Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.275
Filtrar
1.
ACS Sens ; 9(9): 4637-4645, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39120046

RESUMO

The metastasis of cancer cells is a principal cause of morbidity and mortality in cancer. The combination of a cytosensor and photothermal therapy (PTT) cannot completely eliminate cancer cells at one time. Hence, this study aimed to design a localized surface plasmonic resonance (LSPR)-based aptasensor for a circuit of cytosensing-PTT (COCP). This was achieved by coating a novel sandwich layer of polydopamine/gold nanoparticles/polydopamine (PDA/AuNPs/PDA) around the Ω-shaped fiber-optic (Ω-FO). The short-wavelength peak of the sandwich layer with strong resonance exhibited a high refractive index sensitivity (RIS). The modification with the T-shaped aptamer endowed FO-LSPR with unique characteristics of time-dependent sensitivity enhancement behavior for a sensitive cytosensor with the lowest limit of detection (LOD) of 13 cells/mL. The long-wavelength resonance peak in the sandwich layer appears in the near-infrared region. Hence, the rate of increased localized temperature of FO-LSPR was 160 and 30-fold higher than that of the bare and PDA-coated FO, indicating strong photothermal conversion efficiency. After considering the localized temperature distribution around the FO under the flow environment, the FO-LSPR-enabled aptasensor killed 77.6% of cancer cells in simulated blood circulation after five cycles of COCP. The FO-LSPR-enabled aptasensor improved the efficiency of the cytosensor and PTT to effectively kill cancer cells, showing significant potential for application in inhibiting cancer metastasis.


Assuntos
Aptâmeros de Nucleotídeos , Tecnologia de Fibra Óptica , Ouro , Indóis , Nanopartículas Metálicas , Terapia Fototérmica , Polímeros , Ressonância de Plasmônio de Superfície , Humanos , Aptâmeros de Nucleotídeos/química , Ouro/química , Terapia Fototérmica/métodos , Indóis/química , Nanopartículas Metálicas/química , Polímeros/química , Tecnologia de Fibra Óptica/métodos , Limite de Detecção , Técnicas Biossensoriais/métodos , Fibras Ópticas
2.
Adv Sci (Weinh) ; 11(35): e2310118, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39044375

RESUMO

Maintaining both high sensitivity and large figure of merit (FoM) is crucial in regard to the performance of optical devices, particularly when they are intended for use as biosensors with extremely low limit of detection (LoD). Here, a stack of nano-assembled layers in the form of 1D photonic crystal, deposited on D-shaped single-mode fibers, is created to meet these criteria, resulting in the generation of Bloch surface wave resonances. The increase in the contrast between high and low refractive index (RI) nano-layers, along with the reduction of losses, enables not only to achieve high sensitivity, but also a narrowed resonance bandwidth, leading to a significant enhancement in the FoM. Preliminary testing for bulk RI sensitivity is carried out, and the effect of an additional nano-layer that mimics a biological layer where binding interactions occur is also considered. Finally, the biosensing capability is assessed by detecting immunoglobulin G in serum at very low concentrations, and a record LoD of 70 aM is achieved. An optical fiber biosensor that is capable of attaining extraordinarily low LoD in the attomolar range is not only a remarkable technical outcome, but can also be envisaged as a powerful tool for early diagnosis of diseases.


Assuntos
Técnicas Biossensoriais , Limite de Detecção , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Fibras Ópticas , Imunoglobulina G/sangue , Refratometria/métodos , Nanotecnologia/métodos , Nanotecnologia/instrumentação , Desenho de Equipamento , Humanos , Tecnologia de Fibra Óptica/métodos
3.
Anal Chim Acta ; 1316: 342820, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969422

RESUMO

This research presents an innovative reflective fiber optic probe structure, mutinously designed to detect H7N9 avian influenza virus gene precisely. This innovative structure skillfully combines multimode fiber (MMF) with a thin-diameter seven-core photonic crystal fiber (SCF-PCF), forming a semi-open Fabry-Pérot (FPI) cavity. This structure has demonstrated exceptional sensitivity in light intensity-refractive index (RI) response through rigorous theoretical and experimental validation. The development of a quasi-distributed parallel sensor array, which provides temperature compensation during measurements, has achieved a remarkable RI response sensitivity of up to 532.7 dB/RIU. The probe-type fiber optic sensitive unit, expertly functionalized with streptavidin, offers high specificity in detecting H7N9 avian influenza virus gene, with an impressively low detection limit of 10-2 pM. The development of this biosensor marks a significant development in biological detection, offering a practical engineering solution for achieving high sensitivity and specificity in light-intensity-modulated biosensing. Its potential for wide-ranging applications in various fields is now well-established.


Assuntos
Técnicas Biossensoriais , Subtipo H7N9 do Vírus da Influenza A , Temperatura , Técnicas Biossensoriais/métodos , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Fibras Ópticas , Limite de Detecção , Tecnologia de Fibra Óptica/métodos , Animais , Genes Virais
4.
eNeuro ; 11(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39025674

RESUMO

Quantifying and analyzing licking behavior can offer valuable insights into fundamental neurobiological mechanisms controlling animal consummatory behaviors. Lickometers are typically based on electrical properties, a strategy that comes with limitations, including susceptibility to electrical interference and generation of electrical disturbances in electrophysiological measurements. While optical lickometers offer an alternative method to measure licks and quantify fluid intake in animals, they are prone to false readings and susceptibility to outside light sources. To overcome this problem, we propose a low-cost open-source lickometer that combines a restricted infrared beam defined by optical fibers, with a poke design that allows easy access to the tongue while limiting access of other body parts and external light sources. This device also includes features for detecting nose pokes and presenting visual cues during behavioral tasks. We provide validation experiments that demonstrate the optical lickometer's reliability, high-sensitivity and precision, and its application in a behavioral task, showcasing the potential of this tool to study lick microstructure in combination with other techniques, such as imaging of neural activity, in freely moving mice.


Assuntos
Fibras Ópticas , Animais , Camundongos , Comportamento de Ingestão de Líquido/fisiologia , Camundongos Endogâmicos C57BL , Masculino , Reprodutibilidade dos Testes , Desenho de Equipamento , Tecnologia de Fibra Óptica/métodos , Tecnologia de Fibra Óptica/instrumentação
5.
STAR Protoc ; 5(2): 103131, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38875116

RESUMO

To exclude the influence of motion on in vivo calcium imaging, animals usually need to be fixed. However, the whole-body restraint can cause stress in animals, affecting experimental results. In addition, some brain regions are prone to bleeding during surgery, which lowers the success rate of calcium imaging. Here, we present a protocol for calcium imaging using heparin-treated fiber in head-fixed mice. We describe steps for stereotaxic surgery, including virus injection and optic fiber implantation, fiber photometry, and data analysis. For complete details on the use and execution of this protocol, please refer to Du et al.1.


Assuntos
Encéfalo , Fotometria , Animais , Camundongos , Fotometria/métodos , Encéfalo/diagnóstico por imagem , Fibras Ópticas , Cálcio/metabolismo , Cálcio/análise , Técnicas Estereotáxicas , Tecnologia de Fibra Óptica/métodos
6.
Sci Rep ; 14(1): 11671, 2024 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778051

RESUMO

This study delves into the effectiveness of combining remimazolam with low-dose propofol in pediatric fiberoptic bronchoscopy. Ninety children scheduled for fiberoptic bronchoscopy in our hospital were enrolled as research participants. Based on the intraoperative anesthetic drug regimen, the children were divided into three groups: group R (remimazolam 0.2-0.4 mg/kg), group P (propofol 1-3 mg/kg), and group RP (remimazolam0.2 mg/kg, propofol 0.5 mg/kg). Immediately post-anesthesia, group P exhibited lower blood pressure and heart rate (HR) compared to both group R and group RP (P < 0.05). As bronchoscope approached the glottis and epiglottis, group P continued to display lower blood pressure and HR compared to group R and group RP (P < 0.05). During lavage, group P maintained lower blood pressure and HR compared to both the R and RP groups (P < 0.05). Immediately post-anesthesia, group P demonstrated lower SpO2 compared to the R and RP groups (P < 0.05).During lavage, group P maintained lower SpO2 than group R and group RP (P < 0.05). In comparison with group R and group PR, group P showed shortened induction and recovery times (P < 0.05). The one-time entry success rate into the microscope was higher in group R than in group P, with the RP group showing an intermediate decreased (P < 0.05). Moreover, the cough score in R group was higher than in the P and RP groups (P < 0.05). Furthermore, the satisfaction rates of the RP group exceeded those of the R and P groups (P < 0.05). Remimazolam combined with low-dose propofol effectively balances the strengths and weaknesses of remimazolam and propofol, ensuring more stable hemodynamics, a lower incidence of adverse reactions, and optimal surgical conditions in pediatric fiberoptic bronchoscopy.


Assuntos
Broncoscopia , Propofol , Humanos , Broncoscopia/métodos , Propofol/administração & dosagem , Feminino , Masculino , Pré-Escolar , Criança , Pressão Sanguínea/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Tecnologia de Fibra Óptica/métodos , Lactente , Hipnóticos e Sedativos/administração & dosagem , Benzodiazepinas
7.
IEEE Trans Nanobioscience ; 23(3): 403-409, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38722715

RESUMO

A fiber-optic urea sensor based on surface plasmon resonance (SPR) and Mach-Zehnder interference (MZI) combined principle was designed and implemented. By plating gold film on the single-mode-no-core-thin-core-single-mode fiber structure, we successfully excited both SPR and MZI, and constructed two parallel detection channels for simultaneously measurement of urea concentration and temperature. Urease was immobilized on the gold film by metal-organic zeolite skeleton (ZIF-8), which can not only fix a large number of urease to improve measurement sensitivity of urea, but also protect urease activity to ensure the sensor stability. Experimental results indicate that the designed urea sensor with temperature compensation function can detect urea solution with concentration of 1-9 mM, and the sensitivity is 1.4 nm/mM. The proposed measurement method provides a new choice for monitoring urea concentration in the field of medical diagnosis and human health monitoring.


Assuntos
Tecnologia de Fibra Óptica , Ressonância de Plasmônio de Superfície , Ureia , Urease , Ureia/química , Ureia/análise , Ressonância de Plasmônio de Superfície/métodos , Ressonância de Plasmônio de Superfície/instrumentação , Urease/química , Tecnologia de Fibra Óptica/instrumentação , Tecnologia de Fibra Óptica/métodos , Desenho de Equipamento , Ouro/química , Enzimas Imobilizadas/química , Interferometria/métodos , Interferometria/instrumentação
8.
ACS Sens ; 9(4): 2110-2121, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38622791

RESUMO

In this study, we explore the full-spectrum capabilities of fiber-optic surface plasmon resonance (FO-SPR) for analyzing heterogeneous samples with increased comprehensiveness. Our approach involves refining a literature-derived FO-SPR model to more precisely reflect experimental data obtained using a back-reflecting sensor configuration. Key enhancements in our model include adjustments to the thickness and permittivity of the gold SPR-active layer on the FO-SPR sensor as well as improvements to the angular distribution of light within the system. We apply this optimized model to the investigation of the deposition process of a metal-organic framework (MOF), specifically ZIF-8, using FO-SPR. By closely examining the temporal variations in the FO-SPR signal during MOF layer formation, we simultaneously determine the evolving thickness and refractive index (RI) of the MOF layer, offering a dual-parameter analysis. Our results demonstrate that a full-spectrum analysis of the FO-SPR signal can extract critical information from samples exhibiting radial heterogeneity. This advancement significantly enhances the quantitative assessment of various phenomena that alter the refractive index in the sensor's domain, such as adsorption and binding processes. This work thus represents a significant step forward in the field of FO-SPR sensor technology, promising broad applications in areas requiring the precise detection and analysis of complex samples.


Assuntos
Estruturas Metalorgânicas , Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodos , Estruturas Metalorgânicas/química , Ouro/química , Tecnologia de Fibra Óptica/métodos , Tecnologia de Fibra Óptica/instrumentação
9.
Biomed Phys Eng Express ; 10(3)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38626737

RESUMO

A novel fiber optic biosensor was purposed for a new approach to monitor amyloid beta protein fragment 1-42 (Aß42) for Alzheimer's Disease (AD) early detection. The sensor was fabricated by etching a part of fiber from single mode fiber loop in pure hydrofluoric acid solution and utilized as a Local Optical Refractometer (LOR) to monitor the change Aß42 concentration in Artificial Cerebrospinal Fluid (ACSF). The Fiber Loop Ringdown Spectroscopy (FLRDS) technique is an ultra-sensitive measurement technique with low-cost, high sensitivity, real-time measurement, continuous measurement and portability features that was utilized with a fiber optic sensor for the first time for the detection of a biological signature in an ACSF environment. Here, the measurement is based on the total optical loss detection when specially fabricated sensor heads were immersed into ACSF solutions with and without different concentrations of Aß42 biomarkers since the bulk refractive index change was performed. Baseline stability and the reference ring down times of the sensor head were measured in the air as 0.87% and 441.6µs ± 3.9µs, respectively. Afterward, the total optical loss of the system was measured when the sensor head was immersed in deionized water, ACSF solution, and ACSF solutions with Aß42 in different concentrations. The lowest Aß42 concentration of 2 ppm was detected by LOR. Results showed that LOR fabricated by single-mode fibers for FLRDS system design are promising candidates to be utilized as fiber optic biosensors after sensor head modification and have a high potential for early detection applications of not only AD but possibly also several fatal diseases such as diabetes and cancer.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Técnicas Biossensoriais , Diagnóstico Precoce , Tecnologia de Fibra Óptica , Fragmentos de Peptídeos , Análise Espectral , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/análise , Humanos , Tecnologia de Fibra Óptica/métodos , Fragmentos de Peptídeos/análise , Técnicas Biossensoriais/métodos , Análise Espectral/métodos , Fibras Ópticas , Biomarcadores/análise , Refratometria , Desenho de Equipamento
10.
IEEE Trans Nanobioscience ; 23(3): 439-446, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38478441

RESUMO

A numerical model based on the Transfer matrix method (TMM) is proposed for the first time to study the gold coated tapered fibre optic surface plasmon resonance (SPR) with eight different types of taper profiles namely linear, exponential-linear, Gaussian, quadratic, sinusoidal, error function type and highly perturbed taper profile so-called chirp type of profile. The performance in terms of sensitivity, full width at half maximum (FWHM), detection accuracy (D.A.), amplitude dip, and half power points are estimated with respect to tapering ratio and choices of taper profile. It is found that sensitivity increased almost linearly with the taper ratio of each taper choice for the account of the reduction of detection accuracy. It has been found that sensitivity is highest for the case of chirp taper profile and lowest for the case of quadratic taper profile at low taper ratio. In this study, the aqueous solution is considered for sensor development which is adulterated by biomolecules species like DNA, blood samples, etc.


Assuntos
Tecnologia de Fibra Óptica , Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodos , Ressonância de Plasmônio de Superfície/instrumentação , Tecnologia de Fibra Óptica/instrumentação , Tecnologia de Fibra Óptica/métodos , Desenho de Equipamento , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Modelos Teóricos
11.
Sensors (Basel) ; 24(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38544254

RESUMO

The accuracy and efficacy of medical treatment would be greatly improved by the continuous and real-time monitoring of protein biomarkers. Identification of cancer biomarkers in patients with solid malignant tumors is receiving increasing attention. Existing techniques for detecting cancer proteins, such as the enzyme-linked immunosorbent assay, require a lot of work, are not multiplexed, and only allow for single-time point observations. In order to get one step closer to clinical usage, a dynamic platform for biosensing the cancer biomarker CD44 using a single-mode optical fiber-based ball resonator biosensor was designed, constructed and evaluated in this work. The main novelty of the work is an in-depth study of the capability of an in-house fabricated optical fiber biosensor for in situ detection of a cancer biomarker (CD44 protein) by conducting several types of experiments. The main results of the work are as follows: (1) Calibration of the fabricated fiber-optic ball resonator sensors in both static and dynamic conditions showed similar sensitivity to the refractive index change demonstrating its usefulness as a biosensing platform for dynamic measurements; (2) The fabricated sensors were shown to be insensitive to pressure changes further confirming their utility as an in situ sensor; (3) The sensor's packaging and placement were optimized to create a better environment for the fabricated ball resonator's performance in blood-mimicking environment; (4) Incubating increasing protein concentrations with antibody-functionalized sensor resulted in nearly instantaneous signal change indicating a femtomolar detection limit in a dynamic range from 7.1 aM to 16.7 nM; (5) The consistency of the obtained signal change was confirmed by repeatability studies; (6) Specificity experiments conducted under dynamic conditions demonstrated that the biosensors are highly selective to the targeted protein; (7) Surface morphology studies by AFM measurements further confirm the biosensor's exceptional sensitivity by revealing a considerable shift in height but no change in surface roughness after detection. The biosensor's ability to analyze clinically relevant proteins in real time with high sensitivity offers an advancement in the detection and monitoring of malignant tumors, hence improving patient diagnosis and health status surveillance.


Assuntos
Técnicas Biossensoriais , Neoplasias , Humanos , Biomarcadores Tumorais , Técnicas Biossensoriais/métodos , Tecnologia de Fibra Óptica/métodos , Fibras Ópticas , Proteínas , Neoplasias/diagnóstico , Receptores de Hialuronatos
12.
Nanoscale ; 16(6): 3113-3120, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38258424

RESUMO

As a low-density lipoprotein, tributyrin plays an essential role in food safety and human health. In this study, a novel lipase-conjugated carbon nanotube (CNT) surface plasmon resonance (SPR) fiber-optic sensor is used to specifically detect tributyrin for the first time. In this work, CNTs can be used as an amplifying material to significantly increase the sensitivity of SPR sensors due to their high refractive index and large surface area. CNTs can also be used as an enzyme carrier to provide abundant carboxyl groups for the specific binding of lipases. Covering the surface of the sensor with CNTs can not only enhance the performance of the sensor, but also provide sufficient detection sites for subsequent biomass detection, reduce the functionalization steps, and simplify the sensor preparation process. The experimental results demonstrate that the refractive index sensitivity of the traditional multimode fiber (MMF)-single mode fiber (SMF)-MMF transmissive optical fiber sensor is 1705 nm RIU-1. After covering the sensor with CNTs, the sensitivity is 2077 nm RIU-1, and the sensitivity has been improved very well. In addition, there are abundant functional groups on CNTs, which can provide abundant binding sites. Conjugating lipase on carbon nanotubes helps to achieve linear detection in the range of 0.5 mM to 4 mM tributyrin, with a sensitivity of 4.45 nm mM-1 and a detection limit of 0.34 mM, which is below the 2.26 mM detection standard and meets food safety monitoring requirements. Compared with other sensors, the optical fiber biosensor proposed in this study expands the concentration detection range of tributyrin. Furthermore, the sensor also has good stability, anti-interference performance and specificity. Therefore, the sensor proposed in this paper has good application prospects in the fields of food safety and biomedicine.


Assuntos
Nanotubos de Carbono , Ressonância de Plasmônio de Superfície , Triglicerídeos , Humanos , Ressonância de Plasmônio de Superfície/métodos , Lipase , Tecnologia de Fibra Óptica/métodos
13.
Biosensors (Basel) ; 13(12)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38131789

RESUMO

Timely detection of highly infectious pathogens is essential for preventing and controlling public health risks. However, most traditional testing instruments require multiple tedious steps and ultimately testing in hospitals and third-party laboratories. The sample transfer process significantly prolongs the time to obtain test results. To tackle this aspect, a portable fiber optic surface plasmon resonance (FO-SPR) device was developed for the real-time detection of infectious pathogens. The portable device innovatively integrated a compact FO-SPR sensing component, a signal acquisition and processing system, and an embedded power supply unit. A gold-plated fiber is used as the FO-SPR sensing probe. Compared with traditional SPR sensing systems, the device is smaller size, lighter weight, and higher convenience. To enhance the detection capacity of pathogens, a monolayer graphene was coated on the sensing region of the FO-SPR sensing probe. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was used to evaluate the performance of the portable device. The device can accurately detect the SARS-CoV-2 spike S1 protein in phosphate-buffered saline (PBS) and artificial saliva within just 20 min, and the device successfully detected cultured SARS-CoV-2 virus. Furthermore, the FO-SPR probe has long-term stability, remaining stable for up to 8 days. It could distinguish between the SARS-CoV-2 spike protein and the MERS-CoV spike protein. Hence, this FO-SPR device provides reliable, rapid, and portable access to test results. It provides a promising point-of-care testing (POCT) tool for on-site screening of infectious pathogens.


Assuntos
Técnicas Biossensoriais , Grafite , Humanos , Ressonância de Plasmônio de Superfície/métodos , Tecnologia de Fibra Óptica/métodos , Testes Imediatos , Técnicas Biossensoriais/métodos
14.
Anal Chim Acta ; 1283: 341960, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37977802

RESUMO

BACKGROUND: Highly sensitive and rapid detection of cell concentration and interfacial molecular events is of great value for biological, biomedical, and chemical research. Most traditional biosensors require large sample volumes and complicated functional modifications of the surface. It is of great significance to develop label-free biosensor platforms with minimal sample consumption for studying cell concentration changes and interfacial molecular events without labor-intensive procedures. RESULTS: Here, a fiber-optic biosensor based on intracavity evanescent field absorption sensing is designed for sensitive and label-free cell assays for the first time. The interaction between the cells and the evanescent field is enhanced by introducing microfluidic-integrated intracavity absorption in a fiber ring laser. This strategy extends the range of targeted analytes to include quantification of a large number of targets on a surface and improves the detection sensitivity of the fiber-optic biosensor. The level of sensing resolution could be improved from 10-4 RIU to 10-7 RIU using this strategy. The stem cells were studied over a wide concentration range (from 500 to 1.2 × 105 cells/ml) and were measured sequentially. By measuring the output power of the intracavity absorption sensing system, the cell concentration can be directly determined in a label-free manner. The results show that dozens of stem cells can be sensitively detected with a sample consumption of 72 µL. The response was fast (15 s) with a low temperature cross-sensitivity of 0.031 cells·ml-1/°C. SIGNIFICANCE: The proposed method suggests its capacity for true label-free and noninvasive cell assays with a low limit of detection and small sample consumption. This has the potential to be used as a universal tool for quantitative and qualitative characterization of various cells and other biochemical analytes.


Assuntos
Técnicas Biossensoriais , Microfluídica , Técnicas Biossensoriais/métodos , Tecnologia de Fibra Óptica/métodos , Projetos de Pesquisa , Lasers
15.
Opt Lett ; 48(14): 3749-3752, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37450741

RESUMO

We investigate the impact of collisions with two-frequency photonic molecules aiming to observe internal dynamic behavior and challenge their strong robustness. Versatile interaction scenarios show intriguing state changes expressed through modifications of the resulting state such as temporal compression and unknown collision-induced spectral tunneling. These processes show potential for efficient coherent supercontinuum generation and all-optical manipulation.


Assuntos
Tecnologia de Fibra Óptica , Fótons , Tecnologia de Fibra Óptica/métodos
16.
Sensors (Basel) ; 23(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37447798

RESUMO

The present research exposes a novel methodology to manufacture fiber optic sensors following the etching process by Hydrofluoric Acid deposition through a real-time monitoring diameter measurement by computer vision. This is based on virtual instrumentation developed with the National Instruments® technology and a conventional digital microscope. Here, the system has been tested proving its feasibility by the SMS structure diameter reduction from its original diameter of 125 µ until approximately 42.5 µm. The results obtained have allowed us to demonstrate a stable state behavior of the developed system during the etching process through diameter measurement at three different structure sections. Therefore, this proposal will contribute to the etched fiber optic sensor development that requires reaching an enhanced sensitivity. Finally, to demonstrate the previously mentioned SMS without chemical corrosion, and the etched manufactured SMS, both have been applied as glucose concentration sensors.


Assuntos
Tecnologia de Fibra Óptica , Fibras Ópticas , Tecnologia de Fibra Óptica/métodos
17.
IEEE Trans Nanobioscience ; 22(4): 978-988, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37216266

RESUMO

Food safety is a scientific discipline that requires sophisticated handling, production, and storage. Food is common for microbial development; it acts as a source for growth and contamination. The traditional procedures for food analysis are time-consuming and labor-intensive, but optical sensors overcome these constraints. Biosensors have replaced rigorous lab procedures like chromatography and immunoassays with more precise and quick sensing. It offers quick, nondestructive, and cost-effective food adulteration detection. Over the last few decades, the significant spike in interest in developing surface plasmon resonance (SPR) sensors for the detection and monitoring of pesticides, pathogens, allergens, and other toxic chemicals in foods. This review focuses on fiber-optic SPR (FO-SPR) biosensors for detecting various adulterants in food matrix while also discussing the future perspective and the key challenges encountered by SPR based sensors.


Assuntos
Técnicas Biossensoriais , Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodos , Técnicas Biossensoriais/métodos , Tecnologia de Fibra Óptica/métodos , Contaminação de Alimentos/análise
18.
Food Chem ; 422: 136189, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37116271

RESUMO

There is strong interest in non-destructive and rapid determination of food freshness in food research. In this study, mid-infrared (MIR) fiber-optic evanescent wave (FOEW) spectroscopy was applied to monitor shrimp freshness through the evaluation of protein, chitin, and calcite contents in conjunction with a Partial Least Squares Discriminant Analysis (PLS-DA) model. Shrimp shells were wiped with a micro fiber-optic probe to obtain a FOEW spectrum which quickly and nondestructively allowed evaluation of the shrimp freshness. Peaks for proteins, chitin, and calcite, which are closely related to shrimp freshness, were detected and quantified. Compared with the standard indicator for evaluating shrimp freshness (total volatile basic nitrogen), the PLS-DA model gave recognition rates for shrimp freshness using calibration and validation sets of the FOEW data of 87.27%, 90.28%, respectively. Our results show that FOEW spectroscopy is a feasible method for non-destructive and in-site detection of shrimp freshness.


Assuntos
Tecnologia de Fibra Óptica , Alimentos Marinhos , Tecnologia de Fibra Óptica/métodos , Espectrofotometria Infravermelho , Análise dos Mínimos Quadrados , Calibragem
19.
Odontology ; 111(4): 854-862, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36797498

RESUMO

Digital imaging fiber-optic transillumination (DIFOTI) devices have been used to detect caries, a technique without using X-rays. However, the effects of resin composites (RCs) shades on the images acquired with DIFOTI devices have not been investigated. Thus, this study aimed to elucidate the influence of RC shade on the images obtained with DIFOTI technique. Three shades (A1, A3, and Opaque) for each of four flowable RCs were filled on a cavity prepared in a left mandibular first premolar obtained from a donated body. Then, transmission images with a DIFOTI device (DIAGNOcam; KaVo, Biberach, Germany) were acquired, and the average lightness values of the images in the RC and enamel were used to calculate differences between those areas. To clarify the influence of the optical translucency and color on DIFOTI images, the color parameters (L*, a* and b*) of each RC were obtained with black and white backgrounds. The color differences between the backgrounds were calculated as transparency parameter (TP) values. The number of repetitions was set to 10. Differences in the lightness value of the shades varied in each RC. The difference in lightness was significantly associated with the TP value and color parameters of L* (p < 0.01), with negative (R = - 0.81) and positive (R = 0.84) correlations, respectively. In conclusion, DIFOTI images of RCs with high optical translucency resembled those of the natural tooth structure.


Assuntos
Cárie Dentária , Transiluminação , Humanos , Transiluminação/métodos , Resinas Compostas/química , Tecnologia de Fibra Óptica/métodos , Cárie Dentária/diagnóstico por imagem , Esmalte Dentário , Cor , Teste de Materiais
20.
ACS Sens ; 8(2): 811-821, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36734337

RESUMO

Throughout the past decades, fiber optic surface plasmon resonance (FO-SPR)-based biosensors have proven to be powerful tools for both the characterization of biomolecular interactions and target detection. However, as FO-SPR signals are generally related to the mass that binds to the sensor surface, multistep processes and external reagents are often required to obtain significant signals for low molecular weight targets. This increases the time, cost, and complexity of the respective bioassays and hinders continuous measurements. To overcome these requirements, in this work, cis-duplexed aptamers (DAs) were implemented on FO-SPR sensors, which underwent a conformational change upon target binding. This induced a spatial redistribution of gold nanoparticles (AuNPs) upon specific target binding and resulted in an amplified and concentration-dependent signal. Importantly, the AuNPs were covalently conjugated to the sensor, so the principle does not rely on multistep processes or external reagents. To implement this concept, first, the thickness of the gold fiber coating was adapted to match the resonance conditions of the surface plasmons present on the FO-SPR sensors with those on the AuNPs. As a result, the signal obtained due to the spatial redistribution of the AuNPs was amplified by a factor of 3 compared to the most commonly used thickness. Subsequently, the cis-DAs were successfully implemented on the FO-SPR sensors, and it was demonstrated that the DA-based FO-SPR sensors could specifically and quantitatively detect an ssDNA target with a detection limit of 230 nM. Furthermore, the redistribution of the AuNPs was proven to be reversible, which is an important prerequisite for continuous measurements. Altogether, the established DA-based FO-SPR bioassay holds much promise for the detection of low molecular weight targets in the future and opens up possibilities for FO-SPR-based continuous biosensing.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ressonância de Plasmônio de Superfície/métodos , Ouro/química , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , Tecnologia de Fibra Óptica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA