidopsis/parasitologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Resistência à Doença/genética , Suscetibilidade a Doenças , Técnicas de Inativação de Genes , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/parasitologia , Tylenchoidea/fisiologia
8.
Front Immunol ; 15: 1359380, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881892

RESUMO

Little studies evaluated the effectiveness of booster vaccination of inactivated COVID-19 vaccines against being infected (susceptibility), infecting others (infectiousness), and spreading the disease from one to another (transmission). Therefore, we conducted a retrospective cohort study to evaluate the effectiveness of booster vaccination of inactivated COVID-19 vaccines against susceptibility, infectiousness, and transmission in Shenzhen during an Omicron BA.2 outbreak period from 1 February to 21 April 2022. The eligible individuals were classified as four sub-cohorts according to the inactivated COVID-19 vaccination status of both the close contacts and their index cases: group 2-2, fully vaccinated close contacts seeded by fully vaccinated index cases (reference group); group 2-3, booster-vaccinated close contacts seeded by fully vaccinated index cases; group 3-2, fully vaccinated close contacts seeded by booster-vaccinated index cases; and group 3-3, booster-vaccinated close contacts seeded by booster-vaccinated index cases. Univariate and multivariate logistic regression analyses were applied to estimate the effectiveness of booster vaccination. The sample sizes of groups 2-2, 2-3, 3-2, and 3-3 were 846, 1,115, 1,210, and 2,417, respectively. We found that booster vaccination had an effectiveness against infectiousness of 44.9% (95% CI: 19.7%, 62.2%) for the adults ≥ 18 years, 62.2% (95% CI: 32.0%, 78.9%) for the female close contacts, and 60.8% (95% CI: 38.5%, 75.1%) for the non-household close contacts. Moreover, booster vaccination had an effectiveness against transmission of 29.0% (95% CI: 3.2%, 47.9%) for the adults ≥ 18 years, 38.9% (95% CI: 3.3%, 61.3%) for the female close contacts, and 45.8% (95% CI: 22.1%, 62.3%) for the non-household close contacts. However, booster vaccination against susceptibility did not provide any protective effect. In summary, this study confirm that booster vaccination of the inactivated COVID-19 vaccines provides low level of protection and moderate level of protection against Omicron BA.2 transmission and infectiousness, respectively. However, booster vaccination does not provide any protection against Omicron BA.2 susceptibility.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , SARS-CoV-2 , Vacinas de Produtos Inativados , Humanos , COVID-19/prevenção & controle , COVID-19/transmissão , COVID-19/imunologia , COVID-19/epidemiologia , COVID-19/virologia , Feminino , Estudos Retrospectivos , SARS-CoV-2/imunologia , Masculino , China/epidemiologia , Adulto , Vacinas contra COVID-19/imunologia , Pessoa de Meia-Idade , Vacinas de Produtos Inativados/imunologia , Adulto Jovem , Idoso , Suscetibilidade a Doenças , Adolescente , Eficácia de Vacinas , Vacinação
9.
Sci Rep ; 14(1): 14208, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902252

RESUMO

The COVID-19 disease is an ongoing global health concern. Although vaccination provides some protection, people are still susceptible to re-infection. Ostensibly, certain populations or clinical groups may be more vulnerable. Factors causing these differences are unclear and whilst socioeconomic and cultural differences are likely to be important, human genetic factors could influence susceptibility. Experimental studies indicate SARS-CoV-2 uses innate immune suppression as a strategy to speed-up entry and replication into the host cell. Therefore, it is necessary to understand the impact of variants in immunity-associated human proteins on susceptibility to COVID-19. In this work, we analysed missense coding variants in several SARS-CoV-2 proteins and their human protein interactors that could enhance binding affinity to SARS-CoV-2. We curated a dataset of 19 SARS-CoV-2: human protein 3D-complexes, from the experimentally determined structures in the Protein Data Bank and models built using AlphaFold2-multimer, and analysed the impact of missense variants occurring in the protein-protein interface region. We analysed 468 missense variants from human proteins and 212 variants from SARS-CoV-2 proteins and computationally predicted their impacts on binding affinities for the human viral protein complexes. We predicted a total of 26 affinity-enhancing variants from 13 human proteins implicated in increased binding affinity to SARS-CoV-2. These include key-immunity associated genes (TOMM70, ISG15, IFIH1, IFIT2, RPS3, PALS1, NUP98, AXL, ARF6, TRIMM, TRIM25) as well as important spike receptors (KREMEN1, AXL and ACE2). We report both common (e.g., Y13N in IFIH1) and rare variants in these proteins and discuss their likely structural and functional impact, using information on known and predicted functional sites. Potential mechanisms associated with immune suppression implicated by these variants are discussed. Occurrence of certain predicted affinity-enhancing variants should be monitored as they could lead to increased susceptibility and reduced immune response to SARS-CoV-2 infection in individuals/populations carrying them. Our analyses aid in understanding the potential impact of genetic variation in immunity-associated proteins on COVID-19 susceptibility and help guide drug-repurposing strategies.


Assuntos
COVID-19 , Mutação de Sentido Incorreto , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , COVID-19/genética , COVID-19/virologia , COVID-19/imunologia , Reposicionamento de Medicamentos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Ligação Proteica , Predisposição Genética para Doença , Suscetibilidade a Doenças , Tratamento Farmacológico da COVID-19
10.
Virus Res ; 346: 199399, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38823688

RESUMO

Coronaviruses have caused three severe epidemics since the start of the 21st century: SARS, MERS and COVID-19. The severity of the ongoing COVID-19 pandemic and increasing likelihood of future coronavirus outbreaks motivates greater understanding of factors leading to severe coronavirus disease. We screened ten strains from the Collaborative Cross mouse genetic reference panel and identified strains CC006/TauUnc (CC006) and CC044/Unc (CC044) as coronavirus-susceptible and resistant, respectively, as indicated by variable weight loss and lung congestion scores four days post-infection. We generated a genetic mapping population of 755 CC006xCC044 F2 mice and exposed the mice to one of three genetically distinct mouse-adapted coronaviruses: clade 1a SARS-CoV MA15 (n=391), clade 1b SARS-CoV-2 MA10 (n=274), and clade 2 HKU3-CoV MA (n=90). Quantitative trait loci (QTL) mapping in SARS-CoV MA15- and SARS-CoV-2 MA10-infected F2 mice identified genetic loci associated with disease severity. Specifically, we identified seven loci associated with variation in outcome following infection with either virus, including one, HrS43, that is present in both groups. Three of these QTL, including HrS43, were also associated with HKU3-CoV MA outcome. HrS43 overlaps with a QTL previously reported by our lab that is associated with SARS-CoV MA15 outcome in CC011xCC074 F2 mice and is also syntenic with a human chromosomal region associated with severe COVID-19 outcomes in humans GWAS. The results reported here provide: (a) additional support for the involvement of this locus in SARS-CoV MA15 infection, (b) the first conclusive evidence that this locus is associated with susceptibility across the Sarbecovirus subgenus, and (c) demonstration of the relevance of mouse models in the study of coronavirus disease susceptibility in humans.


Assuntos
COVID-19 , Modelos Animais de Doenças , Locos de Características Quantitativas , SARS-CoV-2 , Animais , Camundongos , SARS-CoV-2/genética , COVID-19/virologia , Suscetibilidade a Doenças , Humanos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Mapeamento Cromossômico , Infecções por Coronavirus/virologia , Feminino , Camundongos de Cruzamento Colaborativo/genética , Predisposição Genética para Doença , Masculino
11.
Artigo em Inglês | MEDLINE | ID: mdl-38928968

RESUMO

The effects of exposure to airborne particulate matter with a size of 10 µm or less (PM10) on C57BL/6 mouse corneas, their response to Pseudomonas aeruginosa (PA) infection, and the protective effects of SKQ1 were determined. C57BL/6 mouse corneas receiving PBS or SKQ1 were exposed to control (air) or PM10 for 2 weeks, infected, and the disease was documented by clinical score, PMN quantitation, bacterial plate count, RT-PCR and Western blot. PBS-treated, PM10-exposed corneas did not differ at 1 day postinfection (dpi), but exhibited earlier (3 dpi) corneal thinning compared to controls. By 3 dpi, PM10 significantly increased corneal mRNA levels of several pro-inflammatory cytokines, but decreased IL-10, NQO1, GR1, GPX4, and Nrf2 over control. SKQ1 reversed these effects and Western blot selectively confirmed the RT-PCR results. PM10 resulted in higher viable bacterial plate counts at 1 and 3 dpi, but SKQ1 reduced them at 3 dpi. PM10 significantly increased MPO in the cornea at 3 dpi and was reduced by SKQ1. SKQ1, used as an adjunctive treatment to moxifloxacin, was not significantly different from moxifloxacin alone. Exposure to PM10 increased the susceptibility of C57BL/6 to PA infection; SKQ1 significantly reversed these effects, but was not effective as an adjunctive treatment.


Assuntos
Córnea , Camundongos Endogâmicos C57BL , Material Particulado , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Material Particulado/toxicidade , Pseudomonas aeruginosa/efeitos dos fármacos , Camundongos , Córnea/efeitos dos fármacos , Córnea/microbiologia , Suscetibilidade a Doenças , Citocinas/metabolismo , Feminino , Poluentes Atmosféricos/toxicidade
12.
Front Immunol ; 15: 1304603, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933269

RESUMO

Nervous necrosis virus (NNV) is one of the greatest threats to Mediterranean aquaculture, infecting more than 170 fish species and causing mortalities up to 100% in larvae and juveniles of susceptible species. Intensive aquaculture implies stressed conditions that affect the welfare of fish and their ability to fight against infections. In fact, a higher susceptibility to NNV has been related to poor welfare conditions. In order to analyze the physiological link between stressed conditions and increased susceptibility to NNV, as well as its possible role in the pathogenesis of this disease, we reared shi drum (Umbrina cirrosa) juveniles (30.7 ± 3.10 g body weight), which are expected to be asymptomatic upon NNV infection, at three stocking densities (2, 15, and 30 kg/m3) for 27 days and subsequently challenged them with NNV. We firstly characterized the stressed conditions of the specimens before and after infection and recorded the mortalities, demonstrating that stressed specimens reared at 30 kg/m3 suffered mortalities. However, the viral loads in different tissues were similar in all experimental groups, allowing horizontal and vertical transmission of the virus from asymptomatic specimens. All of these data suggest that shi drum tolerates wide ranges of culture densities, although high densities might be a setback for controlling NNV outbreaks in this species. In an attempt to understand the molecular pathways orchestrating this susceptibility change in stressed conditions, we performed a transcriptomic analysis of four tissues under mock- and NNV-infected conditions. In addition to the modification of the exceptive pathways such as cell adhesion, leukocyte migration, cytokine interaction, cell proliferation and survival, and autophagy, we also observed a heavy alteration of the neuroactive ligand-receptor pathway in three of the four tissues analyzed. Our data also point to some of the receptors of this pathway as potential candidates for future pharmacological treatment to avoid the exacerbated immune response that could trigger fish mortalities upon NNV infection.


Assuntos
Doenças dos Peixes , Nodaviridae , Infecções por Vírus de RNA , Animais , Nodaviridae/fisiologia , Doenças dos Peixes/virologia , Doenças dos Peixes/imunologia , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/veterinária , Suscetibilidade a Doenças , Aquicultura , Carga Viral
13.
Microb Pathog ; 192: 106717, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38806136

RESUMO

There are no other bovine coronavirus (BCoV) infection models except calves, which makes efficacy evaluation of vaccines and pathogenic mechanism research of BCoV inconvenient owing to their high value and inconvenient operation. This study aimed to establish a mouse model of BCoV infection. BCoV was used to infect 4-week-old male BALB/c mice and the optimal infection conditions were screened, including the following infection routes: gavage, intraperitoneal injection, and tail vein injection at doses of 1 × 108 TCID50, 2 × 108 TCID50 and 4 × 108 TCID50. Using the optimal infection conditions, BALB/c mice were infected with BCoV, and their body weight, blood routine, inflammatory factors, autopsy, virus distribution, and viral load were measured at 1, 3, 5, and 7 days after infection. The results showed that the optimal conditions for infecting BALB/c mice with BCoV HLJ-325 strain were continuous oral gavage for 3 days with a dose of 4 × 108 TCID50. On the 7th day after infection, there was significant extensive consolidation of the lungs and thinning of the colon wall. Significant inflammation was observed in various organs, especially in the colon and alveoli, where a large number of inflammatory cells infiltrate. Both BCoV Ag and nucleic acid are positive in visceral organs. The viral load in the colon and lungs was significantly higher than that in the other organs (p < 0.001). BCoV-infected mice showed a decreasing trend in body weight starting from day 5, and there was a significant difference compared to the control group on days 6 and 7 (p < 0.001). The total number of white blood cells and lymphocytes began to decrease and was significantly lower than that in the control group 24 h after infection (p < 0.001), and gradually returned to the control level. The cytokine TNF-α, IL-1ß, and IL-6 showed an increasing trend, significantly higher than the control group on day 5 and 7 (p < 0.001). These results indicate that the BCoV HLJ-325 strain can infect BALB/c mice and cause inflammatory reactions and tissue lesions. The most significant effect was observed on the seventh day after infection with a dose of 4 × 108 TCID50 and three consecutive gavages. This study established, for the first time, a BALB/c mouse model of BCoV infection, providing a technical means for evaluating the immune efficacy of BCoV vaccines and studying their pathogenic mechanisms.


Assuntos
Infecções por Coronavirus , Coronavirus Bovino , Modelos Animais de Doenças , Pulmão , Camundongos Endogâmicos BALB C , Carga Viral , Animais , Camundongos , Masculino , Pulmão/patologia , Pulmão/virologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Bovinos , Suscetibilidade a Doenças , Colo/patologia , Colo/virologia , Interleucina-6/sangue , Interleucina-1beta , Fator de Necrose Tumoral alfa , Citocinas/metabolismo , Citocinas/sangue , Peso Corporal
14.
EBioMedicine ; 104: 105154, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749300

RESUMO

Immune therapies represented by immune checkpoint blockade (ICB) have significantly transformed cancer treatment. However, the effectiveness of these treatments depends on the status of T cells. T cell exhaustion, characterized by diminished effector function, increased expression of co-inhibitory receptors, and clonal deletion, emerges as a hypofunctional state resulting from chronic exposure to antigens, posing an obstacle to ICB therapy. Several studies have deeply explored T cell exhaustion, providing innovative insights and correlating T cell exhaustion with tertiary lymphoid structures (TLS) formation. TLS, lymphocyte aggregates formed in non-lymphoid tissues amid chronic inflammation, serve as pivotal reservoirs for anti-tumour immunity. Here, we underscore the pivotal role of T cell exhaustion as a signalling mechanism in reinvigorating anti-tumour immunity by turbocharging cancer-immunity (CI) cycle, particularly when tumour becomes unmanageable. Building upon this concept, we summarize emerging immunotherapeutic strategies aimed at enhancing the response rate to ICB therapy and improving patient prognosis.


Assuntos
Neoplasias , Linfócitos T , Estruturas Linfoides Terciárias , Humanos , Estruturas Linfoides Terciárias/imunologia , Estruturas Linfoides Terciárias/patologia , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Neoplasias/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Microambiente Tumoral/imunologia , Imunoterapia/métodos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Transdução de Sinais , Suscetibilidade a Doenças , Exaustão das Células T
15.
Mol Cancer ; 23(1): 106, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760832

RESUMO

Aging and cancer exhibit apparent links that we will examine in this review. The null hypothesis that aging and cancer coincide because both are driven by time, irrespective of the precise causes, can be confronted with the idea that aging and cancer share common mechanistic grounds that are referred to as 'hallmarks'. Indeed, several hallmarks of aging also contribute to carcinogenesis and tumor progression, but some of the molecular and cellular characteristics of aging may also reduce the probability of developing lethal cancer, perhaps explaining why very old age (> 90 years) is accompanied by a reduced incidence of neoplastic diseases. We will also discuss the possibility that the aging process itself causes cancer, meaning that the time-dependent degradation of cellular and supracellular functions that accompanies aging produces cancer as a byproduct or 'age-associated disease'. Conversely, cancer and its treatment may erode health and drive the aging process, as this has dramatically been documented for cancer survivors diagnosed during childhood, adolescence, and young adulthood. We conclude that aging and cancer are connected by common superior causes including endogenous and lifestyle factors, as well as by a bidirectional crosstalk, that together render old age not only a risk factor of cancer but also an important parameter that must be considered for therapeutic decisions.


Assuntos
Envelhecimento , Neoplasias , Humanos , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/etiologia , Animais , Suscetibilidade a Doenças , Fatores de Risco
16.
Nature ; 629(8012): 652-659, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693261

RESUMO

The gut microbiota operates at the interface of host-environment interactions to influence human homoeostasis and metabolic networks1-4. Environmental factors that unbalance gut microbial ecosystems can therefore shape physiological and disease-associated responses across somatic tissues5-9. However, the systemic impact of the gut microbiome on the germline-and consequently on the F1 offspring it gives rise to-is unexplored10. Here we show that the gut microbiota act as a key interface between paternal preconception environment and intergenerational health in mice. Perturbations to the gut microbiota of prospective fathers increase the probability of their offspring presenting with low birth weight, severe growth restriction and premature mortality. Transmission of disease risk occurs via the germline and is provoked by pervasive gut microbiome perturbations, including non-absorbable antibiotics or osmotic laxatives, but is rescued by restoring the paternal microbiota before conception. This effect is linked with a dynamic response to induced dysbiosis in the male reproductive system, including impaired leptin signalling, altered testicular metabolite profiles and remapped small RNA payloads in sperm. As a result, dysbiotic fathers trigger an elevated risk of in utero placental insufficiency, revealing a placental origin of mammalian intergenerational effects. Our study defines a regulatory 'gut-germline axis' in males, which is sensitive to environmental exposures and programmes offspring fitness through impacting placenta function.


Assuntos
Suscetibilidade a Doenças , Disbiose , Pai , Microbioma Gastrointestinal , Insuficiência Placentária , Lesões Pré-Natais , Espermatozoides , Animais , Feminino , Masculino , Camundongos , Gravidez , Disbiose/complicações , Disbiose/microbiologia , Microbioma Gastrointestinal/fisiologia , Leptina/metabolismo , Camundongos Endogâmicos C57BL , Placenta/metabolismo , Placenta/fisiopatologia , Insuficiência Placentária/etiologia , Insuficiência Placentária/metabolismo , Insuficiência Placentária/fisiopatologia , Resultado da Gravidez , Lesões Pré-Natais/etiologia , Lesões Pré-Natais/metabolismo , Lesões Pré-Natais/fisiopatologia , Transdução de Sinais , Espermatozoides/metabolismo , Testículo/metabolismo , Testículo/fisiopatologia , Suscetibilidade a Doenças/etiologia
17.
Eur J Haematol ; 113(1): 4-15, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38698678

RESUMO

Chronic lymphocytic leukemia (CLL) is a mature-type B cell malignancy correlated with significant changes and defects in both the innate and adaptive arms of the immune system, together with a high dependency on the tumor microenvironment. Overall, the tumor microenvironment (TME) in CLL provides a supportive niche for leukemic cells to grow and survive, and interactions between CLL cells and the TME can contribute to disease progression and treatment resistance. Therefore, the increasing knowledge of the complicated interaction between immune cells and tumor cells, which is responsible for immune evasion and cancer progression, has provided an opportunity for the development of new therapeutic approaches. In this review, we outline tumor microenvironment-driven contributions to the licensing of immune escape mechanisms in CLL patients.


Assuntos
Comunicação Celular , Leucemia Linfocítica Crônica de Células B , Evasão Tumoral , Microambiente Tumoral , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/etiologia , Leucemia Linfocítica Crônica de Células B/patologia , Microambiente Tumoral/imunologia , Humanos , Comunicação Celular/imunologia , Animais , Suscetibilidade a Doenças
18.
J Math Biol ; 89(1): 1, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709376

RESUMO

In this paper, we introduce the notion of practically susceptible population, which is a fraction of the biologically susceptible population. Assuming that the fraction depends on the severity of the epidemic and the public's level of precaution (as a response of the public to the epidemic), we propose a general framework model with the response level evolving with the epidemic. We firstly verify the well-posedness and confirm the disease's eventual vanishing for the framework model under the assumption that the basic reproduction number R 0 < 1 . For R 0 > 1 , we study how the behavioural response evolves with epidemics and how such an evolution impacts the disease dynamics. More specifically, when the precaution level is taken to be the instantaneous best response function in literature, we show that the endemic dynamic is convergence to the endemic equilibrium; while when the precaution level is the delayed best response, the endemic dynamic can be either convergence to the endemic equilibrium, or convergence to a positive periodic solution. Our derivation offers a justification/explanation for the best response used in some literature. By replacing "adopting the best response" with "adapting toward the best response", we also explore the adaptive long-term dynamics.


Assuntos
Número Básico de Reprodução , Doenças Transmissíveis , Epidemias , Conceitos Matemáticos , Modelos Biológicos , Humanos , Número Básico de Reprodução/estatística & dados numéricos , Epidemias/estatística & dados numéricos , Epidemias/prevenção & controle , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/transmissão , Suscetibilidade a Doenças/epidemiologia , Modelos Epidemiológicos , Evolução Biológica , Simulação por Computador
19.
Function (Oxf) ; 5(3): zqae009, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706961

RESUMO

Global prevalence of hypertension is on the rise, burdening healthcare, especially in developing countries where infectious diseases, such as malaria, are also rampant. Whether hypertension could predispose or increase susceptibility to malaria, however, has not been extensively explored. Previously, we reported that hypertension is associated with abnormal red blood cell (RBC) physiology and anemia. Since RBC are target host cells for malarial parasite, Plasmodium, we hypothesized that hypertensive patients with abnormal RBC physiology are at greater risk or susceptibility to Plasmodium infection. To test this hypothesis, normotensive (BPN/3J) and hypertensive (BPH/2J) mice were characterized for their RBC physiology and subsequently infected with Plasmodium yoelii (P. yoelii), a murine-specific non-lethal strain. When compared to BPN mice, BPH mice displayed microcytic anemia with RBC highly resistant to osmotic hemolysis. Further, BPH RBC exhibited greater membrane rigidity and an altered lipid composition, as evidenced by higher levels of phospholipids and saturated fatty acid, such as stearate (C18:0), along with lower levels of polyunsaturated fatty acid like arachidonate (C20:4). Moreover, BPH mice had significantly greater circulating Ter119+ CD71+ reticulocytes, or immature RBC, prone to P. yoelii infection. Upon infection with P. yoelii, BPH mice experienced significant body weight loss accompanied by sustained parasitemia, indices of anemia, and substantial increase in systemic pro-inflammatory mediators, compared to BPN mice, indicating that BPH mice were incompetent to clear P. yoelii infection. Collectively, these data demonstrate that aberrant RBC physiology observed in hypertensive BPH mice contributes to an increased susceptibility to P. yoelii infection and malaria-associated pathology.


Assuntos
Eritrócitos , Hipertensão , Malária , Plasmodium yoelii , Animais , Malária/imunologia , Malária/parasitologia , Malária/complicações , Malária/sangue , Malária/fisiopatologia , Camundongos , Eritrócitos/parasitologia , Eritrócitos/metabolismo , Suscetibilidade a Doenças , Masculino , Anemia/parasitologia , Modelos Animais de Doenças , Hemólise
20.
Mol Genet Genomics ; 299(1): 60, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801463

RESUMO

Type 2 diabetes (DM2) is an increasingly prevalent disease that challenges tuberculosis (TB) control strategies worldwide. It is significant that DM2 patients with poor glycemic control (PDM2) are prone to developing tuberculosis. Furthermore, elucidating the molecular mechanisms that govern this susceptibility is imperative to address this problem. Therefore, a pilot transcriptomic study was performed. Human blood samples from healthy controls (CTRL, HbA1c < 6.5%), tuberculosis (TB), comorbidity TB-DM2, DM2 (HbA1c 6.5-8.9%), and PDM2 (HbA1c > 10%) groups (n = 4 each) were analyzed by differential expression using microarrays. We use a network strategy to identify potential molecular patterns linking the differentially expressed genes (DEGs) specific for TB-DM2 and PDM2 (p-value < 0.05, fold change > 2). We define OSM, PRKCD, and SOCS3 as key regulatory genes (KRGs) that modulate the immune system and related pathways. RT-qPCR assays confirmed upregulation of OSM, PRKCD, and SOCS3 genes (p < 0.05) in TB-DM2 patients (n = 18) compared to CTRL, DM2, PDM2, or TB groups (n = 17, 19, 15, and 9, respectively). Furthermore, OSM, PRKCD, and SOCS3 were associated with PDM2 susceptibility pathways toward TB-DM2 and formed a putative protein-protein interaction confirmed in STRING. Our results reveal potential molecular patterns where OSM, PRKCD, and SOCS3 are KRGs underlying the compromised immune response and susceptibility of patients with PDM2 to develop tuberculosis. Therefore, this work paved the way for fundamental research of new molecular targets in TB-DM2. Addressing their cellular implications, and the impact on the diagnosis, treatment, and clinical management of TB-DM2 could help improve the strategy to end tuberculosis for this vulnerable population.


Assuntos
Diabetes Mellitus Tipo 2 , Proteína 3 Supressora da Sinalização de Citocinas , Tuberculose , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Projetos Piloto , Tuberculose/genética , Tuberculose/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Controle Glicêmico , Perfilação da Expressão Gênica , Idoso , Adulto , Redes Reguladoras de Genes , Estudos de Casos e Controles , Transcriptoma/genética , Suscetibilidade a Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA