Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 377
Filtrar
1.
JCI Insight ; 9(9)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592807

RESUMO

BACKGROUNDDisease of the aorta varies from atherosclerosis to aneurysms, with complications including rupture, dissection, and poorly characterized limited tears. We studied limited tears without any mural hematoma, termed intimomedial tears, to gain insight into aortic vulnerability to excessive wall stresses. Our premise is that minimal injuries in aortas with sufficient medial resilience to prevent tear progression correspond to initial mechanisms leading to complete structural failure in aortas with significantly compromised medial resilience.METHODSIntimomedial tears were macroscopically identified in 9 of 108 ascending aortas after surgery and analyzed by histology and immunofluorescence confocal microscopy.RESULTSNonhemorrhagic, nonatheromatous tears correlated with advanced aneurysmal disease and most lacked distinctive symptoms or radiological signs. Tears traversed the intima and part of the subjacent media, while the resultant defects were partially or completely filled with neointima characterized by differentiated smooth muscle cells, scattered leukocytes, dense fibrosis, and absent elastic laminae despite tropoelastin synthesis. Healed lesions contained organized fibrin at tear edges without evidence of plasma and erythrocyte extravasation or lipid accumulation.CONCLUSIONThese findings suggest a multiphasic model of aortic wall failure in which primary lesions of intimomedial tears either heal if the media is sufficiently resilient or progress as dissection or rupture by medial delamination and tear completion, respectively. Moreover, mural incorporation of thrombus and cellular responses to injury, two historically important concepts in atheroma pathogenesis, contribute to vessel wall repair with adequate conduit function, but even together are not sufficient to induce atherosclerosis.FUNDINGNIH (R01-HL146723, R01-HL168473) and Yale Department of Surgery.


Assuntos
Aorta , Aterosclerose , Fibrose , Miócitos de Músculo Liso , Humanos , Masculino , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/metabolismo , Aterosclerose/patologia , Feminino , Aorta/patologia , Idoso , Pessoa de Meia-Idade , Neointima/patologia , Túnica Íntima/patologia , Túnica Média/patologia , Túnica Média/metabolismo
2.
J Mol Cell Cardiol ; 182: 57-72, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37482037

RESUMO

Hypertension-induced tunica media thickening (TMT) is the most important fundamental for the subsequent complications like stroke and cardiovascular diseases. Pathogenically, TMT originates from both vascular smooth muscle cells (VSMCs) hypertrophy due to synthesizing more amount of intracellular contractile proteins and excess secretion of extracellular matrix. However, what key molecules are involved in the pathogenesis of TMT is unknown. We hypothesize that formin homology 2 domain-containing protein 1 (FHOD1), an amply expressed mediator for assembly of thin actin filament in VSMCs, is a key regulator for the pathogenesis of TMT. In this study, we found that FHOD1 expression and its phosphorylation/activation were both upregulated in the arteries of three kinds of hypertensive rats. Ang-II induced actin filament formation and hypertrophy through activation and upregulation of FHOD1 in VSMCs. Active FHOD1-mediated actin filament assembly and secretions of collagen-1α/collagen-3α played crucial roles in Ang-II-induced VSMCs hypertrophy in vitro and hypertensive TMT in vivo. Proteomics demonstrated that activated FL-FHOD1 or its C-terminal diaphanous-autoregulatory domain significantly upregulated RNF213 (ring finger protein 213), a 591-kDa cytosolic E3 ubiquitin ligase with its loss-of-functional mutations being a susceptibility gene for Moyamoya disease which has prominent tunica media thinning in both intracranial and systemic arteries. Mechanistically, activated FHOD1 upregulated its downstream effector RNF213 independently of its classical pathway of decreasing G-actin/F-actin ratio, transcription, and translation, but dependently on its C-terminus-mediated stabilization of RNF213 protein. FHOD1-RNF213 signaling dramatically promoted collagen-1α/collagen-3α syntheses in VSMCs. Our results discovered a novel signaling axis of FHOD1-RNF213-collagen-1α/collagen-3α and its key role in the pathogenesis of hypertensive TMT.


Assuntos
Actinas , Hipertensão , Animais , Ratos , Actinas/metabolismo , Hipertensão/etiologia , Hipertrofia , Transdução de Sinais/fisiologia , Fatores de Transcrição , Túnica Média/metabolismo
3.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176139

RESUMO

Diabetic macroangiopathy is characterized by increased extracellular matrix deposition, including excessive hyaluronan accumulation, vessel thickening and stiffness, and endothelial dysfunction in large arteries. We hypothesized that the overexpression of hyaluronan in the tunica media also led to endothelial cell (EC) dysfunction. To address this hypothesis, we investigated the following in the aortas of mice with excessive hyaluronan accumulation in the tunica media (HAS-2) and wild-type mice: EC dysfunction via myograph studies, nitric oxide (NO) bioavailability via diaminofluorescence, superoxide formation via dihydroethidium fluorescence, and the distances between ECs via stereological methods. EC dysfunction, characterized by blunted relaxations in response to acetylcholine and decreased NO bioavailability, was found in the aortas of male HAS-2 mice, while it was unaltered in the aortas of female HAS-2 mice. Superoxide levels increased and extracellular superoxide dismutase (ecSOD) expression decreased in the aortas of male and female HAS-2 mice. The EC-EC distances and LDL receptor expression were markedly increased in the HAS-2 aortas of male mice. Our findings suggest hyaluronan increases oxidative stress in the vascular wall and that together with increased EC distance, it is associated with a sex-specific decrease in NO levels and endothelial dysfunction in the aorta of male HAS-2 transgenic mice.


Assuntos
Ácido Hialurônico , Doenças Vasculares , Camundongos , Masculino , Feminino , Animais , Ácido Hialurônico/metabolismo , Superóxidos/metabolismo , Vasodilatação , Endotélio Vascular/metabolismo , Aorta/metabolismo , Camundongos Transgênicos , Doenças Vasculares/metabolismo , Túnica Média/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo
4.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34769044

RESUMO

Arterial media calcification (AMC) is predominantly regulated by vascular smooth muscle cells (VSMCs), which transdifferentiate into pro-calcifying cells. In contrast, there is little evidence for endothelial cells playing a role in the disease. The current study investigates cellular functioning and molecular pathways underlying AMC, respectively by, an ex vivo isometric organ bath set-up to explore the interaction between VSMCs and ECs and quantitative proteomics followed by functional pathway interpretation. AMC development, which was induced in mice by dietary warfarin administration, was proved by positive Von Kossa staining and a significantly increased calcium content in the aorta compared to that of control mice. The ex vivo organ bath set-up showed calcified aortic segments to be significantly more sensitive to phenylephrine induced contraction, compared to control segments. This, together with the fact that calcified segments as compared to control segments, showed a significantly smaller contraction in the absence of extracellular calcium, argues for a reduced basal NO production in the calcified segments. Moreover, proteomic data revealed a reduced eNOS activation to be part of the vascular calcification process. In summary, this study identifies a poor endothelial function, next to classic pro-calcifying stimuli, as a possible initiator of arterial calcification.


Assuntos
Células Endoteliais/patologia , Túnica Média/efeitos dos fármacos , Calcificação Vascular/induzido quimicamente , Calcificação Vascular/patologia , Varfarina/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Cálcio/metabolismo , Transdiferenciação Celular/efeitos dos fármacos , Células Endoteliais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos DBA , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Osteogênese/efeitos dos fármacos , Túnica Média/metabolismo , Túnica Média/patologia , Calcificação Vascular/metabolismo
5.
BMC Cardiovasc Disord ; 21(1): 495, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645391

RESUMO

BACKGROUND: Arterial medial calcification (AMC) is associated with a high incidence of cardiovascular risk in patients with type 2 diabetes and chronic kidney disease. Here, we tested whether hydrogen sulfide (H2S) can prevent AMC in rats with diabetic nephropathy (DN). METHODS: DN was induced by a single injection of streptozotocin and high-fat diet (45% kcal as fat) containing 0.75% adenine in Sprague-Dawley rats for 8 weeks. RESULTS: Rats with DN displayed obvious calcification in aorta, and this was significantly alleviated by Sodium Hydrosulfide (NaHS, a H2S donor, 50 µmol/kg/day for 8 weeks) treatment through decreasing calcium and phosphorus content, ALP activity and calcium deposition in aorta. Interestingly, the main endogenous H2S generating enzyme activity and protein expression of cystathionine-γ-lyase (CSE) were largely reduced in the arterial wall of DN rats. Exogenous NaHS treatment restored CSE activity and its expression, inhibited aortic osteogenic transformation by upregulating phenotypic markers of smooth muscle cells SMα-actin and SM22α, and downregulating core binding factor α-1 (Cbfα-1, a key factor for bone formation), protein expressions in rats with DN when compared to the control group. NaHS administration also significantly reduced Stat3 activation, cathepsin S (CAS) activity and TGF-ß1 protein level, and improved aortic elastin expression. CONCLUSIONS: H2S may have a clinical significance for treating AMC in people with DN by reducing Stat3 activation, CAS activity, TGF-ß1 level and increasing local elastin level.


Assuntos
Aorta/efeitos dos fármacos , Doenças da Aorta/prevenção & controle , Nefropatias Diabéticas/tratamento farmacológico , Sulfeto de Hidrogênio/farmacologia , Túnica Média/efeitos dos fármacos , Calcificação Vascular/prevenção & controle , Animais , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/etiologia , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Catepsinas/metabolismo , Nefropatias Diabéticas/complicações , Nefropatias Diabéticas/metabolismo , Modelos Animais de Doenças , Elastina/metabolismo , Masculino , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Túnica Média/metabolismo , Túnica Média/patologia , Calcificação Vascular/etiologia , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia
6.
Arterioscler Thromb Vasc Biol ; 41(9): e427-e439, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34261328

RESUMO

Objective: Atheromatous fibrous caps are produced by smooth muscle cells (SMCs) that are recruited to the subendothelial space. We tested whether the recruitment mechanisms are the same as in embryonic artery development, which relies prominently on Notch signaling to form the subendothelial medial SMC layers. Approach and Results: Notch elements were expressed in regions of fibrous cap in human and mouse plaques. To assess the causal role of Notch signaling in cap formation, we studied atherosclerosis in mice where the Notch pathway was inactivated in SMCs by conditional knockout of the essential effector transcription factor RBPJ (recombination signal-binding protein for immunoglobulin kappa J region). The recruitment of cap SMCs was significantly reduced without major effects on plaque size. Lineage tracing revealed the accumulation of SMC-derived plaque cells in the cap region was unaltered but that Notch-defective cells failed to re-acquire the SMC phenotype in the cap. Conversely, to analyze whether the loss of Notch signaling is required for SMC-derived cells to accumulate in atherogenesis, we studied atherosclerosis in mice with constitutive activation of Notch signaling in SMCs achieved by conditional expression of the Notch intracellular domain. Forced Notch signaling inhibited the ability of medial SMCs to contribute to plaque cells, including both cap SMCs and osteochondrogenic cells, and significantly reduced atherosclerosis development. Conclusions: Sequential loss and gain of Notch signaling is needed to build the cap SMC population. The shared mechanisms with embryonic arterial media assembly suggest that the cap forms as a neo-media that restores the connection between endothelium and subendothelial SMCs, transiently disrupted in early atherogenesis.


Assuntos
Aterosclerose/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica , Receptores Notch/metabolismo , Túnica Média/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Artérias/metabolismo , Artérias/patologia , Aterosclerose/genética , Aterosclerose/patologia , Linhagem da Célula , Células Cultivadas , Progressão da Doença , Fibrose , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Fenótipo , Ratos , Receptores Notch/genética , Transdução de Sinais , Túnica Média/patologia
7.
J Forensic Leg Med ; 79: 102132, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33667793

RESUMO

Coronary ectasia is a rare vessel defect that represents a pathological and incidental finding in routine coronary angiography performed for other coronary syndromes. This defect exposes to the risk of intra-coronary thrombosis by blood stasis due to the turbulent blood flow in those dilated areas that can lead to sudden death. We report an autopsy case of a male subject suddenly deceased. A medico-legal autopsy concluded an ischemic heart failure due to a vascular thrombosis by a blood clot in a coronary ectasia. Our case report aimed to discuss the mechanisms of sudden death attributed to coronary artery ectasia.


Assuntos
Vasos Coronários/patologia , Morte Súbita Cardíaca/etiologia , Dilatação Patológica/patologia , Adulto , Colágeno/metabolismo , Trombose Coronária/patologia , Humanos , Masculino , Miocárdio/patologia , Edema Pulmonar/patologia , Túnica Média/metabolismo , Túnica Média/patologia
8.
Can J Cardiol ; 37(1): 47-56, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32544488

RESUMO

BACKGROUND: Clinical studies have revealed a greater risk of pulmonary autograft dilation after the Ross procedure in patients with preoperative aortic insufficiency (AI). The present study examined whether the morphologic, biomechanical, and cellular properties of the pulmonary artery (PA) from patients with AI were phenotypically different compared with patients diagnosed with aortic stenosis (AS). METHODS: PA segments were harvested from patients undergoing the Ross procedure for AS (n = 16) and AI (n = 6). Preoperative aortic annulus was significantly larger (P < 0.05) in patients with AI (28.5 ± 1.8 mm) vs AS (22.8 ± 1.2 mm). Morphologic, biomechanical, and cellular phenotypes of the PA were analyzed. RESULTS: Collagen and elastin content in the media of the PA wall were similar in patients with AS and AI. Elastic modulus and energy loss of the PA were not significantly different between the groups. In the media of the PA, expression of a panel of vascular smooth muscle cell-specific proteins were similar in patients with AS and AI. In contrast, nonmuscle myosin IIB protein levels in the PA of AS patients were significantly higher compared with AI patients, and immunofluorescence identified staining in α-smooth muscle actin-positive vascular smooth muscle cells. CONCLUSIONS: Despite similar morphological and biomechanical properties, the disparate expression of nonmuscle myosin IIB protein distinguishes the PA of patients with AI from patients with AS. The biological role in vascular smooth muscle cells and the potential contribution of nonmuscle myosin IIB to pulmonary autograft dilation in a subset of AI patients after the Ross procedure remain to be determined.


Assuntos
Insuficiência da Valva Aórtica/cirurgia , Estenose da Valva Aórtica/cirurgia , Miosina não Muscular Tipo IIB/metabolismo , Artéria Pulmonar/metabolismo , Actinas/metabolismo , Aorta/diagnóstico por imagem , Autoenxertos , Fenômenos Biomecânicos/fisiologia , Colágeno/metabolismo , Ecocardiografia Doppler , Módulo de Elasticidade/fisiologia , Elastina/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiologia , Valva Pulmonar/transplante , Túnica Média/metabolismo
9.
J Endocrinol ; 248(2): R51-R65, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33337345

RESUMO

Biomineralisation, the deposition of mineral onto a matrix, can be both a physiological and pathological process. Bone formation involves the secretion of an extracellular matrix (ECM) by osteoblasts and subsequent mineralisation of that matrix. It is regulated by a number of local and systemic factors and is necessary for maintenance of normal bone health. Conversely, mineralisation (or calcification) of soft tissues, including the vasculature, is detrimental to that tissue, leading to diseases such as arterial medial calcification (AMC). The mechanisms underlying AMC development are not fully defined, though it is thought that vascular smooth muscle cells (VSMCs) drive this complex, cell-mediated process. Similarly, AMC is regulated by a variety of enzymes and molecules, many of which have already been implicated in the regulation of bone mineralisation. This review will provide an overview of the similar, and sometimes opposing effects of these signalling molecules on the regulation of bone mineralisation and AMC.


Assuntos
Calcificação Fisiológica , Músculo Liso Vascular/metabolismo , Osteoblastos/metabolismo , Túnica Média/metabolismo , Calcificação Vascular , Animais , Osso e Ossos/metabolismo , Transdiferenciação Celular , Humanos , Músculo Liso Vascular/citologia , Osteoblastos/citologia
10.
Arterioscler Thromb Vasc Biol ; 40(11): 2700-2713, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32907367

RESUMO

OBJECTIVE: There is no medical treatment to prevent abdominal aortic aneurysm (AAA) growth and rupture, both of which are linked to smoking. Our objective was to map the tunica-specific pathophysiology of AAA with consideration of the intraluminal thrombus, age, and sex, and to subsequently identify which mechanisms were linked to smoking and diameter growth rate. Approach and Results: Microarray analyses were performed on 246 samples from 76 AAA patients and 13 controls. In media and adventitia, there were 5889 and 2701 differentially expressed genes, respectively. Gene sets related to adaptive and innate immunity were upregulated in both tunicas. Media-specific gene sets included increased matrix disassembly and angiogenesis, as well as decreased muscle cell development, contraction, and differentiation. Genes implicated in previous genome-wide association studies were dysregulated in media. The intraluminal thrombus had a pro-proteolytic and proinflammatory effect on the underlying media. Active smoking resulted in increased inflammation, oxidative stress, and angiogenesis in all tissues and enriched lipid metabolism in adventitia. Processes enriched with active smoking in control aortas overlapped to a high extent with those differentially expressed between AAAs and controls. The AAA diameter growth rate (n=24) correlated with T- and B-cell expression in media, as well as lipid-related processes in the adventitia. CONCLUSIONS: This tunica-specific analysis of gene expression in a large study enabled the detection of features not previously described in AAA disease. Smoking was associated with increased expression of aneurysm-related processes, of which adaptive immunity and lipid metabolism correlated with growth rate.


Assuntos
Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/genética , Fumar/efeitos adversos , Trombose/genética , Transcriptoma , Túnica Média/metabolismo , Remodelação Vascular/genética , Imunidade Adaptativa/genética , Adulto , Idoso , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Estudos de Casos e Controles , Dilatação Patológica , Progressão da Doença , Feminino , Redes Reguladoras de Genes , Interação Gene-Ambiente , Humanos , Metabolismo dos Lipídeos/genética , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Fumar/genética , Fumar/metabolismo , Fumar/patologia , Trombose/metabolismo , Trombose/patologia , Túnica Média/patologia
11.
Nutr Metab Cardiovasc Dis ; 30(7): 1201-1215, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32482453

RESUMO

BACKGROUND AND AIM: We previously showed that 12-month high-fat diet (HFD) in pigs led to fattening and increased artery intima-media-thickness, which were partly reversed after 3-month return to control diet (CD). The aim of this study was to decipher underlying mechanism of action by using transcriptomic analyses of intima and media of aorta. METHODS AND RESULTS: Thirty-two pigs were divided into three groups: CD for 12 months; HFD for 12 months; switch diet group (regression diet; RD): HFD for 9 months followed by CD for 3 months. After 12 months, RNA was isolated from aorta intima and media for nutrigenomic analyses. HFD significantly affected gene expression in intima, while RD gene expression profile was distinct from the CD group. This suggests that switch to CD is not sufficient to correct gene expression alterations induced by HFD but counteracted expression of a group of genes. HFD also affected gene expression in media and as for intima, the expression profile of media of pigs on RD differed from that of these on CD. CONCLUSIONS: This study revealed nutrigenomic modifications induced by long-term HFD consumption on arterial intima and media. The return to CD was not sufficient to counteract the genomic effect of HFD.


Assuntos
Aorta Torácica/metabolismo , Dieta Hiperlipídica , Transcriptoma , Túnica Íntima/metabolismo , Túnica Média/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Nutrigenômica , Estado Nutricional , Sus scrofa , Fatores de Tempo
12.
FEBS Lett ; 594(10): 1506-1516, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32010959

RESUMO

Glucagon-like peptide 1 receptor (GLP-1R) belongs to the family B of G protein-coupled receptors (GPCRs) and has antidiabetic and cardioprotective effects. Classical GLP-1R at the plasma membrane undergoes desensitization and internalization and is recycled back to the plasma membrane under the control of GLP-1 in islet ß-cells. However, the subcellular localization of GLP-1R in the vascular system remains unclear. Here, we find that GLP-1R is localized in the nucleus of rat aortic smooth muscle cells (RASMCs) and in the tunica media. We identify a functional nuclear localization signal (NLS; 412-442aa) at the C-terminal region of GLP-1R. Nuclear import of GLP-1R is mediated by an importin-α-dependent pathway and regulated by phosphorylation of Ser416 in the NLS. Upon leaving the nucleus, GLP-1R promotes cell proliferation in RASMCs. These findings may provide insights into the cardiovascular functions of GLP-1R.


Assuntos
Aorta/citologia , Núcleo Celular/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Miócitos de Músculo Liso/metabolismo , alfa Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Proliferação de Células , Receptor do Peptídeo Semelhante ao Glucagon 1/química , Masculino , Miócitos de Músculo Liso/citologia , Sinais de Localização Nuclear , Fosforilação , Ratos , Ratos Sprague-Dawley , Túnica Média/citologia , Túnica Média/metabolismo
13.
Cardiovasc Res ; 116(5): 885-893, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31813986

RESUMO

This review seeks to provide an update of preclinical findings and available clinical data on the chronic persistent inflammation and its direct role on the pulmonary arterial hypertension (PAH) progression. We reviewed the different mechanisms by which the inflammatory and immune pathways contribute to the structural and functional changes occurring in the three vascular compartments: the tunica intima, tunica media, and tunica adventitia. We also discussed how these inflammatory mediator changes may serve as a biomarker of the PAH progression and summarize unanswered questions and opportunities for future studies in this area.


Assuntos
Pressão Arterial , Mediadores da Inflamação/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/metabolismo , Remodelação Vascular , Vasculite/metabolismo , Túnica Adventícia/metabolismo , Túnica Adventícia/patologia , Túnica Adventícia/fisiopatologia , Animais , Autoimunidade , Doença Crônica , Progressão da Doença , Humanos , Hipertensão Arterial Pulmonar/patologia , Hipertensão Arterial Pulmonar/fisiopatologia , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Transdução de Sinais , Túnica Íntima/metabolismo , Túnica Íntima/patologia , Túnica Íntima/fisiopatologia , Túnica Média/metabolismo , Túnica Média/patologia , Túnica Média/fisiopatologia , Vasculite/patologia , Vasculite/fisiopatologia
14.
Clin Neurol Neurosurg ; 189: 105589, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31837516

RESUMO

OBJECTIVES: Brain arteriovenous malformations (bAVM) are rare vascular lesions. Recent observations challenge the congenital nature of these lesions. The underlying cellular and molecular mechanisms associated with dynamic changes of bAVM still remain unclear. The objective of this study was to explore the potential role of COL4A2 (Collagen alpha-2(IV)) in the pathophysiology of bAVM. PATIENTS AND METHODS: Expression and localization of COL4A2 were analyzed on tissue microarrays from bAVM patients (n = 60) by immunohistochemistry. Correlations between COL4A2 levels and clinical parameters were examined with Pearson's test for normally- distibuted or Spearman's Rho for not normally distributed data. Comparison between different clinical parameters was performed using t-test, non-parametric Mann-Whitney U test or Kruskal- Wallis test. Fisher's exact test was used for categorical data. RESULTS: COL4A2 was mainly expressed beneath the endothelium of vessels in the tunica media of bAVM. This pattern of expression indicates the basement membrane of the vessel walls. High levels of COL4A2 expression correlated with the age at surgery of patients (p = 0.005; R = 0.393; Spearman's Rho). The age at surgery in young (17-25 years) and old patients (55-76 years) showed a linear correlation; a greater variance of COL4A2 expression was observed in the age group between 26-54 years. CONCLUSION: This study reports for the first time the expression of COL4A2 in bAVM and suggests a potential role of COL4A2 in bAVM pathophysiology. These findings contribute to a better understanding of the microenvironment of bAVM and may foster the development of improved therapeutic strategies for this disease.


Assuntos
Fístula Arteriovenosa/metabolismo , Vasos Sanguíneos/metabolismo , Colágeno Tipo IV/metabolismo , Matriz Extracelular/metabolismo , Malformações Arteriovenosas Intracranianas/metabolismo , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Fístula Arteriovenosa/cirurgia , Membrana Basal/metabolismo , Neoplasias Encefálicas/cirurgia , Estudos de Casos e Controles , Criança , Endotélio/metabolismo , Feminino , Glioma/cirurgia , Humanos , Imuno-Histoquímica , Malformações Arteriovenosas Intracranianas/cirurgia , Masculino , Pessoa de Meia-Idade , Análise Serial de Tecidos , Túnica Média/metabolismo , Adulto Jovem
15.
Sci Rep ; 9(1): 15472, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664168

RESUMO

Aortic aneurysms are associated with fatal aortic rupture. Current therapeutic approaches are limited to implantation of aortic prostheses and stent-grafts; no effective drugs are available because the pathogenic mechanisms of aortic aneurysms remain unclear. Here, we aimed to elucidate the molecular mechanisms of the initiation and progression of aortic aneurysm by lipidomics. We performed lipidomics analyses of lipids in the aortic media of normal, border, and aneurysm areas from patients with thoracic atherosclerotic aortic aneurysm (N = 30), thoracic nonatherosclerotic aortic aneurysm (N = 19), and abdominal atherosclerotic aortic aneurysm (N = 11) and from controls (N = 8) using liquid chromatography and mass spectrometry. Significant alterations were observed in the lipid profiles of patients with atherosclerotic aortic aneurysms and to a lesser extent in those with nonatherosclerotic aneurysms. Increased triacylglycerols (TGs) and decreased ether-type phosphatidylethanolamines (ePEs) were observed throughout the normal, border, and aneurysm areas of thoracic and abdominal atherosclerotic aortic aneurysms. Prostaglandin D2 increased, but ePEs and TGs decreased in normal areas of thoracic atherosclerotic aortic aneurysms and thoracic nonatherosclerotic aortic aneurysms compared with the control tissues. These findings expand our knowledge of metabolic changes in aortic aneurysms and provide insights into the pathophysiology of aortic aneurysms.


Assuntos
Aneurisma/etiologia , Aorta/metabolismo , Aterosclerose/complicações , Lipidômica , Túnica Média/metabolismo , Adulto , Idoso , Aneurisma/metabolismo , Aneurisma/fisiopatologia , Aterosclerose/metabolismo , Aterosclerose/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco
16.
Trends Mol Med ; 25(12): 1133-1146, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31522956

RESUMO

Arterial media calcification and arterial stiffness are independent predictors of cardiovascular mortality. Both processes reinforce one another, creating a vicious cycle in which transdifferentiation of endothelial cells and vascular smooth muscle cells play a central role. Physiological functioning of vascular smooth muscle cells in the arterial medial layer greatly depends on normal endothelial cell behavior. Endothelial or intimal layer cells are the primary sensors of pathological triggers circulating in the blood during, for example, ageing or inflammation, and often can be seen as initiators of this vicious cycle. As such, the search for treatment of arterial media calcification, which until now has been mainly concentrated at the level of the vascular smooth cell, may need to be expanded to intimal layer targets.


Assuntos
Artérias/patologia , Túnica Média/patologia , Calcificação Vascular/patologia , Rigidez Vascular , Animais , Artérias/metabolismo , Artérias/fisiopatologia , Sistema Enzimático do Citocromo P-450/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Óxido Nítrico/metabolismo , Túnica Média/metabolismo , Túnica Média/fisiopatologia , Calcificação Vascular/metabolismo , Calcificação Vascular/fisiopatologia
17.
Forensic Sci Med Pathol ; 15(4): 591-594, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31446611

RESUMO

The body of a 43-year-old African woman with a history of aortic aneurysm and hypertension was forensically investigated after her sudden death. The cause of death was related to a cardiac tamponade due to a ruptured aneurysm of the ascending aorta. Post-mortem gross examination showed an abnormal whitish discoloration of the intima with fibrous thickening of the aortic wall. Several arteries (left main and circumflex coronaries, carotid, renal and iliac arteries) showed similar features. Upon histological examination, the aortic aneurysm as well as the other arteries sampled showed mucoid degeneration, excess mucopolysaccharides and pools of mucin inside the intima and the media associated with collagen and elastic fiber destruction and loss of smooth muscle cells. This pattern strongly suggested the diagnosis of intimomedial mucoid degeneration (IMMD), a rare arterial disorder consisting of a progressive deposition of mucin into the intima and media, with a strong prevalence in middle-aged black African females with high blood pressure. In addition to the typical features of IMMD, histological examination of the ascending aorta showed a thickening of the adventita with sparse mixed inflammatory infiltrates and fibrosis, suggesting an additional chronic infectious aortitis. No infectious agent was detected. The body of literature on IMMD is reviewed and the origin of death is discussed in this case report.


Assuntos
Aorta/patologia , Aneurisma Aórtico/patologia , Glicosaminoglicanos/metabolismo , Mucinas/metabolismo , Túnica Íntima/patologia , Túnica Média/patologia , Adulto , Túnica Adventícia/patologia , População Negra , Vasos Coronários/patologia , Morte Súbita/etiologia , Feminino , Fibrose/patologia , Patologia Legal , Humanos , Hipertensão/complicações , Túnica Íntima/metabolismo , Túnica Média/metabolismo
18.
Oxid Med Cell Longev ; 2019: 7064319, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31210846

RESUMO

Ribosome biogenesis is a crucial biological process related to cell proliferation, redox balance, and muscle contractility. Aortic smooth muscle cells (ASMCs) show inhibition of proliferation and apoptosis, along with high levels of oxidative stress in aortic dissection (AD). Theoretically, ribosome biogenesis should be enhanced in the ASMCs at its proliferative state but suppressed during apoptosis and oxidative stress. However, the exact status and role of ribosome biogenesis in AD are unknown. We therefore analyzed the expression levels of BOP1, a component of the PeBoW complex which is crucial to ribosome biogenesis, in AD patients and a murine AD model and its influence on the ASMCs. BOP1 was downregulated in the aortic tissues of AD patients compared to healthy donors. In addition, overexpression of BOP1 in human aortic smooth muscle cells (HASMCs) inhibited apoptosis and accumulation of p53 under hypoxic conditions, while knockdown of BOP1 decreased the protein synthesis rate and motility of HASMCs. The RNA polymerase I inhibitor cx-5461 induced apoptosis, ROS production, and proliferative inhibition in the HASMCs, which was partly attenuated by p53 knockout. Furthermore, cx-5461 aggravated the severity of AD in vivo, but a p53-/- background extended the life-span and lowered AD incidence in the mice. Taken together, decreased ribosome biogenesis in ASMCs resulting in p53-dependent proliferative inhibition, oxidative stress, and apoptosis is one of the underlying mechanisms of AD.


Assuntos
Aorta/metabolismo , Dissecção Aórtica/metabolismo , Apoptose , Miócitos de Músculo Liso/metabolismo , Estresse Oxidativo , Ribossomos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Túnica Média/metabolismo , Adulto , Dissecção Aórtica/patologia , Aorta/patologia , Benzotiazóis/farmacologia , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos de Músculo Liso/patologia , Naftiridinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Túnica Média/patologia
19.
Exp Cell Res ; 380(1): 100-113, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31004580

RESUMO

Arterial medial calcification (AMC) is the deposition of calcium phosphate mineral, often as hydroxyapatite, in the medial layer of the arteries. AMC shares some similarities to skeletal mineralisation and has been associated with the transdifferentiation of vascular smooth muscle cells (VSMCs) towards an osteoblast-like phenotype. This study used primary mouse VSMCs and calvarial osteoblasts to directly compare the established and widely used in vitro models of AMC and bone formation. Significant differences were identified between osteoblasts and calcifying VSMCs. First, osteoblasts formed large mineralised bone nodules that were associated with widespread deposition of an extracellular collagenous matrix. In contrast, VSMCs formed small discrete regions of calcification that were not associated with collagen deposition and did not resemble bone. Second, calcifying VSMCs displayed a progressive reduction in cell viability over time (≤7-fold), with a 50% increase in apoptosis, whereas osteoblast and control VSMCs viability remained unchanged. Third, osteoblasts expressed high levels of alkaline phosphatase (TNAP) activity and TNAP inhibition reduced bone formation by to 90%. TNAP activity in calcifying VSMCs was ∼100-fold lower than that of bone-forming osteoblasts and cultures treated with ß-glycerophosphate, a TNAP substrate, did not calcify. Furthermore, TNAP inhibition had no effect on VSMC calcification. Although, VSMC calcification was associated with increased mRNA expression of osteoblast-related genes (e.g. Runx2, osterix, osteocalcin, osteopontin), the relative expression of these genes was up to 40-fold lower in calcifying VSMCs versus bone-forming osteoblasts. In summary, calcifying VSMCs in vitro display some limited osteoblast-like characteristics but also differ in several key respects: 1) their inability to form collagen-containing bone; 2) their lack of reliance on TNAP to promote mineral deposition; and, 3) the deleterious effect of calcification on their viability.


Assuntos
Calcinose/metabolismo , Músculo Liso Vascular/metabolismo , Osteoblastos/metabolismo , Osteogênese/genética , Fosfatase Alcalina/genética , Animais , Calcinose/genética , Calcinose/patologia , Fosfatos de Cálcio/metabolismo , Sobrevivência Celular/genética , Transdiferenciação Celular/genética , Colágeno/metabolismo , Durapatita/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Glicerofosfatos/metabolismo , Humanos , Camundongos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Osteoblastos/patologia , Especificidade por Substrato , Túnica Média/metabolismo , Túnica Média/patologia
20.
Front Biosci (Landmark Ed) ; 24(6): 994-1023, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30844726

RESUMO

Atherosclerosis is an inflammatory disease involving dysfunction of endothelial cells (EC) and enhanced permeability of the endothelium to oxidized low-density lipoprotein and the transmigration of monocytes from the blood to the intima where they are transformed into foam cells after lipid engulfment. Changes in the composition of the basement membrane leading to increased fibronectin deposition also occur and modify EC-extracellular matrix (ECM) mechanotransduction. The release of lipids due to foam cell apoptosis, as well as the migration of vascular smooth muscle cells from the media to the intima and their proliferation, increase the stiffness of arteries at later stages of atherosclerosis. EC dysfunction also involves other factors, including soluble cytokines and growth factors (GF) such as bone morphogenetic proteins (BMP). BMP-9 is a potent circulatory GF which has been shown to affect EC behavior. However, to date, few studies have investigated its role in atherosclerosis. The present review describes the histology and homeostasis of arteries by explaining EC function/dysfunction and discusses BMP-9 effect on EC behavior, considering factors engaged in the development of atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Fatores de Diferenciação de Crescimento/metabolismo , Animais , Adesão Celular , Colágeno/metabolismo , Fibronectinas/metabolismo , Fator 2 de Diferenciação de Crescimento , Humanos , Inflamação , Integrinas/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Neovascularização Patológica , Permeabilidade , Proteínas Smad/metabolismo , Túnica Média/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA