Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.986
Filtrar
1.
Retrovirology ; 21(1): 8, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693565

RESUMO

The study of HIV infection and pathogenicity in physical reservoirs requires a biologically relevant model. The human immune system (HIS) mouse is an established model of HIV infection, but defects in immune tissue reconstitution remain a challenge for examining pathology in tissues. We utilized exogenous injection of the human recombinant FMS-like tyrosine kinase 3 ligand (rFLT-3 L) into the hematopoietic stem cell (HSC) cord blood HIS mouse model to significantly expand the total area of lymph node (LN) and the number of circulating human T cells. The results enabled visualization and quantification of HIV infectivity, CD4 T cell depletion and other measures of pathogenesis in the secondary lymphoid tissues of the spleen and LN. Treatment with the Caspase-1/4 inhibitor VX-765 limited CD4+ T cell loss in the spleen and reduced viral load in both the spleen and axillary LN. In situ hybridization further demonstrated a decrease in viral RNA in both the spleen and LN. Transcriptomic analysis revealed that in vivo inhibition of caspase-1/4 led to an upregulation in host HIV restriction factors including SAMHD1 and APOBEC3A. These findings highlight the use of rFLT-3 L to augment human immune system characteristics in HIS mice to support investigations of HIV pathogenesis and test host directed therapies, though further refinements are needed to further augment LN architecture and cellular populations. The results further provide in vivo evidence of the potential to target inflammasome pathways as an avenue of host-directed therapy to limit immune dysfunction and virus replication in tissue compartments of HIV+ persons.


Assuntos
Linfócitos T CD4-Positivos , Modelos Animais de Doenças , Infecções por HIV , HIV-1 , Animais , Camundongos , Infecções por HIV/imunologia , Infecções por HIV/virologia , Infecções por HIV/tratamento farmacológico , HIV-1/fisiologia , HIV-1/efeitos dos fármacos , Humanos , Linfócitos T CD4-Positivos/imunologia , Tecido Linfoide/virologia , Tecido Linfoide/imunologia , Carga Viral/efeitos dos fármacos , Baço/virologia , Baço/imunologia , Linfonodos/imunologia , Linfonodos/virologia , Caspases/metabolismo , Inibidores de Caspase/farmacologia , Antirretrovirais/uso terapêutico
2.
Nat Commun ; 15(1): 4051, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744839

RESUMO

Intestinal homeostasis is maintained by the response of gut-associated lymphoid tissue to bacteria transported across the follicle associated epithelium into the subepithelial dome. The initial response to antigens and how bacteria are handled is incompletely understood. By iterative application of spatial transcriptomics and multiplexed single-cell technologies, we identify that the double negative 2 subset of B cells, previously associated with autoimmune diseases, is present in the subepithelial dome in health. We show that in this location double negative 2 B cells interact with dendritic cells co-expressing the lupus autoantigens DNASE1L3 and C1q and microbicides. We observe that in humans, but not in mice, dendritic cells expressing DNASE1L3 are associated with sampled bacteria but not DNA derived from apoptotic cells. We propose that fundamental features of autoimmune diseases are microbiota-associated, interacting components of normal intestinal immunity.


Assuntos
Linfócitos B , Células Dendríticas , Endodesoxirribonucleases , Microbioma Gastrointestinal , Animais , Humanos , Camundongos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Microbioma Gastrointestinal/imunologia , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/genética , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Masculino
3.
Fish Shellfish Immunol ; 149: 109535, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582231

RESUMO

Mucosal immunity in mucosa-associated lymphoid tissues (MALTs) plays crucial roles in resisting infection by pathogens, including parasites, bacteria and viruses. However, the mucosal immune response in the MALTs of large yellow croaker (Larimichthys crocea) upon parasitic infection remains largely unknown. In this study, we investigated the role of B cells and T cells in the MALTs of large yellow croaker following Cryptocaryon irritans infection. Upon C. irritans infection, the total IgM and IgT antibody levels were significantly increased in the skin mucus and gill mucus. Notably, parasite-specific IgM antibody level was increased in the serum, skin and gill mucus following parasitic infection, while the level of parasite-specific IgT antibody was exclusively increased in MALTs. Moreover, parasitic infection induced both local and systemic aggregation and proliferation of IgM+ B cells, suggesting that the increased levels of IgM in mucus may be derived from both systemic and mucosal immune tissues. In addition, we observed significant aggregation and proliferation of T cells in the gill, head kidney and spleen, suggesting that T cells may also be involved in the systemic and mucosal immune responses upon parasitic infection. Overall, our findings provided further insights into the role of immunoglobulins against pathogenic infection, and the simultaneous aggregation and proliferation of both B cells and T cells at mucosal surfaces suggested potential interactions between these two major lymphocyte populations during parasitic infection.


Assuntos
Linfócitos B , Infecções por Cilióforos , Cilióforos , Doenças dos Peixes , Perciformes , Linfócitos T , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/parasitologia , Perciformes/imunologia , Infecções por Cilióforos/veterinária , Infecções por Cilióforos/imunologia , Linfócitos B/imunologia , Cilióforos/fisiologia , Linfócitos T/imunologia , Imunidade nas Mucosas , Tecido Linfoide/imunologia , Imunoglobulina M/imunologia , Imunoglobulina M/sangue , Proliferação de Células
4.
Trends Immunol ; 45(5): 325-326, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38637201

RESUMO

To surveil an organ for pathogens, lymphoid structures need to sample antigens locally. The full set of lymphoid structures involved in surveilling for brain-tropic pathogens has not been defined. Through comprehensive imaging of the mouse meninges, a new study by Fitzpatrick et al. describes dural-associated lymphoid tissue (DALT) and its contribution to humoral responses following intranasal viral infection.


Assuntos
Tecido Linfoide , Animais , Tecido Linfoide/imunologia , Tecido Linfoide/virologia , Humanos , Camundongos , Meninges/imunologia , Encéfalo/imunologia , Encéfalo/virologia , Encéfalo/fisiologia , Imunidade Humoral
5.
Nature ; 628(8008): 612-619, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509366

RESUMO

There is increasing interest in how immune cells in the meninges-the membranes that surround the brain and spinal cord-contribute to homeostasis and disease in the central nervous system1,2. The outer layer of the meninges, the dura mater, has recently been described to contain both innate and adaptive immune cells, and functions as a site for B cell development3-6. Here we identify organized lymphoid structures that protect fenestrated vasculature in the dura mater. The most elaborate of these dural-associated lymphoid tissues (DALT) surrounded the rostral-rhinal confluence of the sinuses and included lymphatic vessels. We termed this structure, which interfaces with the skull bone marrow and a comparable venous plexus at the skull base, the rostral-rhinal venolymphatic hub. Immune aggregates were present in DALT during homeostasis and expanded with age or after challenge with systemic or nasal antigens. DALT contain germinal centre B cells and support the generation of somatically mutated, antibody-producing cells in response to a nasal pathogen challenge. Inhibition of lymphocyte entry into the rostral-rhinal hub at the time of nasal viral challenge abrogated the generation of germinal centre B cells and class-switched plasma cells, as did perturbation of B-T cell interactions. These data demonstrate a lymphoid structure around vasculature in the dura mater that can sample antigens and rapidly support humoral immune responses after local pathogen challenge.


Assuntos
Dura-Máter , Imunidade Humoral , Tecido Linfoide , Veias , Administração Intranasal , Antígenos/administração & dosagem , Antígenos/imunologia , Medula Óssea/imunologia , Sistema Nervoso Central/irrigação sanguínea , Sistema Nervoso Central/imunologia , Dura-Máter/irrigação sanguínea , Dura-Máter/imunologia , Centro Germinativo/citologia , Centro Germinativo/imunologia , Vasos Linfáticos/imunologia , Tecido Linfoide/irrigação sanguínea , Tecido Linfoide/imunologia , Plasmócitos/imunologia , Crânio/irrigação sanguínea , Linfócitos T/imunologia , Veias/fisiologia , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Animais , Camundongos , Idoso de 80 Anos ou mais
6.
Nat Commun ; 15(1): 1261, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341416

RESUMO

While CD4+ T cells are a prerequisite for CD8+ T cell-mediated protection against intracellular hepatotropic pathogens, the mechanisms facilitating the transfer of CD4-help to intrahepatic CD8+ T cells are unknown. Here, we developed an experimental system to investigate cognate CD4+ and CD8+ T cell responses to a model-antigen expressed de novo in hepatocytes and reveal that after initial priming, effector CD4+ and CD8+ T cells migrate into portal tracts and peri-central vein regions of the liver where they cluster with type-1 conventional dendritic cells. These dendritic cells are locally licensed by CD4+ T cells and expand the number of CD8+ T cells in situ, resulting in larger effector and memory CD8+ T cell pools. These findings reveal that CD4+ T cells promote intrahepatic immunity by amplifying the CD8+ T cell response via peripheral licensing of hepatic type-1 conventional dendritic cells and identify intrahepatic perivascular compartments specialized in facilitating effector T cell-dendritic cell interactions.


Assuntos
Linfócitos T CD4-Positivos , Fígado , Tecido Linfoide , Antígenos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Fígado/imunologia , Humanos , Tecido Linfoide/imunologia
7.
J Virol ; 97(6): e0176022, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37223960

RESUMO

CD4+ T follicular helper (TFH) cells are key targets for human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) replication and contribute to the virus reservoir under antiretroviral therapy (ART). Here, we describe a novel CD3+ CD20+ double-positive (DP) lymphocyte subset, resident in secondary lymphoid organs of humans and rhesus macaques (RMs), that appear predominantly after membrane exchange between TFH and B cells. DP lymphocytes are enriched in cells displaying a TFH phenotype (CD4+ PD1hi CXCR5hi), function (interleukin 21 positive [IL-21+]), and gene expression profile. Importantly, expression of CD40L upon brief in vitro mitogen stimulation identifies, by specific gene-expression signatures, DP cells of TFH-cell origin versus those of B-cell origin. Analysis of 56 RMs showed that DP cells (i) significantly increase following SIV infection, (ii) are reduced after 12 months of ART in comparison to pre-ART levels, and (iii) expand to a significantly higher frequency following ART interruption. Quantification of total SIV-gag DNA on sorted DP cells from chronically infected RMs showed that these cells are susceptible to SIV infection. These data reinforce earlier observations that CD20+ T cells are infected and expanded by HIV infection, while suggesting that these cells phenotypically overlap activated CD4+ TFH cells that acquire CD20 expression via trogocytosis and can be targeted as part of therapeutic strategies aimed at HIV remission. IMPORTANCE The HIV reservoir is largely composed of latently infected memory CD4+ T cells that persist during antiretroviral therapy and constitute a major barrier toward HIV eradication. In particular, CD4+ T follicular helper cells have been demonstrated as key targets for viral replication and persistence under ART. In lymph nodes from HIV-infected humans and SIV-infected rhesus macaques, we show that CD3+ CD20+ lymphocytes emerge after membrane exchange between T cells and B cells and are enriched in phenotypic, functional, and gene expression profiles found in T follicular helper cells. Furthermore, in SIV-infected rhesus macaques, these cells expand following experimental infection and after interruption of ART and harbor SIV DNA at levels similar to those found in CD4+ T cells; thus, CD3+ CD20+ lymphocytes are susceptible to SIV infection and can contribute to SIV persistence.


Assuntos
Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Células T Auxiliares Foliculares , Animais , Humanos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Linfonodos/citologia , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Células T Auxiliares Foliculares/imunologia , Células T Auxiliares Foliculares/virologia , Linfócitos B/imunologia , Linfócitos B/virologia , Ligante de CD40/genética , Expressão Gênica/imunologia , DNA Viral/metabolismo , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Tecido Linfoide/virologia
8.
J Virol ; 96(17): e0080822, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36000842

RESUMO

The mechanisms underlying depletion of CD4 T cells during acute HIV-1 infection are not well understood. Here we show that caspase-1-induced pyroptosis, a highly inflammatory programmed cell death pathway, is the dominant mechanism responsible for the rapid depletion of CD4 T cells in gut-associated lymphatic tissue (GALT), spleen, and lymph nodes during acute simian immunodeficiency virus (SIV) infection in rhesus macaques. Upregulation of interferon-gamma inducible factor 16, a host DNA sensor that triggers pyroptosis, was also observed in tissue-resident CD4 T cells and correlated with viral loads and CD4 T cell loss. In contrast, caspase-3-mediated apoptosis and viral cytotoxicity only accounted for a small fraction of CD4 T cell death. Other programmed cell death mechanisms, including mitochondria-induced caspase-independent cell death, necroptosis, and autophagy, did not significantly contribute to CD4 T cell depletion. These data support a model in which caspase-1-mediated pyroptosis is the principal mechanism that results in CD4 T cell loss in the GALT and lymphoid organs and release of proinflammatory cytokines. These findings contribute to our understanding of the pathogenesis of acute SIV infection and have important implications for the development of therapeutic strategies. IMPORTANCE Different mechanisms for CD4 T cell depletion during acute HIV-1 infection have been proposed. In this study, we demonstrate that in early simian immunodeficiency virus infection, depletion of CD4 T cells is primarily due to pyroptosis. Other mechanisms may also contribute in a minor way to CD4 T cell depletion.


Assuntos
Linfócitos T CD4-Positivos , Macaca mulatta , Piroptose , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Caspase 1/metabolismo , Citocinas , Tecido Linfoide/imunologia , Tecido Linfoide/patologia , Macaca mulatta/imunologia , Macaca mulatta/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/patogenicidade
9.
Nature ; 607(7920): 762-768, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35794484

RESUMO

Gastrointestinal health depends on the adaptive immune system tolerating the foreign proteins in food1,2. This tolerance is paradoxical because the immune system normally attacks foreign substances by generating inflammation. Here we addressed this conundrum by using a sensitive cell enrichment method to show that polyclonal CD4+ T cells responded to food peptides, including a natural one from gliadin, by proliferating weakly in secondary lymphoid organs of the gut-liver axis owing to the action of regulatory T cells. A few food-specific T cells then differentiated into T follicular helper cells that promoted a weak antibody response. Most cells in the expanded population, however, lacked canonical T helper lineage markers and fell into five subsets dominated by naive-like or T follicular helper-like anergic cells with limited capacity to form inflammatory T helper 1 cells. Eventually, many of the T helper lineage-negative cells became regulatory T cells themselves through an interleukin-2-dependent mechanism. Our results indicate that exposure to food antigens causes cognate CD4+ naive T cells to form a complex set of noncanonical hyporesponsive T helper cell subsets that lack the inflammatory functions needed to cause gut pathology and yet have the potential to produce regulatory T cells that may suppress it.


Assuntos
Linfócitos T CD4-Positivos , Alimentos , Tolerância Imunológica , Alérgenos/imunologia , Formação de Anticorpos , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Proteínas Alimentares/imunologia , Trato Gastrointestinal/citologia , Trato Gastrointestinal/imunologia , Gliadina/imunologia , Tolerância Imunológica/imunologia , Inflamação , Interleucina-2/imunologia , Fígado/citologia , Fígado/imunologia , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Fragmentos de Peptídeos/imunologia , Células T Auxiliares Foliculares/citologia , Células T Auxiliares Foliculares/imunologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Células Th1/citologia , Células Th1/imunologia
10.
Proc Natl Acad Sci U S A ; 119(25): e2202327119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696583

RESUMO

Pediatric patients with constitutively active mutations in the cytosolic double-stranded-DNA-sensing adaptor STING develop an autoinflammatory syndrome known as STING-associated vasculopathy with onset in infancy (SAVI). SAVI patients have elevated interferon-stimulated gene expression and suffer from interstitial lung disease (ILD) with lymphocyte predominate bronchus-associated lymphoid tissue (BALT). Mice harboring SAVI mutations (STING V154M [VM]) that recapitulate human disease also develop lymphocyte-rich BALT. Ablation of either T or B lymphocytes prolongs the survival of SAVI mice, but lung immune aggregates persist, indicating that T cells and B cells can independently be recruited as BALT. VM T cells produced IFNγ, and IFNγR deficiency prolonged the survival of SAVI mice; however, T-cell-dependent recruitment of infiltrating myeloid cells to the lung was IFNγ independent. Lethally irradiated VM recipients fully reconstituted with wild type bone-marrow-derived cells still developed ILD, pointing to a critical role for VM-expressing radioresistant parenchymal and/or stromal cells in the recruitment and activation of pathogenic lymphocytes. We identified lung endothelial cells as radioresistant cells that express STING. Transcriptional analysis of VM endothelial cells revealed up-regulation of chemokines, proinflammatory cytokines, and genes associated with antigen presentation. Together, our data show that VM-expressing radioresistant cells play a key role in the initiation of lung disease in VM mice and provide insights for the treatment of SAVI patients, with implications for ILD associated with other connective tissue disorders.


Assuntos
Células Endoteliais , Doenças Pulmonares Intersticiais , Proteínas de Membrana , Linfócitos T , Doenças Vasculares , Animais , Criança , Células Endoteliais/imunologia , Células Endoteliais/efeitos da radiação , Mutação com Ganho de Função , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/imunologia , Depleção Linfocítica , Tecido Linfoide/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Tolerância a Radiação , Linfócitos T/imunologia , Doenças Vasculares/genética , Doenças Vasculares/imunologia
11.
J Exp Med ; 219(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35766979

RESUMO

Rap1 GTPase drives assembly of the Mig-10/RIAM/Lamellipodin (MRL protein)-integrin-talin (MIT) complex that enables integrin-dependent lymphocyte functions. Here we used tandem affinity tag-based proteomics to isolate and analyze the MIT complex and reveal that Phostensin (Ptsn), a regulatory subunit of protein phosphatase 1, is a component of the complex. Ptsn mediates dephosphorylation of Rap1, thereby preserving the activity and membrane localization of Rap1 to stabilize the MIT complex. CRISPR/Cas9-induced deletion of PPP1R18, which encodes Ptsn, markedly suppresses integrin activation in Jurkat human T cells. We generated apparently healthy Ppp1r18-/- mice that manifest lymphocytosis and reduced population of peripheral lymphoid tissues ascribable, in part, to defective activation of integrins αLß2 and α4ß7. Ppp1r18-/- T cells exhibit reduced capacity to induce colitis in a murine adoptive transfer model. Thus, Ptsn enables lymphocyte integrin-mediated functions by dephosphorylating Rap1 to stabilize the MIT complex. As a consequence, loss of Ptsn ameliorates T cell-mediated colitis.


Assuntos
Integrinas , Tecido Linfoide , Proteína Fosfatase 1 , Linfócitos T , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Adesão Celular/fisiologia , Colite/imunologia , Colite/metabolismo , Integrinas/imunologia , Integrinas/metabolismo , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Proteína Fosfatase 1/imunologia , Proteína Fosfatase 1/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Talina/metabolismo , Proteínas rap1 de Ligação ao GTP/imunologia , Proteínas rap1 de Ligação ao GTP/metabolismo
12.
Nature ; 607(7919): 578-584, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35636458

RESUMO

The nervous and immune systems are intricately linked1. Although psychological stress is known to modulate immune function, mechanistic pathways linking stress networks in the brain to peripheral leukocytes remain poorly understood2. Here we show that distinct brain regions shape leukocyte distribution and function throughout the body during acute stress in mice. Using optogenetics and chemogenetics, we demonstrate that motor circuits induce rapid neutrophil mobilization from the bone marrow to peripheral tissues through skeletal-muscle-derived neutrophil-attracting chemokines. Conversely, the paraventricular hypothalamus controls monocyte and lymphocyte egress from secondary lymphoid organs and blood to the bone marrow through direct, cell-intrinsic glucocorticoid signalling. These stress-induced, counter-directional, population-wide leukocyte shifts are associated with altered disease susceptibility. On the one hand, acute stress changes innate immunity by reprogramming neutrophils and directing their recruitment to sites of injury. On the other hand, corticotropin-releasing hormone neuron-mediated leukocyte shifts protect against the acquisition of autoimmunity, but impair immunity to SARS-CoV-2 and influenza infection. Collectively, these data show that distinct brain regions differentially and rapidly tailor the leukocyte landscape during psychological stress, therefore calibrating the ability of the immune system to respond to physical threats.


Assuntos
Encéfalo , Medo , Leucócitos , Neurônios Motores , Vias Neurais , Estresse Psicológico , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Encéfalo/citologia , Encéfalo/fisiologia , COVID-19/imunologia , Quimiocinas/imunologia , Suscetibilidade a Doenças , Medo/fisiologia , Glucocorticoides/metabolismo , Humanos , Leucócitos/citologia , Leucócitos/imunologia , Linfócitos/citologia , Linfócitos/imunologia , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Camundongos , Monócitos/citologia , Monócitos/imunologia , Neurônios Motores/citologia , Neurônios Motores/fisiologia , Neutrófilos/citologia , Neutrófilos/imunologia , Optogenética , Infecções por Orthomyxoviridae/imunologia , Núcleo Hipotalâmico Paraventricular/fisiologia , SARS-CoV-2/imunologia , Estresse Psicológico/imunologia , Estresse Psicológico/fisiopatologia
13.
Front Immunol ; 13: 838328, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251032

RESUMO

Confirmed SARS-coronavirus-2 infection with gastrointestinal symptoms and changes in microbiota associated with coronavirus disease 2019 (COVID-19) severity have been previously reported, but the disease impact on the architecture and cellularity of ileal Peyer's patches (PP) remains unknown. Here we analysed post-mortem tissues from throughout the gastrointestinal (GI) tract of patients who died with COVID-19. When virus was detected by PCR in the GI tract, immunohistochemistry identified virus in epithelium and lamina propria macrophages, but not in lymphoid tissues. Immunohistochemistry and imaging mass cytometry (IMC) analysis of ileal PP revealed depletion of germinal centres (GC), disruption of B cell/T cell zonation and decreased potential B and T cell interaction and lower nuclear density in COVID-19 patients. This occurred independent of the local viral levels. The changes in PP demonstrate that the ability to mount an intestinal immune response is compromised in severe COVID-19, which could contribute to observed dysbiosis.


Assuntos
Atrofia/imunologia , COVID-19/imunologia , Centro Germinativo/imunologia , Mucosa Intestinal/imunologia , Nódulos Linfáticos Agregados/imunologia , Linfócitos B/imunologia , Humanos , Tecido Linfoide/imunologia , Macrófagos/imunologia , SARS-CoV-2/imunologia , Linfócitos T/imunologia
14.
Science ; 375(6581): eabf7470, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35143312

RESUMO

Marginal zone (MZ) B cells produce broad-spectrum antibodies that protect against infection early in life. In some instances, antibody production requires MZ B cells to display pathogen antigens bound to major histocompatibility complex class II (MHC II) molecules to T cells. We describe the trogocytic acquisition of these molecules from conventional dendritic cells (cDCs). Complement component 3 (C3) binds to murine and human MHC II on cDCs. MZ B cells recognize C3 with complement receptor 2 (CR2) and trogocytose the MHC II-C3 complexes, which become exposed on their cell surface. The ubiquitin ligase MARCH1 limits the number of MHC II-C3 complexes displayed on cDCs to prevent their elimination through excessive trogocytosis. Capture of C3 by MHC II thus enables the transfer of cDC-like properties to MZ B cells.


Assuntos
Linfócitos B/imunologia , Complemento C3/metabolismo , Células Dendríticas/imunologia , Tecido Linfoide/imunologia , Trogocitose , Adulto , Animais , Apresentação de Antígeno , Linfócitos B/metabolismo , Membrana Celular/metabolismo , Ativação do Complemento , Complemento C3/imunologia , Células Dendríticas/metabolismo , Feminino , Antígenos HLA-D/imunologia , Antígenos HLA-D/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Receptores de Complemento 3d/imunologia , Receptores de Complemento 3d/metabolismo , Linfócitos T/imunologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
15.
Development ; 149(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35072209

RESUMO

Tissue-resident lymphoid cells (TLCs) span the spectrum of innate-to-adaptive immune function. Unlike traditional, circulating lymphocytes that are continuously generated from hematopoietic stem cells (HSCs), many TLCs are of fetal origin and poorly generated from adult HSCs. Here, we sought to further understand murine TLC development and the roles of Flk2 and IL7Rα, two cytokine receptors with known function in traditional lymphopoiesis. Using Flk2- and Il7r-Cre lineage tracing, we found that peritoneal B1a cells, splenic marginal zone B (MZB) cells, lung ILC2s and regulatory T cells (Tregs) were highly labeled. Despite high labeling, loss of Flk2 minimally affected the generation of these cells. In contrast, loss of IL7Rα, or combined deletion of Flk2 and IL7Rα, dramatically reduced the number of B1a cells, MZBs, ILC2s and Tregs, both in situ and upon transplantation, indicating an intrinsic and essential role for IL7Rα. Surprisingly, reciprocal transplants of wild-type HSCs showed that an IL7Rα-/- environment selectively impaired reconstitution of TLCs when compared with TLC numbers in situ. Taken together, our data defined Flk2- and IL7Rα-positive TLC differentiation paths, and revealed functional roles of Flk2 and IL7Rα in TLC establishment.


Assuntos
Células-Tronco Hematopoéticas/imunologia , Linfopoese/genética , Receptores de Interleucina-7/genética , Tirosina Quinase 3 Semelhante a fms/genética , Imunidade Adaptativa/genética , Animais , Linfócitos B/imunologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Células-Tronco Hematopoéticas/citologia , Imunidade Inata/genética , Linfócitos/citologia , Linfócitos/imunologia , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Linfopoese/imunologia , Camundongos , Especificidade de Órgãos/genética , Linfócitos T Reguladores/imunologia
16.
J Immunol ; 208(4): 839-850, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35074867

RESUMO

Antioxidant systems maintain cellular redox (oxidation-reduction) homeostasis. In contrast with other key redox pathways, such as the thioredoxin system, glutathione, and NF-E2-related factor 2 (Nrf2), little is known about the function of the redox-sensitive organelle "peroxisome" in immune cells. In this study, we show that the absence of peroxisomes in conditional Pex5-deficient mice strikingly results in impaired homeostatic maintenance of innate-like B cells, namely, B1 and marginal zone B cells, which translates into a defective Ab response to Streptococcus pneumoniae Surprisingly, however, follicular B2 cell development, homeostatic maintenance, germinal center reactions, Ab production, class switching, and B cell memory formation were unaffected in Pex5-deficient animals. Similarly, T cell development and responses to viral infections also remained unaltered in the absence of Pex5 Thus, this study highlights the differential requirement of peroxisomes in distinct lymphocyte subtypes and may provide a rationale for specifically targeting peroxisomal metabolism in innate-like B cells in certain forms of B cell malignancies involving B1 cells.


Assuntos
Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Linfopoese , Peroxissomos/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Formação de Anticorpos/imunologia , Biomarcadores , Diferenciação Celular , Suscetibilidade a Doenças , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunização , Imunofenotipagem , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Linfopoese/genética , Camundongos , Camundongos Knockout , Oxirredução , Estresse Oxidativo , Receptor 1 de Sinal de Orientação para Peroxissomos/deficiência , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/imunologia
17.
Mucosal Immunol ; 15(1): 40-50, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34465895

RESUMO

The intestine is constantly exposed to foreign antigens, which are mostly innocuous but can sometimes be harmful. Therefore, the intestinal immune system has the delicate task of maintaining immune tolerance to harmless food antigens while inducing tailored immune responses to pathogens and regulating but tolerating the microbiota. Intestinal dendritic cells (DCs) play a central role in these functions as sentinel cells able to prime and polarize the T cell responses. DCs are deployed throughout the intestinal mucosa but with local specializations along the gut length and between the diffuse effector sites of the gut lamina propria (LP) and the well-organized immune inductive sites comprising isolated lymphoid follicles (ILFs), Peyer's patches (PPs), and other species-specific gut-associated lymphoid tissues (GALTs). Understanding the specificities of each intestinal DC subset, how environmental factors influence DC functions, and how these can be modulated is key to harnessing the therapeutic potential of mucosal adaptive immune responses, whether by enhancing the efficacy of mucosal vaccines or by increasing tolerogenic responses in inflammatory disorders. In this review, we summarize recent findings related to intestinal DCs in steady state and upon inflammation, with a special focus on their functional specializations, highly dependent on their microenvironment.


Assuntos
Células Dendríticas/imunologia , Imunomodulação/imunologia , Mucosa Intestinal/imunologia , Intestinos/imunologia , Tecido Linfoide/imunologia , Animais , Humanos , Imunidade nas Mucosas
18.
J Clin Invest ; 132(2)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34813503

RESUMO

Tertiary lymphoid tissues (TLTs) facilitate local T and B cell interactions in chronically inflamed organs. However, the cells and molecular pathways that govern TLT formation are poorly defined. Here, we identified TNF superfamily CD153/CD30 signaling between 2 unique age-dependent lymphocyte subpopulations, CD153+PD-1+CD4+ senescence-associated T (SAT) cells and CD30+T-bet+ age-associated B cells (ABCs), as a driver for TLT expansion. SAT cells, which produced ABC-inducing factors IL-21 and IFN-γ, and ABCs progressively accumulated within TLTs in aged kidneys after injury. Notably, in kidney injury models, CD153 or CD30 deficiency impaired functional SAT cell induction, which resulted in reduced ABC numbers and attenuated TLT formation with improved inflammation, fibrosis, and renal function. Attenuated TLT formation after transplantation of CD153-deficient bone marrow further supported the importance of CD153 in immune cells. Clonal analysis revealed that SAT cells and ABCs in the kidneys arose from both local differentiation and recruitment from the spleen. In the synovium of aged rheumatoid arthritis patients, T peripheral helper/T follicular helper cells and ABCs also expressed CD153 and CD30, respectively. Together, our data reveal a previously unappreciated function of CD153/CD30 signaling in TLT formation and propose targeting the CD153/CD30 signaling pathway as a therapeutic target for slowing kidney disease progression.


Assuntos
Injúria Renal Aguda/imunologia , Envelhecimento/imunologia , Ligante CD30/imunologia , Antígeno Ki-1/imunologia , Tecido Linfoide/imunologia , Transdução de Sinais/imunologia , Injúria Renal Aguda/genética , Envelhecimento/genética , Animais , Ligante CD30/genética , Linfócitos T CD4-Positivos/imunologia , Antígeno Ki-1/genética , Masculino , Camundongos , Camundongos Knockout , Transdução de Sinais/genética
19.
Bull Exp Biol Med ; 172(2): 158-163, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34855089

RESUMO

In postnatal ontogeny, the topographic relationships of the tongue glands and lymphoid structures in the thickness of the tongue have clear age-related features. In this article, we discuss the features of the glandular-lymphoid relationship in the thickness of the tongue, which is of particular scientific and practical importance for more precise understanding of the mechanisms providing local immunity in the oral cavity.


Assuntos
Tecido Linfoide/imunologia , Mucosa Bucal/imunologia , Língua/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Autopsia , Criança , Pré-Escolar , Feminino , Humanos , Imunidade Inata/fisiologia , Lactente , Recém-Nascido , Tecido Linfoide/patologia , Masculino , Pessoa de Meia-Idade , Mucosa Bucal/patologia , Glândulas Salivares/imunologia , Glândulas Salivares/patologia , Língua/patologia , Adulto Jovem
20.
Front Immunol ; 12: 778996, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950143

RESUMO

The diversity and composition of T-cell receptor (TCR) repertoire, which is the result of V, (D), and J gene recombination in TCR gene locus, has been found to be implicated in T-cell responses in autoimmunity, cancer, and organ transplantation. The correlation of T-cell repertoire with the pathogenesis of graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation remains largely undefined. Here, by utilizing high-throughput sequencing of the genes encoding TCRß-chain, we comprehensively analyzed the profile of T-cell repertoire in recipient lymphoid and GVHD target organs after bone marrow transplantation (BMT) in mice. In lymphoid organs, TCR diversity was narrowed, accompanied with reduced numbers of unique clones while increased accumulation of dominant clones in allogeneic T cells compared to syngeneic T cells. In an individual allogeneic recipient, donor-derived TCR clones were highly overlapped among tissue sites, and the degree of overlapping was increasing from day 7 to 14 after allogeneic BMT. The top clones in peripheral blood, gut, liver, and lungs were highly mutually shared in an allogenic recipient, indicating that blood has the potential to predict dominant clones in these GVHD target organs. T cells in GVHD target organs from allogeneic recipients had fewer overlapped clones with pre-transplant donor T cells compared to those from syngeneic recipients. Importantly, the top 10 clones in allogeneic recipients were not detectable in pre-transplant donor T cells, indicating clonal expansion of rare rearrangements. Interestingly, even starting from the same pool of donor repertoires, T cells had very few overlapped clones between each allogeneic recipient who developed completely different dominant clones. We were only able to trace a single clone shared by three replicate allogeneic recipients within the top 500 clones. Although dominant clones were different among allogeneic recipients, V26 genes were consistently used more frequently by TCR clones in allogeneic than syngeneic recipients. This is the first study to extensively examine the feature of T-cell repertoire in multiple lymphoid and parenchyma organs, which establishes the association between T-cell activation and GVHD pathogenesis at the level of TCR clones. Immune repertoire sequencing-based methods may represent a novel personalized strategy to guide diagnosis and therapy in GVHD.


Assuntos
Transplante de Medula Óssea/efeitos adversos , Seleção Clonal Mediada por Antígeno , Perfilação da Expressão Gênica , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Doença Enxerto-Hospedeiro/genética , Tecido Linfoide/imunologia , Linfócitos T/imunologia , Transcriptoma , Animais , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Ativação Linfocitária , Tecido Linfoide/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Linfócitos T/metabolismo , Fatores de Tempo , Transplante Homólogo , Transplante Isogênico , Irradiação Corporal Total
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA