Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 504
Filtrar
1.
Int J Biochem Cell Biol ; 171: 106583, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657899

RESUMO

Protein crotonylation plays a role in regulating cellular metabolism, gene expression, and other biological processes. NDUFA9 (NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9) is closely associated with the activity and function of mitochondrial respiratory chain complex I. Mitochondrial function and respiratory chain are closely related to browning of white adipocytes, it's speculated that NDUFA9 and its crotonylation are associated with browning of white adipocytes. Firstly, the effect of NDUFA9 on white adipose tissue was verified in white fat browning model mice, and it was found that NDUFA9 promoted mitochondrial respiration, thermogenesis, and browning of white adipose tissue. Secondly, in cellular studies, it was discovered that NDUFA9 facilitated browning of white adipocytes by enhancing mitochondrial function, mitochondrial complex I activity, ATP synthesis, and mitochondrial respiration. Again, the level of NDUFA9 crotonylation was increased by treating cells with vorinostat (SAHA)+sodium crotonate (NaCr) and overexpressing NDUFA9, it was found that NDUFA9 crotonylation promoted browning of white adipocytes. Meanwhile, the acetylation level of NDUFA9 was increased by treating cells with SAHA+sodium acetate (NaAc) and overexpressing NDUFA9, the assay revealed that NDUFA9 acetylation inhibited white adipocytes browning. Finally, combined with the competitive relationship between acetylation and crotonylation, it was also demonstrated that NDUFA9 crotonylation promoted browning of white adipocytes. Above results indicate that NDUFA9 and its crotonylation modification promote mitochondrial function, which in turn promotes browning of white adipocytes. This study establishes a theoretical foundation for the management and intervention of obesity, which is crucial in addressing obesity and related medical conditions in the future.


Assuntos
Adipócitos Brancos , Mitocôndrias , Animais , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Adipócitos Brancos/metabolismo , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/citologia , Masculino , Camundongos Endogâmicos C57BL , Termogênese/efeitos dos fármacos , Adipócitos Marrons/metabolismo , Adipócitos Marrons/efeitos dos fármacos , Células 3T3-L1 , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/citologia , Acetilação/efeitos dos fármacos
2.
Nature ; 620(7972): 192-199, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37495690

RESUMO

Sympathetic activation during cold exposure increases adipocyte thermogenesis via the expression of mitochondrial protein uncoupling protein 1 (UCP1)1. The propensity of adipocytes to express UCP1 is under a critical influence of the adipose microenvironment and varies between sexes and among various fat depots2-7. Here we report that mammary gland ductal epithelial cells in the adipose niche regulate cold-induced adipocyte UCP1 expression in female mouse subcutaneous white adipose tissue (scWAT). Single-cell RNA sequencing shows that glandular luminal epithelium subtypes express transcripts that encode secretory factors controlling adipocyte UCP1 expression under cold conditions. We term these luminal epithelium secretory factors 'mammokines'. Using 3D visualization of whole-tissue immunofluorescence, we reveal sympathetic nerve-ductal contact points. We show that mammary ducts activated by sympathetic nerves limit adipocyte UCP1 expression via the mammokine lipocalin 2. In vivo and ex vivo ablation of mammary duct epithelium enhance the cold-induced adipocyte thermogenic gene programme in scWAT. Since the mammary duct network extends throughout most of the scWAT in female mice, females show markedly less scWAT UCP1 expression, fat oxidation, energy expenditure and subcutaneous fat mass loss compared with male mice, implicating sex-specific roles of mammokines in adipose thermogenesis. These results reveal a role of sympathetic nerve-activated glandular epithelium in adipocyte UCP1 expression and suggest that mammary duct luminal epithelium has an important role in controlling glandular adiposity.


Assuntos
Adipócitos , Tecido Adiposo Branco , Epitélio , Glândulas Mamárias Animais , Termogênese , Animais , Feminino , Masculino , Camundongos , Adipócitos/metabolismo , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Epitélio/inervação , Epitélio/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/inervação , Glândulas Mamárias Animais/fisiologia , Temperatura Baixa , Sistema Nervoso Simpático/fisiologia , Metabolismo Energético , Oxirredução , Caracteres Sexuais
3.
J Nutr Biochem ; 100: 108898, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34748921

RESUMO

The adipocytes play an important role in driving the obese-state-white adipose tissue (WAT) stores the excess energy as fat, wherein brown adipose tissue (BAT) is responsible for energy expenditure via the thermoregulatory function of uncoupling protein 1 (UCP1)-the imbalance between these two onsets obesity. Moreover, the anti-obesity effects of brown-like-adipocytes (beige) in WAT are well documented. Browning, the process of transformation of energy-storing into energy-dissipating adipocytes, is a potential preventive strategy against obesity and its related diseases. In the present study, to explore an alternative source of natural products in the regulation of adipocyte transformation, we assessed the potential of theobromine (TB), a bitter alkaloid of the cacao plant, inducing browning in mice (in vivo) and primary adipocytes (in vitro). Dietary supplementation of TB significantly increased skin temperature of the inguinal region in mice and induced the expression of UCP1 protein. It also increased the expression levels of mitochondrial marker proteins in subcutaneous adipose tissues but not in visceral adipose tissues. The microarray analysis showed that TB supplementation upregulated multiple thermogenic and beige adipocyte marker genes in subcutaneous adipose tissue. Furthermore, in mouse-derived primary adipocytes, TB upregulated the expression of the UCP1 protein and mitochondrial mass in a PPARγ ligand-dependent manner. It also increased the phosphorylation levels of PPARγ coactivator 1α without affecting its protein expression. These results indicate that dietary supplementation of TB induces browning in subcutaneous WAT and enhances PPARγ-induced UCP1 expression in vitro, suggesting its potential to treat obesity.


Assuntos
Adipócitos Bege/fisiologia , Adipócitos Brancos/fisiologia , Suplementos Nutricionais , PPAR gama/metabolismo , Teobromina/administração & dosagem , Adipócitos Brancos/efeitos dos fármacos , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitofagia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosforilação , Prótons , Transdução de Sinais , Temperatura Cutânea , Teobromina/farmacologia , Termogênese , Transcriptoma , Proteína Desacopladora 1/metabolismo , Aumento de Peso
4.
Sci Rep ; 11(1): 24105, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916557

RESUMO

Thyroid hormone (TH) and thyroid hormone receptor (THR) regulate stem cell proliferation and differentiation during development, as well as during tissue renewal and repair in the adult. THR undergoes posttranslational modification by small ubiquitin-like modifier (SUMO). We generated the THRA (K283Q/K288R)-/- mouse model for in vivo studies and used human primary preadipocytes expressing the THRA sumoylation mutant (K283R/K288R) and isolated preadipocytes from mutant mice for in vitro studies. THRA mutant mice had reduced white adipose stores and reduced adipocyte cell diameter on a chow diet, compared to wild-type, and these differences were further enhanced after a high fat diet. Reduced preadipocyte proliferation in mutant mice, compared to wt, was shown after in vivo labeling of preadipocytes with EdU and in preadipocytes isolated from mice fat stores and studied in vitro. Mice with the desumoylated THRA had disruptions in cell cycle G1/S transition and this was associated with a reduction in the availability of cyclin D2 and cyclin-dependent kinase 2. The genes coding for cyclin D1, cyclin D2, cyclin-dependent kinase 2 and Culin3 are stimulated by cAMP Response Element Binding Protein (CREB) and contain CREB Response Elements (CREs) in their regulatory regions. We demonstrate, by Chromatin Immunoprecipitation (ChIP) assay, that in mice with the THRA K283Q/K288R mutant there was reduced CREB binding to the CRE. Mice with a THRA sumoylation mutant had reduced fat stores on chow and high fat diets and reduced adipocyte diameter.


Assuntos
Tecido Adiposo Branco/metabolismo , Sumoilação/fisiologia , Receptores alfa dos Hormônios Tireóideos/metabolismo , Receptores alfa dos Hormônios Tireóideos/fisiologia , Adipócitos/patologia , Adipócitos/fisiologia , Tecido Adiposo Branco/citologia , Animais , Proteína de Ligação a CREB/metabolismo , Proliferação de Células , Dieta Hiperlipídica/efeitos adversos , Humanos , Camundongos , Camundongos Mutantes , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/fisiologia
5.
STAR Protoc ; 2(4): 100937, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34778849

RESUMO

Isolation of viable immune cells from human tissues is critical for the characterization of cellular and molecular processes underlying disease pathogenesis. Here, we describe protocols for the isolation of highly viable immune cells from liver wedges and mesenteric white adipose tissue resections from obese persons. Notably, characterization of the isolated single-immune cell suspensions, via utility of basic immunological interrogations and genetic approaches, promises to generate an improved understanding of altered immunological pathways in obese individuals with or without metabolic diseases. For complete details on the use and execution of this protocol, please refer to Moreno-Fernandez et al. (2021).


Assuntos
Separação Celular/métodos , Sistema Imunitário/citologia , Fígado , Mesentério , Análise de Célula Única/métodos , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/patologia , Adolescente , Biópsia , Células Cultivadas , Feminino , Humanos , Fígado/citologia , Fígado/patologia , Masculino , Mesentério/citologia , Mesentério/patologia , Obesidade Infantil
6.
Biochem Biophys Res Commun ; 585: 155-161, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34801935

RESUMO

Glutamine is the most abundant amino acid in the body, and adipose tissue is one of the glutamine-producing organs. Glutamine has important and unique metabolic functions; however, its effects in adipocytes are still unclear. 3T3-L1 adipocytes produced and secreted glutamine dependent on glutamine synthetase, but preadipocytes did not. The inhibition of glutamine synthetase by l-methionine sulfoximine (MSO) impaired the differentiation of preadipocytes to mature adipocytes, and this inhibitory effect of MSO was rescued by exogenous glutamine supplementation. Glutamine concentrations were low, and Atgl gene expression was high in epididymal white adipose tissues of fasting mice in vivo. In 3T3-L1 adipocytes, glutamine deprivation induced Atgl expression and increased glycerol concentration in culture medium. Atgl expression is regulated by FoxO1, and glutamine deprivation reduced FoxO1 phosphorylation (Ser256), indicating the activation of FoxO1. These results demonstrate that glutamine is necessary for the differentiation of preadipocytes and regulates lipolysis through FoxO1 in mature adipocytes.


Assuntos
Adipócitos/metabolismo , Diferenciação Celular/fisiologia , Glutamina/deficiência , Lipólise/fisiologia , Células 3T3-L1 , Adipócitos/citologia , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Animais , Western Blotting , Diferenciação Celular/genética , Células Cultivadas , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Regulação da Expressão Gênica , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Glutamina/metabolismo , Lipase/genética , Lipase/metabolismo , Lipólise/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Cells ; 10(11)2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34831295

RESUMO

Adipose tissue has been classified based on its morphology and function as white, brown, or beige/brite. It plays an essential role as a regulator of systemic metabolism through paracrine and endocrine signals. Recently, multiple adipocyte subtypes have been revealed using RNA sequencing technology, going beyond simply defined morphology but also by their cellular origin, adaptation to metabolic stress, and plasticity. Here, we performed an in-depth analysis of publicly available single-nuclei RNAseq from adipose tissue and utilized a workflow template to characterize adipocyte plasticity, heterogeneity, and secretome profiles. The reanalyzed dataset led to the identification of different subtypes of adipocytes including three subpopulations of thermogenic adipocytes, and provided a characterization of distinct transcriptional profiles along the adipocyte trajectory under thermogenic challenges. This study provides a useful resource for further investigations regarding mechanisms related to adipocyte plasticity and trans-differentiation.


Assuntos
Adipócitos Brancos/citologia , Tecido Adiposo Branco/citologia , Núcleo Celular/metabolismo , Plasticidade Celular , RNA-Seq , Termogênese/fisiologia , Animais , Camundongos , Temperatura , Proteína Desacopladora 1/metabolismo
8.
FASEB J ; 35(12): e22018, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34731499

RESUMO

Adipose tissue is the primary site of energy storage, playing important roles in health. While adipose research largely focuses on obesity, fat also has other critical functions, producing adipocytokines and contributing to normal nutrient metabolism, which in turn play important roles in satiety and total energy homeostasis. SMAD2/3 proteins are downstream mediators of activin signaling, which regulate critical preadipocyte and mature adipocyte functions. Smad2 global knockout mice exhibit embryonic lethality, whereas global loss of Smad3 protects mice against diet-induced obesity. The direct contributions of Smad2 and Smad3 in adipose tissues, however, are unknown. Here, we sought to determine the primary effects of adipocyte-selective reduction of Smad2 or Smad3 on diet-induced adiposity using Smad2 or Smad3 "floxed" mice intercrossed with Adiponectin-Cre mice. Additionally, we examined visceral and subcutaneous preadipocyte differentiation efficiency in vitro. Almost all wild type subcutaneous preadipocytes differentiated into mature adipocytes. In contrast, visceral preadipocytes differentiated poorly. Exogenous activin A suppressed differentiation of preadipocytes from both depots. Smad2 conditional knockout (Smad2cKO) mice did not exhibit significant effects on weight gain, irrespective of diet, whereas Smad3 conditional knockout (Smad3cKO) male mice displayed a trend of reduced body weight on high-fat diet. On both diets, Smad3cKO mice displayed an adipose depot-selective phenotype, with a significant reduction in subcutaneous fat mass but not visceral fat mass. Our data suggest that Smad3 is an important contributor to the maintenance of subcutaneous white adipose tissue in a sex-selective fashion. These findings have implications for understanding SMAD-mediated, depot selective regulation of adipocyte growth and differentiation.


Assuntos
Adipogenia , Tecido Adiposo Branco/citologia , Adiposidade , Gordura Intra-Abdominal/citologia , Proteína Smad2/fisiologia , Proteína Smad3/fisiologia , Gordura Subcutânea/citologia , Ativinas/genética , Ativinas/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Diferenciação Celular , Dieta Hiperlipídica , Feminino , Gordura Intra-Abdominal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gordura Subcutânea/metabolismo
9.
Food Funct ; 12(19): 9151-9164, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34606532

RESUMO

Metabolic syndrome caused obesity has long been recognized as a risk of health. Celery and celery extracts have various medicinal properties, such as anti-diabetes and anti-inflammatory properties and blood glucose and serum lipid reduction. However, the effect of probiotic fermentation on celery juice and the association between fermented celery juice (FCJ) and obesity were unclear. This study aimed to evaluate the beneficial effects of FCJ on high-fat diet (HFD) induced obesity and related metabolic syndromes. C57BL/6 mice were randomly divided into six groups (n = 15 per group) fed either a normal diet (ND) or HFD with or without CJ/FCJ (10 g kg-1 day-1) by oral gavage for 12 weeks. Here we demonstrated that the probiotic fermentation of celery juice (CJ) could enhance the active ingredients in celery, such as total polyphenols, flavonoids, vitamin C and SOD. Compared to the slight improvement induced by CJ ingestion, FCJ intake significantly inhibited body weight gain, prevented dyslipidemia and hyperglycemia, and suppressed visceral fat accumulation. Furthermore, 16S rRNA sequencing analysis revealed that FCJ intake altered the composition of gut microbiota, increasing the ratio of Firmicutes/Bacteroidetes and the relative abundance of beneficial bacteria (Lactobacillus, Ruminococcaceae_UCG-014, Faecalibaculum and Blautia), and decreasing the relative abundance of harmful bacteria (Alloprevotella and Helicobacter). These findings suggest that FCJ can prevent HFD-induced obesity and become a novel gut microbiota modulator to prevent HFD-induced gut dysbiosis and obesity-related metabolic disorders.


Assuntos
Apium , Dieta Hiperlipídica , Suplementos Nutricionais , Bebidas Fermentadas , Microbioma Gastrointestinal , Obesidade/prevenção & controle , Adipócitos/citologia , Adipócitos/fisiologia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Branco/citologia , Animais , Diabetes Mellitus Tipo 2/prevenção & controle , Dislipidemias/prevenção & controle , Bebidas Fermentadas/análise , Hiperglicemia/prevenção & controle , Gordura Intra-Abdominal/anatomia & histologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/prevenção & controle
10.
FASEB J ; 35(11): e21966, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34624148

RESUMO

Adipose tissue is central to the regulation of energy balance. While white adipose tissue (WAT) is responsible for triglyceride storage, brown adipose tissue specializes in energy expenditure. Deterioration of brown adipocyte function contributes to the development of metabolic complications like obesity and diabetes. These disorders are also leading symptoms of the Bardet-Biedl syndrome (BBS), a hereditary disorder in humans which is caused by dysfunctions of the primary cilium and which therefore belongs to the group of ciliopathies. The cilium is a hair-like organelle involved in cellular signal transduction. The BBSome, a supercomplex of several Bbs gene products, localizes to the basal body of cilia and is thought to be involved in protein sorting to and from the ciliary membrane. The effects of a functional BBSome on energy metabolism and lipid mobilization in brown and white adipocytes were tested in whole-body Bbs4 knockout mice that were subjected to metabolic challenges. Chronic cold exposure reveals cold-intolerance of knockout mice but also ameliorates the markers of metabolic pathology detected in knockouts prior to cold. Hepatic triglyceride content is markedly reduced in knockout mice while circulating lipids are elevated, altogether suggesting that defective lipid metabolism in adipose tissue creates increased demand for systemic lipid mobilization to meet energetic demands of reduced body temperatures. These findings taken together suggest that Bbs4 is essential for the regulation of adipose tissue lipid metabolism, representing a potential target to treat metabolic disorders.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Metabolismo dos Lipídeos , Proteínas Associadas aos Microtúbulos/fisiologia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Branco/citologia , Animais , Metabolismo Energético , Masculino , Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos C57BL , Termogênese
11.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502211

RESUMO

Obesity is a condition characterized by uncontrolled expansion of adipose tissue mass resulting in pathological weight gain. Histone deacetylases (HDACs) have emerged as crucial players in epigenetic regulation of adipocyte metabolism. Previously, we demonstrated that selective inhibition of class I HDACs improves white adipocyte functionality and promotes the browning phenotype of murine mesenchymal stem cells (MSCs) C3H/10T1/2 differentiated to adipocytes. These effects were also observed in db/db and diet induced obesity mouse models and in mice with adipose-selective inactivation of HDAC3, a member of class I HDACs. The molecular basis of class I HDACs action in adipose tissue is not deeply characterized and it is not known whether the effects of their inhibition are exerted on adipocyte precursors or mature adipocytes. Therefore, the aim of the present work was to explore the molecular mechanism of class I HDAC action in adipocytes by evaluating the effects of HDAC3-specific silencing at different stages of differentiation. HDAC3 was silenced in C3H/10T1/2 MSCs at different stages of differentiation to adipocytes. shRNA targeting HDAC3 was used to generate the knock-down model. Proper HDAC3 silencing was assessed by measuring both mRNA and protein levels of mouse HDAC3 via qPCR and western blot, respectively. Mitochondrial DNA content and gene expression were quantified via qPCR. HDAC3 silencing at the beginning of differentiation enhanced adipocyte functionality by amplifying the expression of genes regulating differentiation, oxidative metabolism, browning and mitochondrial activity, starting from 72 h after induction of differentiation and silencing. Insulin signaling was enhanced as demonstrated by increased AKT phosphorylation following HDAC3 silencing. Mitochondrial content/density did not change, while the increased expression of the transcriptional co-activator Ppargc1b suggests the observed phenotype was related to enhanced mitochondrial activity, which was confirmed by increased maximal respiration and proton leak linked to reduced coupling efficiency. Moreover, the expression of pro-inflammatory markers increased with HDAC3 early silencing. To the contrary, no differences in terms of gene expression were found when HDAC3 silencing occurred in terminally differentiated adipocyte. Our data demonstrated that early epigenetic events mediated by class I HDAC inhibition/silencing are crucial to commit adipocyte precursors towards the above-mentioned metabolic phenotype. Moreover, our data suggest that these effects are exerted on adipocyte precursors.


Assuntos
Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/fisiologia , Diferenciação Celular , Regulação da Expressão Gênica , Histona Desacetilases/metabolismo , Mitocôndrias/metabolismo , Fenótipo , Tecido Adiposo Marrom/citologia , Tecido Adiposo Branco/citologia , Animais , Histona Desacetilases/genética , Camundongos , Camundongos Endogâmicos C3H
12.
Biochem Biophys Res Commun ; 578: 1-6, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34520979

RESUMO

Developmentally regulated GTP-binding protein 2 (DRG2) participates in the regulation of proliferation and differentiation of multiple cells. However, whether DRG2 regulates adipocyte differentiation and related metabolic control remains elusive. This study revealed increases in body weight and adiposity in DRG2 transgenic (Tg) mice overexpressing DRG2. Consistent with these results, DRG2 Tg mice showed increased expression of genes involved in adipogenesis and lipid metabolism in the white adipose tissue. DRG2 was also identified to control adipogenesis by cooperating with peroxisome proliferator activated receptor-γ (PPAR-γ) in cultured adipocytes. Overall, the findings of the current study suggest that DRG2 plays an active role in regulating adipocyte differentiation, and thus participates in the development of obesity during exposure to a fat-rich diet.


Assuntos
Tecido Adiposo Branco/citologia , Proteínas de Ligação ao GTP/metabolismo , PPAR gama/metabolismo , Adipogenia , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal , Diferenciação Celular , Modelos Animais de Doenças , Proteínas de Ligação ao GTP/genética , Metabolismo dos Lipídeos , Camundongos , Camundongos Transgênicos
13.
Int J Mol Sci ; 22(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34575926

RESUMO

Epigenetic signals and chromatin-modifying proteins play critical roles in adipogenesis, which determines the risk of obesity and which has recently attracted increasing interest. Histone demethylase 2A (KDM2A) is an important component of histone demethylase; however, its direct effect on fat deposition remains unclear. Here, a KDM2A loss of function was performed using two unbiased methods, small interfering RNA (siRNA) and Cre-Loxp recombinase systems, to reveal its function in adipogenesis. The results show that the knockdown of KDM2A by siRNAs inhibited the proliferation capacity of 3T3-L1 preadipocytes. Furthermore, the promotion of preadipocyte differentiation was observed in siRNA-treated cells, manifested by the increasing content of lipid droplets and the expression level of adipogenic-related genes. Consistently, the genetic deletion of KDM2A by Adipoq-Cre in primary adipocytes exhibited similar phenotypes to those of 3T3-L1 preadipocytes. Interestingly, the knockdown of KDM2A upregulates the expression level of Transportin 1(TNPO1), which in turn may induce the nuclear translocation of PPARγ and the accumulation of lipid droplets. In conclusion, the ablation of KDM2A inhibits preadipocyte proliferation and promotes its adipogenic differentiation. This work provides direct evidence of the exact role of KDM2A in fat deposition and provides theoretical support for obesity therapy that targets KDM2A.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Adipogenia/genética , Diferenciação Celular/genética , Histona Desmetilases com o Domínio Jumonji/genética , Células 3T3-L1 , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Animais , Proliferação de Células , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Histona Desmetilases com o Domínio Jumonji/metabolismo , Camundongos , Transporte Proteico
14.
Biol Open ; 10(9)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34409430

RESUMO

White adipose tissue hyperplasia has been shown to be crucial for handling excess energy in healthy ways. Though adipogenesis mechanisms have been underscored in vitro, we lack information on how tissue and systemic factors influence the differentiation of new adipocytes. While this could be studied in zebrafish, adipocyte identification currently relies on neutral lipid labeling, thus precluding access to cells in early stages of differentiation. Here we report the generation and analysis of a zebrafish line with the transgene fabp4a(-2.7):EGFPcaax. In vivo confocal microscopy of the pancreatic and abdominal visceral depots of transgenic larvae, revealed the presence of labeled mature adipocytes as well as immature cells in earlier stages of differentiation. Through co-labeling for blood vessels, we observed a close interaction of differentiating adipocytes with endothelial cells through cell protrusions. Finally, we implemented hyperspectral imaging and spectral phasor analysis in Nile Red-labeled transgenic larvae and revealed the lipid metabolic transition towards neutral lipid accumulation of differentiating adipocytes. Altogether our work presents the characterization of a novel adipocyte-specific label in zebrafish and uncovers previously unknown aspects of in vivo adipogenesis. This article has an associated First Person interview with the first author of the paper.


Assuntos
Adipócitos/fisiologia , Adipogenia/genética , Tecido Adiposo Branco/citologia , Diferenciação Celular/genética , Peixe-Zebra/embriologia , Adiponectina/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Linhagem Celular , Fator D do Complemento/metabolismo , Células Endoteliais/fisiologia , Proteínas de Ligação a Ácido Graxo/metabolismo
15.
Front Endocrinol (Lausanne) ; 12: 696505, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367068

RESUMO

Brown and beige adipose tissues possess the remarkable capacity to convert energy into heat, which potentially opens novel therapeutic perspectives targeting the epidemic of metabolic syndromes such as obesity and type 2 diabetes. These thermogenic fats implement mitochondrial oxidative phosphorylation and uncouple respiration to catabolize fatty acids and glucose, which leads to an increase in energy expenditure. In particular, beige adipocytes that arise in white adipose tissue display their thermogenic capacity through various noncanonical mechanisms. This review aims to summarize the general overview of thermogenic fat, especially including the UCP1-independent adaptive thermogenesis and the emerging mechanisms of "beiging", which may provide more evidence of targeting thermogenic fat to counteract obesity and other metabolic disorders in humans.


Assuntos
Tecido Adiposo Bege/metabolismo , Metabolismo dos Lipídeos/fisiologia , Termogênese/fisiologia , Adipócitos Bege/citologia , Adipócitos Bege/fisiologia , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/fisiologia , Metabolismo Energético/fisiologia , Humanos , Lipólise/fisiologia
16.
Cells ; 10(5)2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-34066961

RESUMO

Brown adipose tissue (BAT) activity plays a key role in regulating systemic energy. The activation of BAT results in increased energy expenditure, making this tissue an attractive pharmacological target for therapies against obesity and type 2 diabetes. Sirtuin 5 (SIRT5) affects BAT function by regulating adipogenic transcription factor expression and mitochondrial respiration. We analyzed the expression of SIRT5 in the different adipose depots of mice. We treated 3T3-L1 preadipocytes and mouse primary preadipocyte cultures with the SIRT5 inhibitor MC3482 and investigated the effects of this compound on adipose differentiation and function. The administration of MC3482 during the early stages of differentiation promoted the expression of brown adipocyte and mitochondrial biogenesis markers. Upon treatment with MC3482, 3T3-L1 adipocytes showed an increased activation of the AMP-activated protein kinase (AMPK), which is known to stimulate brown adipocyte differentiation. This effect was paralleled by an increase in autophagic/mitophagic flux and a reduction in lipid droplet size, mediated by a higher lipolytic rate. Of note, MC3482 increased the expression and the activity of adipose triglyceride lipase, without modulating hormone-sensitive lipase. Our findings reveal that SIRT5 inhibition stimulates brown adipogenesis in vitro, supporting this approach as a strategy to stimulate BAT and counteract obesity.


Assuntos
Adipogenia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Branco/citologia , Regulação da Expressão Gênica , Sirtuínas/antagonistas & inibidores , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Diferenciação Celular , Metabolismo Energético , Lipólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Consumo de Oxigênio , Fenótipo
17.
Sci Rep ; 11(1): 13159, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162924

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and strongly correlates with the growing incidence of obesity and type II diabetes. We have developed a human-on-a-chip model composed of human hepatocytes and adipose tissue chambers capable of modeling the metabolic factors that contribute to liver disease development and progression, and evaluation of the therapeutic metformin. This model uses a serum-free, recirculating medium tailored to represent different human metabolic conditions over a 14-day period. The system validated the indirect influence of adipocyte physiology on hepatocytes that modeled important aspects of NAFLD progression, including insulin resistant biomarkers, differential adipokine signaling in different media and increased TNF-α-induced steatosis observed only in the two-tissue model. This model provides a simple but unique platform to evaluate aspects of an individual factor's contribution to NAFLD development and mechanisms as well as evaluate preclinical drug efficacy and reassess human dosing regimens.


Assuntos
Adipócitos/efeitos dos fármacos , Descoberta de Drogas/instrumentação , Hepatócitos/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Dispositivos Lab-On-A-Chip , Metformina/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Adipócitos/metabolismo , Tecido Adiposo Branco/citologia , Comunicação Celular , Células Cultivadas , Meios de Cultura/farmacologia , Meios de Cultura Livres de Soro/farmacologia , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP3A/metabolismo , Desenho de Equipamento , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Glucose/farmacologia , Hepatócitos/metabolismo , Humanos , Inflamação , Insulina/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
18.
J Nutr Biochem ; 97: 108799, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34119629

RESUMO

Nonalcoholic steatohepatitis (NASH), closely associated with obesity, is a health concern worldwide. We investigated whether the consumption of U.S.-grown sugar kelp (Saccharina latissima), an edible brown alga, can prevent obesity-associated metabolic disturbances and NASH in a mouse model of diet-induced NASH. Male C57BL/6J mice were fed a low-fat diet, a high-fat/high-sucrose/high-cholesterol diet (HF), or a HF diet containing sugar kelp (HF-Kelp) for 14 weeks. HF-Kelp group showed lower body weight with increased O2 consumption, CO2 production, physical activity, and energy expenditure compared with the HF. In the liver, there were significant decreases in weight, triglycerides, total cholesterol, and steatosis with HF-Kelp. The HF-Kelp group decreased hepatic expression of a macrophage marker adhesion G protein-coupled receptor E1 (Adgre1) and an M1 macrophage marker integrin alpha x (Itgax). HF-Kelp group also exhibited decreased liver fibrosis, as evidenced by less expression of fibrogenic genes and collagen accumulation than those of HF group. In epididymal white adipose tissue (eWAT), HF-Kelp group exhibited decreases in eWAT weight and adipocyte size compared with those of the HF. HF-Kelp group showed decreased expression of collagen type VI alpha 1 chain, Adgre1, Itgax, and tumor necrosis factor α in eWAT. We demonstrated, for the first time, that the consumption of U.S-grown sugar kelp prevented the development of obesity and its associated metabolic disturbances, steatosis, inflammation, and fibrosis in the liver and eWAT of a diet-induced NASH mouse model.


Assuntos
Dieta , Hepatite/prevenção & controle , Kelp , Cirrose Hepática/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Metabolismo Energético , Hepatite/etiologia , Metabolismo dos Lipídeos , Fígado/metabolismo , Cirrose Hepática/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/prevenção & controle , Consumo de Oxigênio , Triglicerídeos
19.
Nat Commun ; 12(1): 3482, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108488

RESUMO

Hyperplastic expansion of white adipose tissue (WAT) relies in part on the proliferation of adipocyte precursor cells residing in the stromal vascular cell fraction (SVF) of WAT. This study reveals a circadian clock- and feeding-induced diurnal pattern of cell proliferation in the SVF of visceral and subcutaneous WAT in vivo, with higher proliferation of visceral adipocyte progenitor cells subsequent to feeding in lean mice. Fasting or loss of rhythmic feeding eliminates this diurnal proliferation, while high fat feeding or genetic disruption of the molecular circadian clock modifies the temporal expression of proliferation genes and impinges on diurnal SVF proliferation in eWAT. Surprisingly, high fat diet reversal, sufficient to reverse elevated SVF proliferation in eWAT, was insufficient in restoring diurnal patterns of SVF proliferation, suggesting that high fat diet induces a sustained disruption of the adipose circadian clock. In conclusion, the circadian clock and feeding simultaneously impart dynamic, regulatory control of adipocyte progenitor proliferation, which may be a critical determinant of adipose tissue expansion and health over time.


Assuntos
Tecido Adiposo Branco/citologia , Proliferação de Células , Ritmo Circadiano/fisiologia , Adipócitos/citologia , Animais , Proliferação de Células/genética , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Dieta Hiperlipídica , Epididimo/citologia , Jejum , Humanos , Masculino , Camundongos , Células Estromais/citologia , Gordura Subcutânea/citologia , Gordura Subcutânea/fisiologia
20.
Cryo Letters ; 42(2): 96-105, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33970986

RESUMO

BACKGROUND: Local fat accumulation is a health risk and this has raised interest in the development of aesthetic treatments, such as cryo-radiofrequency (CRF). OBJECTIVE: To evaluate the consequences of CRF in adipose tissue remodeling in a model system. MATERIALS AND METHODS: Lean and high-fat diet-induced obese mice were assessed 7 days after one CRF application; and lean mice were assessed 0, 3, 6 and 12 h after one application of CRF. Assessments included histology, DNA degradation, gene expression, ELISA of cytokines, serum analysis and neutrophil presence. RESULTS: Unchanged fat mass was found 7 days after CRF in obese and lean mice. However, lean mice showed smaller adipocyte size with areas resembling a browning process. TNF levels, apoptotic cells, and UCP-1 expression increased 7 days after CRF in inguinal adipose tissue of lean mice. Although no differences were found in fat mass, adipocyte size decreased just after CRF and this changed was maintained until 12 h, with cells resembling beige adipocytes. CONCLUSION: We suggest that CRF therapy is capable of inducing thermogenic adipocytes in lean mice.


Assuntos
Tecido Adiposo Marrom , Tecido Adiposo Branco , Crioterapia , Obesidade/terapia , Terapia por Radiofrequência , Adipócitos , Tecido Adiposo Marrom/citologia , Tecido Adiposo Branco/citologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Termogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA