Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.388
Filtrar
1.
Sci Rep ; 14(1): 11010, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745019

RESUMO

The presence of incompatibility alleles in primary amphidiploids constitutes a reproductive barrier in newly synthesized wheat-rye hybrids. To overcome this barrier, the genome stabilization process includes large-scale chromosome rearrangements. In incompatible crosses resulting in fertile amphidiploids, the elimination of one of the incompatible alleles Eml-A1 or Eml-R1b can occur already in the somatic tissue of the wheat × rye hybrid embryo. We observed that the interaction of incompatible loci Eml-A1 of wheat and Eml-R1b of rye after overcoming embryo lethality leads to hybrid sterility in primary triticale. During subsequent seed reproductions (R1, R2 or R3) most of the chromosomes of A, B, D and R subgenomes undergo rearrangement or eliminations to increase the fertility of the amphidiploid by natural selection. Genotyping-by-sequencing (GBS) coverage analysis showed that improved fertility is associated with the elimination of entire and partial chromosomes carrying factors that either cause the disruption of plant development in hybrid plants or lead to the restoration of the euploid number of chromosomes (2n = 56) in the absence of one of the incompatible alleles. Highly fertile offspring obtained in compatible and incompatible crosses can be successfully adapted for the production of triticale pre-breeding stocks.


Assuntos
Cromossomos de Plantas , Cruzamentos Genéticos , Hibridização Genética , Secale , Triticum , Triticum/genética , Secale/genética , Cromossomos de Plantas/genética , Alelos , Técnicas de Genotipagem
2.
BMC Genom Data ; 25(1): 44, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714950

RESUMO

BACKGROUND: China has thousands years of goat breeding and abundant goat genetic resources. Additionally, the Hainan black goat is one of the high-quality local goat breeds in China. In order to conserve the germplasm resources of the Hainan black goat, facilitate its genetic improvement and further protect the genetic diversity of goats, it is urgent to develop a single nucleotide polymorphism (SNP) chip for Hainan black goat. RESULTS: In this study, we aimed to design a 10K liquid chip for Hainan black goat based on genotyping by pinpoint sequencing of liquid captured targets (cGPS). A total of 45,588 candidate SNP sites were obtained, 10,677 of which representative SNP sites were selected to design probes, which finally covered 9,993 intervals and formed a 10K cGPS liquid chip for Hainan black goat. To verify the 10K cGPS liquid chip, some southern Chinese goat breeds and a sheep breed with similar phenotype to the Hainan black goat were selected. A total of 104 samples were used to verify the clustering ability of the 10K cGPS liquid chip for Hainan black goat. The results showed that the detection rate of sites was 97.34% -99.93%. 84.5% of SNP sites were polymorphic. The heterozygosity rate was 3.08%-36.80%. The depth of more than 99.4% sites was above 10X. The repetition rate was 99.66%-99.82%. The average consistency between cGPS liquid chip results and resequencing results was 85.58%. In addition, the phylogenetic tree clustering analysis verified that the SNP sites on the chip had better clustering ability. CONCLUSION: These results indicate that we have successfully realized the development and verification of the 10K cGPS liquid chip for Hainan black goat, which provides a useful tool for the genome analysis of Hainan black goat. Moreover, the 10K cGPS liquid chip is conducive to the research and protection of Hainan black goat germplasm resources and lays a solid foundation for its subsequent breeding work.


Assuntos
Cabras , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Animais , Cabras/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , China , Técnicas de Genotipagem/métodos , Genótipo , Análise de Sequência de DNA/métodos , Cruzamento/métodos
3.
J Med Virol ; 96(5): e29652, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38727029

RESUMO

Human papillomavirus (HPV) genotyping is widely used, particularly in combination with high-risk (HR) HPV tests for cervical cancer screening. We developed a genotyping method using sequences of approximately 800 bp in the E6/E7 region obtained by PacBio single molecule real-time sequencing (SMRT) and evaluated its performance against MY09-11 L1 sequencing and after the APTIMA HPV genotyping assay. The levels of concordance of PacBio E6/E7 SMRT sequencing with MY09-11 L1 sequencing and APTIMA HPV genotyping were 100% and 90.8%, respectively. The sensitivity of PacBio E6/EA7 SMRT was slightly greater than that of L1 sequencing and, as expected, lower than that of HR-HPV tests. In the context of cervical cancer screening, PacBio E6/E7 SMRT is then best used after a positive HPV test. PacBio E6/E7 SMRT genotyping is an attractive alternative for HR and LR-HPV genotyping of clinical samples. PacBio SMRT sequencing provides unbiased genotyping and can detect multiple HPV infections and haplotypes within a genotype.


Assuntos
Genótipo , Técnicas de Genotipagem , Papillomaviridae , Infecções por Papillomavirus , Humanos , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/diagnóstico , Feminino , Técnicas de Genotipagem/métodos , Papillomaviridae/genética , Papillomaviridae/classificação , Papillomaviridae/isolamento & purificação , Sensibilidade e Especificidade , Neoplasias do Colo do Útero/virologia , Neoplasias do Colo do Útero/diagnóstico , Análise de Sequência de DNA/métodos , Detecção Precoce de Câncer/métodos , Proteínas Oncogênicas Virais/genética , DNA Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
4.
Viruses ; 16(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38675853

RESUMO

HIV-1 typically infects cells via the CD4 receptor and CCR5 or CXCR4 co-receptors. Maraviroc is a CCR5-specific viral entry inhibitor; knowledge of viral co-receptor specificity is important prior to usage. We developed and validated an economical V3-env Illumina-based assay to detect and quantify the frequency of viruses utilizing each co-receptor. Plasma from 54 HIV+ participants (subtype B) was tested. The viral template cDNA was generated from plasma RNA with unique molecular identifiers (UMIs). The sequences were aligned and collapsed by the UMIs with a custom bioinformatics pipeline. Co-receptor usage, determined by codon analysis and online phenotype predictors PSSM and Geno2pheno, were compared to existing Trofile® data. The cost of V3-UMI was tallied. The sequences interpreted by Geno2pheno using the most conservative cut-off, a 2% false-positive-rate (FPR), predicted CXCR4 usage with the greatest sensitivity (76%) and specificity (100%); PSSM and codon analysis had similar sensitivity and lower specificity. Discordant Trofile® and genotypic results were more common when participants had specimens from different dates analyzed by either assay. V3-UMI reagents cost USD$62/specimen. A batch of ≤20 specimens required 5 h of technical time across 1.5 days. V3-UMI predicts HIV tropism at a sensitivity and specificity similar to those of Trofile®, is relatively inexpensive, and could be performed by most central laboratories. The adoption of V3-UMI could expand HIV drug therapeutic options in lower-resource settings that currently do not have access to phenotypic HIV tropism testing.


Assuntos
Técnicas de Genotipagem , Receptores CCR5 , Receptores CXCR4 , Humanos , Masculino , Genótipo , Técnicas de Genotipagem/métodos , Infecções por HIV/virologia , HIV-1/genética , HIV-1/fisiologia , Receptores CCR5/metabolismo , Receptores CCR5/genética , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , RNA Viral/genética , Sensibilidade e Especificidade , Tropismo Viral
5.
Methods Mol Biol ; 2788: 397-410, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656527

RESUMO

Early monitoring of Microcystis, a cyanobacterium that produces microcystin, is paramount in order to confirm the presence of Microcystis spp. Both phenotypic and genotypic methods have been used. The phenotypic methods provide the presence of the microcystis but do not confirm its species type and toxin produced. Additionally, phenotypic methods cannot differentiate toxigenic from non-toxigenic Microcystis. Therefore, the current protocol also describes genetic methods based on PCR to detect toxigenic Microcystis spp. based on microcystin synthetase E (mcy E) gene and 16-23S RNA genes for species-specific identification, which can effectively comprehend distinct lineages and discrimination of potential complexity of microcystin populations. The presence of these microcystin toxins in blood, in most cases, indicates contamination of drinking water by cyanobacteria. The methods presented herein are used to identify microcystin toxins in drinking water and blood.


Assuntos
Cianobactérias , Lagos , Microcistinas , Lagos/microbiologia , Microcistinas/genética , Microcistinas/análise , Cianobactérias/genética , Cianobactérias/isolamento & purificação , Fenótipo , Genótipo , Reação em Cadeia da Polimerase/métodos , Microbiologia da Água , Microcystis/genética , Microcystis/isolamento & purificação , Microcystis/classificação , Técnicas de Genotipagem/métodos
6.
Anal Chem ; 96(19): 7444-7451, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38684052

RESUMO

Next-generation sequencing offers highly multiplexed and accurate detection of nucleic acid sequences but at the expense of complex workflows and high input requirements. The ease of use of CRISPR-Cas12 assays is attractive and may enable highly accurate detection of sequences implicated in, for example, cancer pathogenic variants. CRISPR assays often employ end-point measurements of Cas12 trans-cleavage activity after Cas12 activation by the target; however, end point-based methods can be limited in accuracy and robustness by arbitrary experimental choices. To overcome such limitations, we develop and demonstrate here an accurate assay targeting a mutation of the epidermal growth factor gene implicated in lung cancer (exon 19 deletion). The assay is based on characterizing the kinetics of Cas12 trans-cleavage to discriminate the mutant from wild-type targets. We performed extensive experiments (780 reactions) to calibrate key assay design parameters, including the guide RNA sequence, reporter sequence, reporter concentration, enzyme concentration, and DNA target type. Interestingly, we observed a competitive reaction between the target and reporter molecules that has important consequences for the design of CRISPR assays, which use preamplification to improve sensitivity. Finally, we demonstrate the assay on 18 tumor-extracted amplicons and 100 training iterations with 99% accuracy and discuss discrimination parameters and models to improve wild type versus mutant classification.


Assuntos
Sistemas CRISPR-Cas , Cinética , Humanos , Sistemas CRISPR-Cas/genética , Neoplasias Pulmonares/genética , Técnicas de Genotipagem/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genótipo
7.
BMC Plant Biol ; 24(1): 306, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644480

RESUMO

Linkage maps are essential for genetic mapping of phenotypic traits, gene map-based cloning, and marker-assisted selection in breeding applications. Construction of a high-quality saturated map requires high-quality genotypic data on a large number of molecular markers. Errors in genotyping cannot be completely avoided, no matter what platform is used. When genotyping error reaches a threshold level, it will seriously affect the accuracy of the constructed map and the reliability of consequent genetic studies. In this study, repeated genotyping of two recombinant inbred line (RIL) populations derived from crosses Yangxiaomai × Zhongyou 9507 and Jingshuang 16 × Bainong 64 was used to investigate the effect of genotyping errors on linkage map construction. Inconsistent data points between the two replications were regarded as genotyping errors, which were classified into three types. Genotyping errors were treated as missing values, and therefore the non-erroneous data set was generated. Firstly, linkage maps were constructed using the two replicates as well as the non-erroneous data set. Secondly, error correction methods implemented in software packages QTL IciMapping (EC) and Genotype-Corrector (GC) were applied to the two replicates. Linkage maps were therefore constructed based on the corrected genotypes and then compared with those from the non-erroneous data set. Simulation study was performed by considering different levels of genotyping errors to investigate the impact of errors and the accuracy of error correction methods. Results indicated that map length and marker order differed among the two replicates and the non-erroneous data sets in both RIL populations. For both actual and simulated populations, map length was expanded as the increase in error rate, and the correlation coefficient between linkage and physical maps became lower. Map quality can be improved by repeated genotyping and error correction algorithm. When it is impossible to genotype the whole mapping population repeatedly, 30% would be recommended in repeated genotyping. The EC method had a much lower false positive rate than did the GC method under different error rates. This study systematically expounded the impact of genotyping errors on linkage analysis, providing potential guidelines for improving the accuracy of linkage maps in the presence of genotyping errors.


Assuntos
Mapeamento Cromossômico , Genótipo , Triticum , Triticum/genética , Mapeamento Cromossômico/métodos , Locos de Características Quantitativas , Ligação Genética , Técnicas de Genotipagem/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos
8.
Biosens Bioelectron ; 256: 116282, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626615

RESUMO

Helicobacter pylori (H. pylori) infection correlates closely with gastric diseases such as gastritis, ulcers, and cancer, influencing more than half of the world's population. Establishing a rapid, precise, and automated platform for H. pylori diagnosis is an urgent clinical need and would significantly benefit therapeutic intervention. Recombinase polymerase amplification (RPA)-CRISPR recently emerged as a promising molecular diagnostic assay due to its rapid detection capability, high specificity, and mild reaction conditions. In this work, we adapted the RPA-CRISPR assay on a digital microfluidics (DMF) system for automated H. pylori detection and genotyping. The system can achieve multi-target parallel detection of H. pylori nucleotide conservative genes (ureB) and virulence genes (cagA and vacA) across different samples within 30 min, exhibiting a detection limit of 10 copies/rxn and no false positives. We further conducted tests on 80 clinical saliva samples and compared the results with those derived from real-time quantitative polymerase chain reaction, demonstrating 100% diagnostic sensitivity and specificity for the RPA-CRISPR/DMF method. By automating the assay process on a single chip, the DMF system can significantly reduce the usage of reagents and samples, minimize the cross-contamination effect, and shorten the reaction time, with the additional benefit of losing the chance of experiment failure/inconsistency due to manual operations. The DMF system together with the RPA-CRISPR assay can be used for early detection and genotyping of H. pylori with high sensitivity and specificity, and has the potential to become a universal molecular diagnostic platform.


Assuntos
Técnicas Biossensoriais , Técnicas de Genotipagem , Infecções por Helicobacter , Helicobacter pylori , Helicobacter pylori/genética , Helicobacter pylori/isolamento & purificação , Humanos , Infecções por Helicobacter/diagnóstico , Infecções por Helicobacter/microbiologia , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Técnicas de Genotipagem/instrumentação , Técnicas de Genotipagem/métodos , Genótipo , Proteínas de Bactérias/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Microfluídica/métodos , Antígenos de Bactérias/genética , Antígenos de Bactérias/análise , DNA Bacteriano/genética , DNA Bacteriano/análise , DNA Bacteriano/isolamento & purificação , Recombinases/metabolismo
9.
Physiol Plant ; 176(2): e14301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629128

RESUMO

Salt stress is one of the major factors that limits rice production. Therefore, identification of salt-tolerant alleles from wild rice is important for rice breeding. In this study, we constructed a set of chromosome segment substitution lines (CSSLs) using wild rice as the donor parent and cultivated rice Nipponbare (Nip) as the recurrent parent. Salt tolerance germinability (STG) was evaluated, and its association with genotypes was determined using this CSSL population. We identified 17 QTLs related to STG. By integrating the transcriptome and genome data, four candidate genes were identified, including the previously reported AGO2 and WRKY53. Compared with Nip, wild rice AGO2 has a structure variation in its promoter region and the expression levels were upregulated under salt treatments; wild rice WRKY53 also has natural variation in its promoter region, and the expression levels were downregulated under salt treatments. Wild rice AGO2 and WRKY53 alleles have combined effects for improving salt tolerance at the germination stage. One CSSL line, CSSL118 that harbors these two alleles was selected. Compared with the background parent Nip, CSSL118 showed comprehensive salt tolerance and higher yield, with improved transcript levels of reactive oxygen species scavenging genes. Our results provided promising genes and germplasm resources for future rice salt tolerance breeding.


Assuntos
Genes de Plantas , Oryza , Melhoramento Vegetal , Tolerância ao Sal , Oryza/anatomia & histologia , Oryza/genética , Oryza/crescimento & desenvolvimento , Tolerância ao Sal/genética , Cromossomos de Plantas/genética , Alelos , Melhoramento Vegetal/métodos , Locos de Características Quantitativas/genética , Genótipo , Transcriptoma , Genoma de Planta/genética , Regiões Promotoras Genéticas , Regulação da Expressão Gênica de Plantas , Germinação , Brotos de Planta , Raízes de Plantas , Técnicas de Genotipagem , Polimorfismo Genético , Fenótipo
10.
Genome Biol ; 25(1): 91, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589937

RESUMO

BACKGROUND: Although sequencing technologies have boosted the measurement of the genomic diversity of plant crops, it remains challenging to accurately genotype millions of genetic variants, especially structural variations, with only short reads. In recent years, many graph-based variation genotyping methods have been developed to address this issue and tested for human genomes. However, their performance in plant genomes remains largely elusive. Furthermore, pipelines integrating the advantages of current genotyping methods might be required, considering the different complexity of plant genomes. RESULTS: Here we comprehensively evaluate eight such genotypers in different scenarios in terms of variant type and size, sequencing parameters, genomic context, and complexity, as well as graph size, using both simulated and real data sets from representative plant genomes. Our evaluation reveals that there are still great challenges to applying existing methods to plants, such as excessive repeats and variants or high resource consumption. Therefore, we propose a pipeline called Ensemble Variant Genotyper (EVG) that can achieve better genotyping performance in almost all experimental scenarios and comparably higher genotyping recall and precision even using 5× reads. Furthermore, we demonstrate that EVG is more robust with an increasing number of graphed genomes, especially for insertions and deletions. CONCLUSIONS: Our study will provide new insights into the development and application of graph-based genotyping algorithms. We conclude that EVG provides an accurate, unbiased, and cost-effective way for genotyping both small and large variations and will be potentially used in population-scale genotyping for large, repetitive, and heterozygous plant genomes.


Assuntos
Algoritmos , Benchmarking , Humanos , Genótipo , Genômica/métodos , Técnicas de Genotipagem/métodos , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos
11.
Anim Genet ; 55(3): 457-464, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38622758

RESUMO

The common deleterious genetic defects in Holstein cattle include haplotypes 1-6 (HH1-HH6), haplotypes for cholesterol deficiency (HCD), bovine leukocyte adhesion deficiency (BLAD), complex vertebral malformation (CVM) and brachyspina syndrome (BS). Recessive inheritance patterns of these genetic defects permit the carriers to function normally, but homozygous recessive genotypes cause embryo loss or neonatal death. Therefore, rapid detection of the carriers is essential to manage these genetic defects. This study was conducted to develop a single-tube multiplex fluorescent amplification-refractory mutation system (mf-ARMS) PCR method for efficient genotyping of these 10 genetic defects and to compare its efficiency with the kompetitive allele specific PCR (KASP) genotyping assay. The mf-ARMS PCR method introduced 10 sets of tri-primers optimized with additional mismatches in the 3' end of wild and mutant-specific primers, size differentiation between wild and mutant-specific primers, fluorescent labeling of universal primers, adjustment of annealing temperatures and optimization of primer concentrations. The genotyping of 484 Holstein cows resulted in 16.12% carriers with at least one genetic defect, while no homozygous recessive genotype was detected. This study found carrier frequencies ranging from 0.0% (HH6) to 3.72% (HH3) for individual defects. The mf-ARMS PCR method demonstrated improved detection, time and cost efficiency compared with the KASP method for these defects. Therefore, the application of mf-ARMS PCR for genotyping Holstein cattle is anticipated to decrease the frequency of lethal alleles and limit the transmission of these genetic defects.


Assuntos
Técnicas de Genotipagem , Animais , Bovinos/genética , Técnicas de Genotipagem/veterinária , Técnicas de Genotipagem/métodos , Doenças dos Bovinos/genética , Reação em Cadeia da Polimerase Multiplex/veterinária , Genótipo , Reação em Cadeia da Polimerase/veterinária , Mutação
12.
Theor Appl Genet ; 137(3): 64, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430392

RESUMO

KEY MESSAGE: An improved estimator of genomic relatedness using low-depth high-throughput sequencing data for autopolyploids is developed. Its outputs strongly correlate with SNP array-based estimates and are available in the package GUSrelate. High-throughput sequencing (HTS) methods have reduced sequencing costs and resources compared to array-based tools, facilitating the investigation of many non-model polyploid species. One important quantity that can be computed from HTS data is the genetic relatedness between all individuals in a population. However, HTS data are often messy, with multiple sources of errors (i.e. sequencing errors or missing parental alleles) which, if not accounted for, can lead to bias in genomic relatedness estimates. We derive a new estimator for constructing a genomic relationship matrix (GRM) from HTS data for autopolyploid species that accounts for errors associated with low sequencing depths, implemented in the R package GUSrelate. Simulations revealed that GUSrelate performed similarly to existing GRM methods at high depth but reduced bias in self-relatedness estimates when the sequencing depth was low. Using a panel consisting of 351 tetraploid potato genotypes, we found that GUSrelate produced GRMs from genotyping-by-sequencing (GBS) data that were highly correlated with a GRM computed from SNP array data, and less biased than existing methods when benchmarking against the array-based GRM estimates. GUSrelate provides researchers with a tool to reliably construct GRMs from low-depth HTS data.


Assuntos
Técnicas de Genotipagem , Polimorfismo de Nucleotídeo Único , Humanos , Técnicas de Genotipagem/métodos , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Alelos
13.
Diagn Microbiol Infect Dis ; 109(2): 116216, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38479093

RESUMO

A next-generation sequencing (NGS)-based Ezplex HPV NGS kit (SML Genetree, Seoul, Korea) was used for human papillomavirus (HPV) screening. Of 885 cervical swab samples, HPV was detected in 162 samples. High-risk HPVs were detected in 82 samples, and other types of HPV were detected in 13 samples (HPV86, 71, 102, 91, and 114). At the read depth ≥ 500, NGS results exhibited 100 % agreement among repeated tests. HPV NGS results were compared with those of real-time PCR assays, Anyplex HPV28 (Seegene, Seoul, Korea) (n = 383) and Cobas HPV (Roche, Mannheim, Germany) (n = 64); concordances were 92.4 % and 95.0 %, respectively. Sanger sequencing of discordant results (n = 13) produced compatible results with those of HPV NGS. Pap smear abnormalities were detected in 31 patients (3.5 %), and 19 patients had high-risk HPV. Using HPV NGS for screening, rare HPV subtypes were detected, and quantitative values were obtained as read depth.


Assuntos
Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Papillomaviridae , Infecções por Papillomavirus , Humanos , Infecções por Papillomavirus/diagnóstico , Infecções por Papillomavirus/virologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Feminino , Papillomaviridae/genética , Papillomaviridae/classificação , Papillomaviridae/isolamento & purificação , Adulto , Pessoa de Meia-Idade , Técnicas de Genotipagem/métodos , Programas de Rastreamento/métodos , Adulto Jovem , Idoso , Colo do Útero/virologia , DNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Papillomavirus Humano
14.
Diagn Microbiol Infect Dis ; 109(2): 116249, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537504

RESUMO

Targeted Next Generation Sequencing (tNGS) and Whole Genome Sequencing (WGS) are increasingly used for genotypic drug susceptibility testing (gDST) of Mycobacterium tuberculosis. Thirty-two multi-drugs resistant and 40 drug susceptible isolates from Madagascar were tested with Deeplex® Myc-TB and WGS using the Mykrobe analysis pipeline. Sixty-four of 72 (89 %) yielded concordant categorical gDST results for drugs tested by both assays. Mykrobe didn't detect pncA K96T, pncA Q141P, pncA H51P, pncA H82R, rrs C517T and rpsL K43R mutations, which were identified as minority variants in corresponding isolates by tNGS. One discrepancy (rrs C517T) was associated with insufficient sequencing depth on WGS. Deeplex® Myc-TB didn't detect inhA G-154A which isn't covered by the assay's amplification targets. Despite those targets being included in the Deeplex® Myc-TB assay, a pncA T47A and a deletion in gid were not identified in one isolate respectively. The evaluated WGS and tNGS gDST assays show high but imperfect concordance.


Assuntos
Antituberculosos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Sequenciamento Completo do Genoma , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/farmacologia , Testes de Sensibilidade Microbiana/métodos , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Madagáscar , Genoma Bacteriano/genética , Mutação , Proteínas de Bactérias/genética , Técnicas de Genotipagem/métodos
15.
Pharmacogenet Genomics ; 34(4): 130-134, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38359167

RESUMO

The use of genome-wide genotyping arrays in pharmacogenomics (PGx) research and clinical implementation applications is increasing but it is unclear which arrays are best suited for these applications. Here, we conduct a comparative coverage analysis of PGx alleles included on genome-wide genotyping arrays, with an emphasis on alleles in genes with PGx-based prescribing guidelines. Genomic manifest files for seven arrays including the Axiom Precision Medicine Diversity Array (PMDA), Axiom PMDA Plus, Axiom PangenomiX, Axiom PangenomiX Plus, Infinium Global Screening Array, Infinium Global Diversity Array (GDA) and Infinium GDA with enhanced PGx (GDA-PGx) Array, were evaluated for coverage of 523 star alleles across 19 pharmacogenes included in prescribing guidelines developed by the Clinical Pharmacogenetic Implementation Consortium and Dutch Pharmacogenomics Working Group. Specific attention was given to coverage of the Association of Molecular Pathology's Tier 1 and Tier 2 allele sets for CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, NUDT15, TPMT and VKORC1 . Coverage of the examined PGx alleles was highest for the Infinium GDA-PGx (88%), Axiom PangenomiX Plus (77%), Axiom PangenomiX (72%) and Axiom PMDA Plus (70%). Three arrays (Infinium GDA-PGx, Axiom PangenomiX Plus and Axiom PMDA Plus) fully covered the Tier 1 alleles and the Axiom PangenomiX array provided full coverage of Tier 2 alleles. In conclusion, PGx allele coverage varied by gene and array. A superior array for all PGx applications was not identified. Future comparative analyses of genotype data produced by these arrays are needed to determine the robustness of the reported coverage estimates.


Assuntos
Alelos , Farmacogenética , Humanos , Farmacogenética/métodos , Genótipo , Técnicas de Genotipagem/métodos , Estudo de Associação Genômica Ampla/métodos , Genoma Humano/genética , Análise de Sequência com Séries de Oligonucleotídeos , Medicina de Precisão/métodos
16.
Mol Ecol Resour ; 24(4): e13935, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38332480

RESUMO

Using high-throughput sequencing for precise genotyping of multi-locus gene families, such as the major histocompatibility complex (MHC), remains challenging, due to the complexity of the data and difficulties in distinguishing genuine from erroneous variants. Several dedicated genotyping pipelines for data from high-throughput sequencing, such as next-generation sequencing (NGS), have been developed to tackle the ensuing risk of artificially inflated diversity. Here, we thoroughly assess three such multi-locus genotyping pipelines for NGS data, the DOC method, AmpliSAS and ACACIA, using MHC class IIß data sets of three-spined stickleback gDNA, cDNA and "artificial" plasmid samples with known allelic diversity. We show that genotyping of gDNA and plasmid samples at optimal pipeline parameters was highly accurate and reproducible across methods. However, for cDNA data, the gDNA-optimal parameter configuration yielded decreased overall genotyping precision and consistency between pipelines. Further adjustments of key clustering parameters were required tο account for higher error rates and larger variation in sequencing depth per allele, highlighting the importance of template-specific pipeline optimization for reliable genotyping of multi-locus gene families. Through accurate paired gDNA-cDNA typing and MHC-II haplotype inference, we show that MHC-II allele-specific expression levels correlate negatively with allele number across haplotypes. Lastly, sibship-assisted cDNA-typing of MHC-I revealed novel variants linked in haplotype blocks, and a higher-than-previously-reported individual MHC-I allelic diversity. In conclusion, we provide novel genotyping protocols for the three-spined stickleback MHC-I and -II genes, and evaluate the performance of popular NGS-genotyping pipelines. We also show that fine-tuned genotyping of paired gDNA-cDNA samples facilitates amplification bias-corrected MHC allele expression analysis.


Assuntos
Técnicas de Genotipagem , Sequenciamento de Nucleotídeos em Larga Escala , Genótipo , Alelos , Técnicas de Genotipagem/métodos , DNA Complementar , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Expressão Gênica , Haplótipos
17.
Anim Genet ; 55(3): 404-409, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38383954

RESUMO

The International Society for Animal Genetics (ISAG) currently advocates for a transition towards single nucleotide polymorphism (SNP) markers as a potential alternative for equine parentage verification. To ascertain the efficacy of this transition, it is imperative to evaluate the performance of parentage testing using SNPs in juxtaposition with short tandem repeats (STRs). As per ISAG's recommendation, we used an equine genotyping-by-sequencing panel with 144 SNPs for this purpose. Equine parentage is currently realized using 16 microsatellites (STRs) excluding the LEX3 marker. In this study, 1074 horses were genotyped using the 144 SNPs panel, including 432 foals, 414 mares, and 228 stallions, from five different breeds: 293 Arabians, 167 Barbs, 189 Thoroughbreds, 73 Anglo-Arabians, and 352 Arabian-Barbs. As a result, two SNPs markers were eliminated from the panel system due to inconsistent amplification across all examined individuals leaving 142 SNPs markers for analysis. A comparative analysis between SNPs and STRs markers revealed that the mean expected heterozygosity was 0.457 for SNPs and 0.76 for STRs, while the mean observed heterozygosity stood at 0.472 for SNPs and 0.72 for STRs. Furthermore, the probability of identity was calculated to be 5.722 × 10-57 for SNPs and 1.25 × 10-15 for STRs markers. In alignment with the Hardy-Weinberg equilibrium in polyploids test, 110 out of the total SNPs were consistent with the Hardy-Weinberg equilibrium in polyploids test (p > 0.05). Employing both SNPs and STRs markers, the mean polymorphic information content was discerned to be 0.351 for SNPs and 0.72 for STRs. The cumulative exclusion probabilities for SNP markers exceeded 99.99%, indicating that the 142 SNPs panel might be adequate for parentage testing. In contrast, when utilizing STRs markers, the combined average exclusion probabilities for one and both parents were determined to be 99.8% and 99.9%, respectively. Our comprehensive study underscores the potential of SNPs in equine parentage verification, especially when compared to STRs in terms of exclusion probabilities. As a corollary, the application of SNPs for parentage verification and identification can significantly contribute to the conservation initiative for the five Moroccan horse breeds. Nonetheless, further research is required to address and replace the deficient SNPs within the panel.


Assuntos
Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Animais , Cavalos/genética , Feminino , Marrocos , Masculino , Cruzamento , Genótipo , Marcadores Genéticos , Técnicas de Genotipagem/veterinária
18.
Curr Protoc ; 4(1): e972, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282528

RESUMO

The many logistical and technical challenges associated with sample and data handling in largescale genotyping studies can increase the risk of sample misidentification, which may compromise subsequent analyses. However, the standard quality assurance methods typical for large genotyping arrays can often be further utilized to identify and recover problematic samples. This article emphasizes the importance of identifying and correcting underlying sample misidentification rather than simply excluding known discrepancies, which may potentially include undetected issues. Lastly, we provide a screening protocol to complement standard quality assessments as a guideline for identifying mismatched samples and a tool for assessing the most common causes of sample misidentification. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC.


Assuntos
Análise por Conglomerados , Análise de Dados , Técnicas de Genotipagem
19.
Mol Ecol Resour ; 24(3): e13929, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38289068

RESUMO

Accurate and efficient microsatellite loci genotyping is an essential process in population genetics that is also used in various demographic analyses. Protocols for next-generation sequencing of microsatellite loci enable high-throughput and cross-compatible allele scoring, common issues that are not addressed by conventional capillary-based approaches. To improve this process, we have developed an all-in-one software, called Seq2Sat (sequence to microsatellite), in C++ to support automated microsatellite genotyping. It directly takes raw reads of microsatellite amplicons and conducts read quality control before inferring genotypes based on depth-of-read, read ratio, sequence composition and length. We have also developed a module for sex identification based on sex chromosome-specific locus amplicons. To allow for greater user access and complement autoscoring, we developed SatAnalyzer (microsatellite analyzer), a user-friendly web-based platform that conducts reads-to-report analyses by calling Seq2Sat for genotype autoscoring and produces interactive genotype graphs for manual editing. SatAnalyzer also allows users to troubleshoot multiplex optimization by analysing read quality and distribution across loci and samples in support of high-quality library preparation. To evaluate its performance, we benchmarked our toolkit Seq2Sat/SatAnalyzer against a conventional capillary gel method and existing microsatellite genotyping software, MEGASAT, using two datasets. Results showed that SatAnalyzer can achieve >99.70% genotyping accuracy and Seq2Sat is ~5 times faster than MEGASAT despite many more informative tables and figures being generated. Seq2Sat and SatAnalyzer are freely available on github (https://github.com/ecogenomicscanada/Seq2Sat) and dockerhub (https://hub.docker.com/r/rocpengliu/satanalyzer).


Assuntos
Genética Populacional , Software , Genótipo , Alelos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Repetições de Microssatélites , Técnicas de Genotipagem/métodos , Análise de Sequência de DNA/métodos
20.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(1): 52-58, 2024 Jan 10.
Artigo em Chinês | MEDLINE | ID: mdl-38171560

RESUMO

OBJECTIVE: To develop a genotyping method for the Junior blood type and report on a rare blood type with Jr(a-). METHODS: Healthy O-type RhD+ volunteer donors of the Shenzhen Blood Center from January to May 2021 (n = 1 568) and a pedigree with difficult cross-matching (n = 3) were selected as the study subjects. Serological methods were used for proband's blood type identification, unexpected antibody identification, and antibody titer determination. Polymerase chain reaction-sequence specific primer (PCR-SSP) method was used for typing the proband's RhD gene. ABCG2 gene coding region sequencing and a PCR-SSP genotyping method were established for determining the genotypes of the proband and his family members and screening of Jra antigen-negative rare blood type among the 1 568 blood donors. RESULTS: The proband's ABO and RhD blood types were respectively determined as B and partial D (RHDDVI.3/RHD01N.01), Junior blood type Jra antigen was negative, and plasma had contained anti-D and anti-Jra. Sequencing of the ABCG2 gene revealed that the proband's genotype was ABGG201N.01/ABGG201N.01 [homozygous c.376C>T (p.Gln126X) variants], which is the most common Jr(a-) blood type allele in the Asian population. Screening of the voluntary blood donors has detected no Jr(a-) rare blood type. Statistical analysis of the heterozygotes suggested that the allelic frequency for ABCG2*01N.01 (c.376T) was 0.45%, and the frequency of Jr(a-) rare blood type with this molecular background was about 0.2‰. CONCLUSION: A very rare case of partial DVI.3 type and Jr(a-) rare blood type has been identified. And a method for identifying the Junior blood type through sequencing the coding regions of the ABCG2 gene and PCR-SSP has been established.


Assuntos
Antígenos de Grupos Sanguíneos , Humanos , Antígenos de Grupos Sanguíneos/genética , Genótipo , Técnicas de Genotipagem , Heterozigoto , Alelos , Doadores de Sangue , Sistema do Grupo Sanguíneo Rh-Hr/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA