Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
J Med Chem ; 64(8): 4972-4990, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33829779

RESUMO

The multifactorial nature of Alzheimer's disease (AD) is a reason for the lack of effective drugs as well as a basis for the development of "multi-target-directed ligands" (MTDLs). As cases increase in developing countries, there is a need of new drugs that are not only effective but also accessible. With this motivation, we report the first sustainable MTDLs, derived from cashew nutshell liquid (CNSL), an inexpensive food waste with anti-inflammatory properties. We applied a framework combination of functionalized CNSL components and well-established acetylcholinesterase (AChE)/butyrylcholinesterase (BChE) tacrine templates. MTDLs were selected based on hepatic, neuronal, and microglial cell toxicity. Enzymatic studies disclosed potent and selective AChE/BChE inhibitors (5, 6, and 12), with subnanomolar activities. The X-ray crystal structure of 5 complexed with BChE allowed rationalizing the observed activity (0.0352 nM). Investigation in BV-2 microglial cells revealed antineuroinflammatory and neuroprotective activities for 5 and 6 (already at 0.01 µM), confirming the design rationale.


Assuntos
Ligantes , Fármacos Neuroprotetores/química , Extratos Vegetais/química , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Anacardium/química , Anacardium/metabolismo , Sítios de Ligação , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Domínio Catalítico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Desenho de Fármacos , Humanos , Lipopolissacarídeos/farmacologia , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Simulação de Dinâmica Molecular , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Nozes/química , Nozes/metabolismo , Relação Estrutura-Atividade , Tacrina/química , Tacrina/metabolismo
2.
Eur J Med Chem ; 219: 113434, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33892271

RESUMO

Tacrine is a classic drug whose efficacy against neurodegenerative diseases is still shrouded in mystery. It seems that besides its inhibitory effect on cholinesterases, the clinical benefit is co-determined by NMDAR-antagonizing activity. Our previous data showed that the direct inhibitory effect of tacrine, as well as its 7-methoxy derivative (7-MEOTA), is ensured via a "foot-in-the-door" open-channel blockage, and that interestingly both tacrine and 7-MEOTA are slightly more potent at the GluN1/GluN2A receptors when compared with the GluN1/GluN2B receptors. Here, we report that in a series of 30 novel tacrine derivatives, designed for assessment of structure-activity relationship, blocking efficacy differs among different compounds and receptors using electrophysiology with HEK293 cells expressing the defined types of NMDARs. Selected compounds (4 and 5) potently inhibited both GluN1/GluN2A and GluN1/GluN2B receptors; other compounds (7 and 23) more effectively inhibited the GluN1/GluN2B receptors; or the GluN1/GluN2A receptors (21 and 28). QSAR study revealed statistically significant model for the data obtained for inhibition of GluN1/Glu2B at -60 mV expressed as IC50 values, and for relative inhibition of GluN1/Glu2A at +40 mV caused by a concentration of 100 µM. The models can be utilized for a ligand-based virtual screening to detect potential candidates for inhibition of GluN1/Glu2A and/or GluN1/Glu2B subtypes. Using in vivo experiments in rats we observed that unlike MK-801, the tested novel compounds did not induce hyperlocomotion in open field, and also did not impair prepulse inhibition of startle response, suggesting minimal induction of psychotomimetic side effects. We conclude that tacrine derivatives are promising compounds since they are centrally available subtype-specific inhibitors of the NMDARs without detrimental behavioral side-effects.


Assuntos
Inibidores da Colinesterase/química , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Tacrina/química , Acetilcolinesterase/química , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Cães , Desenho de Fármacos , Meia-Vida , Humanos , Locomoção/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Relação Quantitativa Estrutura-Atividade , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Tacrina/metabolismo , Tacrina/farmacologia
3.
Org Biomol Chem ; 19(10): 2322-2337, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33645607

RESUMO

We have used the Cu(i)-catalyzed azide-alkyne Huisgen cycloaddition reaction to obtain two families of bivalent heterodimers where tacrine is connected to an azasugar or iminosugar, respectively, via linkers of variable length. The heterodimers were investigated as cholinesterase inhibitors and it was found that their activity increased with the length of the linker. Two of the heterodimers were significantly stronger acetylcholinesterase inhibitors than the monomeric tacrine. Molecular modelling indicated that the longer heterodimers fitted better into the active gorge of acetylcholinesterase than the shorter counterparts and the former provided more efficient simultaneous interaction with the tryptophan residues in the catalytic anionic binding site (CAS) and the peripheral anionic binding site (PAS).


Assuntos
Inibidores da Colinesterase/química , Imino Açúcares/química , Tacrina/química , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Animais , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/metabolismo , Electrophorus , Ensaios Enzimáticos , Cavalos , Imino Açúcares/síntese química , Imino Açúcares/metabolismo , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade , Tacrina/síntese química , Tacrina/metabolismo , Termodinâmica
4.
Chem Rec ; 21(1): 162-174, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33169934

RESUMO

Herein we have reviewed our recent developments for the identification of new tacrine analogues for Alzheimer's disease (AD) therapy. Tacrine, the first cholinesterase inhibitor approved for AD treatment, did not stop the progression of AD, producing only some cognitive improvements, but exhibited secondary effects mainly due to its hepatotoxicity. Thus, the drug was withdrawn from the clinics administration. Since then, many publications have described non-hepatotoxic tacrines, and in addition, important efforts have been made to design multitarget tacrines by combining their cholinesterase inhibition profile with the modulation of other biological targets involved in AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Fármacos Neuroprotetores/farmacologia , Tacrina/análogos & derivados , Tacrina/farmacologia , Acetilcolinesterase/metabolismo , Linhagem Celular Tumoral , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/metabolismo , Humanos , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/metabolismo , Ligação Proteica , Tacrina/metabolismo
5.
Anal Biochem ; 607: 113835, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32739347

RESUMO

A reversible fluorescence probe for acetylcholinesterase activity detection was developed based on water soluble perylene derivative, N,N'-di(2-aspartic acid)-perylene-3,4,9,10-tetracarboxylic diimide (PASP). Based on the photo-induced electron transfer (PET), PASP fluorescence in aqueous is quenched after combining with copper ions (Cu2+). Acetylcholinesterase (AChE) is well known to catalyze the hydrolysis of acetylcholine (ATCh) to produce thiocholine, whose affinity is strong enough to capture Cu2+ by thiol (-SH) group from the complex PASP-Cu, resulting in the fluorescence signal of PASP recovers up to 90%. This optical switch is highly sensitive depended on the coordination and dissociation between PASP and Cu2+. We proposed its application for AChE activity detection, as well as its inhibitor screening. According to the change of fluorescence intensity, quantifying the detection limit of AChE was 1.78 mU·mL-1. Classical inhibitors, tacrine and organophosphate pesticide diazinon, were further evaluated for drug screening. The IC50 value of tacrine was calculated to be 0.43 µM, and the detection limit of diazinon was 0.22 µM. Both of these performances were much better than previous results, revealing our probe is sensitive and reversible for screening applications.


Assuntos
Acetilcolinesterase/análise , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Diazinon/química , Diazinon/metabolismo , Corantes Fluorescentes/química , Perileno/química , Tacrina/química , Tacrina/metabolismo , Ligação Competitiva , Inibidores da Colinesterase/farmacologia , Diazinon/farmacologia , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Espectrometria de Fluorescência , Especificidade por Substrato , Tacrina/farmacologia
6.
Biomed Chromatogr ; 34(10): e4906, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32449534

RESUMO

Tacrine derivatives containing iodobenzoic acid were developed as a novel multitarget-directed ligand and find potential application in the treatment of Alzheimer's disease. The aim of this study is to perform a physicochemical profile of this series. Experimental log P and pKa values were determined and compared with those already calculated. The results indicated better values of the tested compounds than the values predicted using computer software. The stability report was obtained using the developed HPLC method. The stability assay in different environment conditions provided information about the photosensitivity of these compounds and a proper method for the storage of this series of compounds.


Assuntos
Inibidores da Colinesterase , Iodobenzoatos , Tacrina , Doença de Alzheimer , Inibidores da Colinesterase/análise , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Cromatografia Líquida de Alta Pressão , Descoberta de Drogas , Estabilidade de Medicamentos , Humanos , Iodobenzoatos/análise , Iodobenzoatos/química , Iodobenzoatos/metabolismo , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes , Tacrina/análogos & derivados , Tacrina/análise , Tacrina/química , Tacrina/metabolismo
7.
Org Biomol Chem ; 18(13): 2468-2474, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32167516

RESUMO

A new N2O-type BODIPY probe (LF-Bop) has been proposed for the selective and sensitive detection of biologically relevant small molecular thiols. This detection is based on the Michael addition reaction between the thiol and nitrostyrene groups in the probe, which decreases the quenching effect from the nitro group, thus resulting in the recovery of the deep-red fluorescence from the BODIPY structure. The results show that LF-Bop is able to detect all tested free thiols through a fluorescence turn-on assay. The lowest limit of detection (LOD) for glutathione was found to be down to nanomolar levels (220 nM). Based on this probe, we have developed a new fluorescence assay for the screening of acetylcholinesterase inhibitors. In total, 11 natural and synthetic alkaloids have been evaluated. Both experimental measurements and theoretical molecular docking results reveal that both natural berberine and its synthetic derivative dihydroberberine are potential inhibitors of acetylcholinesterase.


Assuntos
Compostos de Boro/química , Inibidores da Colinesterase/química , Corantes Fluorescentes/química , Glutationa/análise , Estirenos/química , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Animais , Berberina/análogos & derivados , Berberina/química , Berberina/metabolismo , Compostos de Boro/síntese química , Inibidores da Colinesterase/metabolismo , Avaliação Pré-Clínica de Medicamentos , Elasmobrânquios , Peixe Elétrico , Corantes Fluorescentes/síntese química , Glutationa/química , Limite de Detecção , Simulação de Acoplamento Molecular , Ligação Proteica , Estirenos/síntese química , Tacrina/química , Tacrina/metabolismo
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 224: 117412, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31357051

RESUMO

Molybdenum dichalcogenides MoX2 (X=S, Se) have been found to possess intrinsic peroxidase-like activity. However, molybdenum oxides (MoO2) as peroxidase mimetics have not been exploited yet. Herein, MoO2 nanoparticles were synthesized by a simple hydrothermal method and found to possess the peroxidase-like activity for the first time. MoO2 nanoparticles could catalyze the oxidation of 3,3',5,5'-tetrametylbenzidine (TMB) by H2O2 to produce a blue-color product (oxTMB). The catalytic property and mechanism were investigated by stead-state kinetics experiment and free radicals scavenging experiment, respectively. Acetylcholinesterase (AChE) could catalyze the hydrolysis of acetylthiocholine chloride (ATCh) into thiocholine (TCh), which could reduce oxTMB to decrease the absorbance in solution. In the presence of AChE inhibitor tacrine, the generation of TCh was inhibited and the absorbance was preserved. Based on these properties, a colorimetric assay method was developed for AChE inhibitor tacrine. This work not only broadens the application of the peroxidase mimetics, but also overcome the disadvantages of traditional methods such as expensive, complex and vulnerable to background interference for colorimetric assay of AChE inhibitor.


Assuntos
Inibidores da Colinesterase/análise , Colorimetria/métodos , Nanopartículas Metálicas/química , Molibdênio/química , Óxidos/química , Tacrina/análise , Inibidores da Colinesterase/metabolismo , Cinética , Nanopartículas Metálicas/análise , Molibdênio/análise , Molibdênio/metabolismo , Óxidos/análise , Óxidos/metabolismo , Peroxidases/metabolismo , Tacrina/metabolismo
9.
Med Chem ; 16(2): 155-168, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31092184

RESUMO

BACKGROUND: Three dimensional quantitative structure activity relationship and pharmacophore modeling are studied for tacrine derivatives as acetylcholinesterase inhibitors. METHODS: The three dimensional quantitative structure-activity relationship and pharmacophore methods were used to model the 68 derivatives of tacrine as human acetylcholinesterase inhibitors. The effect of the docked conformer of each molecule in the enzyme cavity was investigated on the predictive ability and statistical quality of the produced models. RESULTS: The whole data set was divided into two training and test sets using hierarchical clustering method. 3D-QSAR model, based on the comparative molecular field analysis has good statistical parameters as indicated by q2 =0.613, r2 =0.876, and r2pred =0.75. In the case of comparative molecular similarity index analysis, q2, r2 and r2pred values were 0.807, 0.96, and 0.865 respectively. The statistical parameters of the models proved that the inhibition data are well fitted and they have satisfactory predictive abilities. CONCLUSION: The results from this study illustrate the reliability of using techniques in exploring the likely bonded conformations of the ligands in the active site of the protein target and improve the understanding over the structural and chemical features of AChE.


Assuntos
Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Relação Quantitativa Estrutura-Atividade , Tacrina/química , Tacrina/farmacologia , Acetilcolinesterase/química , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/uso terapêutico , Humanos , Simulação de Acoplamento Molecular , Conformação Proteica , Tacrina/metabolismo , Tacrina/uso terapêutico
10.
Mini Rev Med Chem ; 20(14): 1403-1435, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31884928

RESUMO

Acetylcholinesterase inhibitors are the most promising therapeutics for Alzheimer's disease treatment as these prevent the loss of acetylcholine and slows the progression of the disease. The drugs approved for the management of Alzheimer's disease by the FDA are acetylcholinesterase inhibitors but are associated with side effects. Consistent and stringent efforts by the researchers with the help of computational methods opened new ways of developing novel molecules with good acetylcholinesterase inhibitory activity. In this manuscript, we reviewed the studies that identified the essential structural features of acetylcholinesterase inhibitors at the molecular level as well as the techniques like molecular docking, molecular dynamics, quantitative structure-activity relationship, virtual screening, and pharmacophore modelling that were used in designing these inhibitors.


Assuntos
Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Acetilcolinesterase/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Sítios de Ligação , Carbamatos/química , Carbamatos/metabolismo , Carbamatos/uso terapêutico , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/uso terapêutico , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Tacrina/análogos & derivados , Tacrina/metabolismo , Tacrina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA