Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
J Insect Sci ; 24(4)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39118393

RESUMO

The study aims to assess the impact of oven-drying and decontamination on crude protein concentration and in vitro crude protein digestibility of yellow mealworms. Two kilograms of 12-wk-old mealworm larvae were subjected to freezing prior to the drying process. Approximately 1.5 kg of mealworm larvae were divided into 3 groups and exposed to oven-drying at temperatures of 50 °C for 36 h, 60 °C, and 70 °C for 24 h each. At intervals of 2 h, sets of 3 replicates were withdrawn to record water loss. Consistent weight stabilization was observed at 36 h for 50 °C (T50), 18 h for 60 °C (T60), and 14 h for 70 °C (T70). The remaining 0.5 kg of mealworm larvae was divided and dried under treatments T50, T60, and T70. Each treatment was then split into 2 portions, with one portion subjected to 90 °C for 15 min (denoted as T50-90, T60-90, T70-90) to eliminate microbial contamination. The 6 treatments were then used to determine concentrations of dry matter, crude ash, crude protein, pre-caecal protein digestibility, and dry matter residues after neutral detergent fiber, acid detergent fiber, and acid detergent lignin treatments. No interaction was observed between drying and decontamination treatments (P > 0.17). Pre-caecal crude protein digestibility increased with decreasing temperature (T50: 58% crude protein; T60: 51% crude protein; T70: 50% crude protein). Therefore, lower temperatures for longer times preserve crude protein digestibility. These findings are crucial for understanding how drying temperature and time impact protein bioavailability.


Assuntos
Digestão , Larva , Tenebrio , Animais , Tenebrio/química , Tenebrio/metabolismo , Larva/crescimento & desenvolvimento , Dessecação , Ração Animal/análise , Descontaminação/métodos , Proteínas Alimentares/metabolismo , Proteínas Alimentares/análise , Proteínas de Insetos/metabolismo , Temperatura Alta
2.
Molecules ; 29(15)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39125083

RESUMO

The growing world population necessitates the implementation of appropriate processing technologies for edible insects. The objective of this study was to examine the impact of distinct drying techniques, including convective drying at 70 °C (70CD) and 90 °C (90CD) and freeze-drying (FD), on the drying kinetics, physical characteristics (water activity, color), chemical characteristics (chemical composition, amino acid profile, oil properties, total polyphenol content and antioxidant activity, mineral composition, FTIR), and presence of hazards (allergens, microorganisms) of blanched yellow mealworm larvae. The freeze-drying process results in greater lightness and reduced moisture content and water activity. The study demonstrated that the freeze-dried insects exhibited lower contents of protein and essential amino acids as compared to the convective-dried insects. The lowest content of total polyphenols was found in the freeze-dried yellow mealworm larvae; however, the highest antioxidant activity was determined for those insects. Although the oil isolated from the freeze-dried insects exhibited the lowest acid and peroxide values, it proved to have the lowest PUFA content and oxidative stability. All the samples met the microbiological criteria for dried insects. The results of the study demonstrate that a high temperature during the CD method does not result in the anticipated undesirable changes. It appears that freeze-drying is not the optimal method for preserving the nutritional value of insects, particularly with regard to the quality of protein and oil.


Assuntos
Antioxidantes , Dessecação , Liofilização , Larva , Tenebrio , Animais , Larva/química , Tenebrio/química , Liofilização/métodos , Antioxidantes/química , Antioxidantes/análise , Dessecação/métodos , Polifenóis/análise , Polifenóis/química , Aminoácidos/análise , Aminoácidos/química
3.
J Chem Phys ; 161(5)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39087548

RESUMO

In this study, peptides designed using fragments of an antifreeze protein (AFP) from the freeze-tolerant insect Tenebrio molitor, TmAFP, were evaluated as inhibitors of clathrate hydrate formation. It was found that these peptides exhibit inhibitory effects by both direct and indirect mechanisms. The direct mechanism involves the displacement of methane molecules by hydrophobic methyl groups from threonine residues, preventing their diffusion to the hydrate surface. The indirect mechanism is characterized by the formation of cylindrical gas bubbles, the morphology of which reduces the pressure difference at the bubble interface, thereby slowing methane transport. The transfer of methane to the hydrate interface is primarily dominated by gas bubbles in the presence of antifreeze peptides. Spherical bubbles facilitate methane migration and potentially accelerate hydrate formation; conversely, the promotion of a cylindrical bubble morphology by two of the designed systems was found to mitigate this effect, leading to slower methane transport and reduced hydrate growth. These findings provide valuable guidance for the design of effective peptide-based inhibitors of natural-gas hydrate formation with potential applications in the energy and environmental sectors.


Assuntos
Proteínas Anticongelantes , Metano , Tenebrio , Água , Proteínas Anticongelantes/química , Cinética , Metano/química , Metano/análogos & derivados , Água/química , Tenebrio/química , Animais , Gases/química , Peptídeos/química , Peptídeos/farmacologia
4.
Int J Biol Macromol ; 275(Pt 1): 133675, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38971287

RESUMO

With growing concerns about postharvest spoilage of fruits, higher requirements have been placed on high-performance and sustainable active packaging materials. In this study, we prepared curcumin-based functional composite films using chitosan (CS) and Tenebrio molitor larvae protein (TMP) as the substrates. The effects of curcumin concentration on the structural and physicochemical properties of the composite films were determined. Curcumin was equally distributed in the polymer film through physical interactions. Furthermore, the curcumin composite film with 0.3 % addition exhibited a 27.39 % increase in elongation at break (EBA), a 37.04 % increase in the water vapor barrier, and strong UV-blocking properties and antioxidant activity compared with the control film (CS/TMP). The degradation experiment of the composite film on natural soil revealed that the composite film exhibited good biodegradability and environmental protection. Furthermore, the applicability of functional composite films for preserving blueberries was investigated. Compared with the control film and polyethylene (PE) films, the prepared composite films packaging treatment reduced the decay rate and weight loss rate of blueberries during storage, delayed softening and aging, and maintained the quality of blueberries. Using sustainable protein resources (TMP) and natural polysaccharides as packaging materials provides an economically, feasible and sustainable way to achieve the functional preservation of biomass materials.


Assuntos
Antioxidantes , Mirtilos Azuis (Planta) , Quitosana , Curcumina , Embalagem de Alimentos , Conservação de Alimentos , Larva , Tenebrio , Animais , Quitosana/química , Quitosana/farmacologia , Curcumina/química , Curcumina/farmacologia , Tenebrio/química , Tenebrio/efeitos dos fármacos , Embalagem de Alimentos/métodos , Mirtilos Azuis (Planta)/química , Antioxidantes/farmacologia , Antioxidantes/química , Conservação de Alimentos/métodos , Larva/efeitos dos fármacos , Proteínas de Insetos/química
5.
Int J Biol Macromol ; 272(Pt 2): 132787, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38844284

RESUMO

Insect protein extract is one of the high-quality protein sources and is frequently viewed as a potential nutrition alternative. However, a more precise method for protein measurement is still needed due to protein overestimation by the Kjeldahl method due to the presence of a large amount of chitin in insects. Therefore, we demonstrated the monitoring of chitin and protein extracted from yellow mealworm larvae through the information on molecular vibration obtained using Raman spectroscopy and infrared (IR) spectroscopy. The NH vibration at 3475 cm-1 is the characteristic peak of chitin in defatted product observed in the Raman spectra. The nitrogen-to-protein conversion factor in protein extracted from larvae by the Raman method was determined based on the NH vibration and found to be 5.66 ± 0.01. We also compared these experimental data to theoretical Raman and IR spectra and determined the possible reasons for why nitrogen elements in chitin affect the determination of protein content. The method of sequentially removing fat and protein could provide more accurate quantification of protein and chitin. Raman spectroscopy is feasible for various types of insects with high chitin content. Compared with the Kjeldahl method, the Raman method is a faster and more accurate measurement method. Moreover, it provides the content of impurities, purity, and structural information.


Assuntos
Quitina , Proteínas de Insetos , Larva , Análise Espectral Raman , Análise Espectral Raman/métodos , Quitina/química , Quitina/análise , Larva/química , Animais , Proteínas de Insetos/química , Proteínas de Insetos/análise , Tenebrio/química , Nitrogênio/análise , Nitrogênio/química
6.
Food Chem ; 452: 139391, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38713980

RESUMO

Edible insects with high fat and phosphorus content are a potential novel source of lecithin, however, studies on their minor lipids are limited. In this study, lecithin was extracted from black soldier fly larvae and yellow mealworm. Herein, the effects of lecithin extraction method, matrix and ultrasound pretreatment were explored based on the fatty acid composition and phospholipid profile with soy lecithin as a reference. The use of a wet matrix and ultrasound pretreatment increased the extraction efficiency of total PLs from both insects. Insect lecithin contained a considerable amount of sphingomyelin compared to soy lecithin. In insect lecithin, a total of 47 glycerophospholipid and sphingomyelin molecular species, as well as four molecular species of fatty acyl esters of hydroxy fatty acid, were detected. This study is the first comprehensive investigation of insects as a new source of lecithin with applications in food, cosmetics and in the pharmaceutical industry.


Assuntos
Larva , Lecitinas , Animais , Lecitinas/química , Larva/química , Larva/crescimento & desenvolvimento , Insetos Comestíveis/química , Dípteros/química , Dípteros/crescimento & desenvolvimento , Tenebrio/química , Simuliidae/química , Ácidos Graxos/química , Ácidos Graxos/isolamento & purificação , Fosfolipídeos/química , Fosfolipídeos/isolamento & purificação , Lipídeos/química , Lipídeos/isolamento & purificação
7.
Food Chem ; 450: 139400, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38640536

RESUMO

Three protein hydrolysates from Tenebrio molitor were obtained by enzymatic hydrolysis employing two food-grade proteases (i.e. Alcalase and Flavourzyme), and a complete characterisation of their composition was done. The digestion-derived products were obtained using the INFOGEST protocol. In vitro antioxidant activity and anti-inflammatory activities were evaluated. Tenebrio molitor flour and the protein hydrolysates showed a high ability to scavenge the DPPH radical (EC50 values from 0.30 to 0.87 mg/mL). The hydrolysate obtained with a combination of the two food-grade proteases could decrease the gene expression of pro-inflammatory genes after being digested. Furthermore, the peptidome was fully determined for the first time for T. molitor hydrolysates and digests, and 40 peptides were selected based on their bioactivity to be evaluated by in silico tools, including prediction tools and molecular docking. These results provide new perspectives on the use of edible insects as sustainable and not nutritionally disadvantageous food for human consumption.


Assuntos
Antioxidantes , Proteínas de Insetos , Oligopeptídeos , Tenebrio , Tenebrio/química , Tenebrio/genética , Tenebrio/metabolismo , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Oligopeptídeos/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Simulação de Acoplamento Molecular , Hidrolisados de Proteína/química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Hidrólise , Humanos
8.
Int J Biol Macromol ; 268(Pt 2): 131731, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38649081

RESUMO

In this work we have characterized and compared chitin sourced from exoskeleton of Tenebrio molitor larvae fed with polystyrene or plastic kitchen wrap combined with bran in the ratio 1: 1 with chitin sourced from larvae exoskeleton fed only with bran. Analysis of the frass by ATR-FTIR showed very similar spectra and confirmed degradation of the plastic feed components, while ATR-FTIR analysis of the exoskeleton verified the absence of any plastic residue. Deproteinization followed by demineralization produced 6.78-5.29 % chitin, showing that plastic (polystyrene or plastic kitchen wrap) in the larvae diet resulted in heavier insect exoskeleton, but yielded slightly less chitin, with the lowest value obtained for plastic kitchen wrap in the insect diet. The deacetylation degree of 98.17-98.61 % was determined from measured ATR-FTIR spectra. XRD analysis confirmed the presence of α-chitin with a crystallinity index of 66.5-62 % and crystallite size 4-5 nm. Thermogravimetric analysis showed similar degradation curves for all chitin samples, with two degradation steps. These results show that chitin sourced from exoskeleton of T. molitor larvae fed with plastic (polystyrene or plastic kitchen wrap) and contributing to significant biodegradation of major polluting materials can be a feasible and alternative source of chitin, further promoting a bio-circular economy.


Assuntos
Quitina , Poliestirenos , Tenebrio , Animais , Tenebrio/química , Quitina/química , Poliestirenos/química , Plásticos/química , Exoesqueleto/química , Larva , Espectroscopia de Infravermelho com Transformada de Fourier
9.
J Mater Chem B ; 12(19): 4717-4723, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38655651

RESUMO

Metal-organic frameworks (MOFs) possess a variety of interesting features related to their composition and structure that make them excellent candidates to be used in agriculture. However, few studies have reported their use as delivery agents of agrochemicals. In this work, the natural polyphenol chlorogenic acid (CGA) was entrapped via simple impregnation in the titanium aminoterephthalate MOF, MIL-125-NH2. A combination of experimental and computational techniques was used to understand and quantify the encapsulated CGA in MIL-125-NH2. Subsequently, CGA delivery studies were carried out in water at different pHs, showing a fast release of CGA during the first 2 h (17.3 ± 0.3% at pH = 6.5). In vivo studies were also performed against larvae of mealworm (Tenebrio molitor), evidencing the long-lasting insecticidal activity of CGA@MIL-125-NH2. This report demonstrates the potential of MOFs in the efficient release of agrochemicals, and paves the way to their study against in vivo models.


Assuntos
Ácido Clorogênico , Inseticidas , Estruturas Metalorgânicas , Ácido Clorogênico/química , Ácido Clorogênico/farmacologia , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Inseticidas/química , Inseticidas/farmacologia , Animais , Tenebrio/química , Tenebrio/efeitos dos fármacos , Larva/efeitos dos fármacos
10.
Food Chem ; 449: 139177, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581785

RESUMO

Edible insects represent a great alternative protein source but food neophobia remains the main barrier to consumption. However, the incorporation of insects as protein-rich ingredients, such as protein concentrates, could increase acceptance. In this study, two methods, isoelectric precipitation and ultrafiltration-diafiltration, were applied to produce mealworm protein concentrates, which were compared in terms of composition, protein structure and techno-functional properties. The results showed that the protein content of the isoelectric precipitation concentrate was higher than ultrafiltration-diafiltration (80 versus 72%) but ash (1.91 versus 3.82%) and soluble sugar (1.43 versus 8.22%) contents were lower. Moreover, the protein structure was affected by the processing method, where the ultrafiltration-diafiltration concentrate exhibited a higher surface hydrophobicity (493.5 versus 106.78 a.u) and a lower denaturation temperature (161.32 versus 181.44 °C). Finally, the ultrafiltration-diafiltration concentrate exhibited higher solubility (87 versus 41%) and emulsifying properties at pH 7 compared to the concentrate obtained by isoelectric precipitation.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Proteínas de Insetos , Ultrafiltração , Animais , Proteínas de Insetos/química , Proteínas de Insetos/isolamento & purificação , Tenebrio/química , Precipitação Química , Solubilidade , Concentração de Íons de Hidrogênio , Manipulação de Alimentos
11.
Int J Biol Macromol ; 253(Pt 6): 127156, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37778575

RESUMO

Chitin present in the shell of edible insects is a potential source of chitin, lipids, and proteins, and it exerts various biological activities. Thus far, only a few studies have focused on the use of chitin as a source of high-protein-diet oligosaccharides. The use of insect chitin for the production of high-protein-diet oligosaccharides can lessen the reliance on diet crops. Moreover, although chitin composition in Tenebrio molitor larva, pupa, and adult has been extensively investigated, chitin extraction from T. molitor larval whole body and exuvium has received poor attention. The present study compared the effectiveness of two techniques for extracting high-protein-diet chitin oligosaccharide from an edible insect (T. molitor). Two different extraction sequences of chitin from the larval stage (molitor stage larvae) and adult stage (molitor stage adult) of edible T. molitor were investigated. Two processing steps were employed: (a) deproteinization (DEP) and (b) demineralization (DEM) treatments. Differences in the order, conditions, and period of their application resulted in two different chitin extraction procedures. The viscosity, degree of polymerization, and crystallinity index of the chitin extracted using the two procedures were measured, and its chemical components (chitin, ash, protein, fat, and moisture contents) were determined. T. molitor adults and larvae treated sequentially with DEM-DEP demonstrated the greatest yield of approximately 14.62 % ± 0.15 and 6.096 % ± 0.10 %, respectively. By contrast, when treated sequentially with DEP-DEM, the recorded yields were 10.96 % ± 0.18 and 5.31 % ± 0.38, respectively. Differences in the degree of deacetylation between both methods were observed. Additionally, Fourier transform infrared spectroscopy and X-ray diffractometry of the extracted chitin along with a commercial sample revealed consistent chain conformation, mean hydrogen bonding, and crystallinity index. In this way, residues produced by farmed edible insects can be recovered and used as a novel source of chitin.


Assuntos
Insetos Comestíveis , Tenebrio , Animais , Quitina/química , Larva/química , Tenebrio/química , Proteínas/metabolismo , Oligossacarídeos/metabolismo
12.
Molecules ; 28(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37050017

RESUMO

Chitin is mostly produced from crustaceans, but it is difficult to supply raw materials due to marine pollution, and the commonly used chemical chitin extraction method is not environmentally friendly. Therefore, this study aims to establish a chitin extraction process using enzymes and to develop edible insect-derived chitin as an eco-friendly new material. The response surface methodology (RSM) was used to determine the optimal conditions for enzymatic hydrolysis. The optimal conditions for enzymatic hydrolysis by RSM were determined to be the substrate concentration (7.5%), enzyme concentration (80 µL/g), and reaction time (24 h). The solubility and DDA of the mealworm chitosan were 45% and 37%, respectively, and those of the commercial chitosan were 61% and 57%, respectively. In regard to the thermodynamic properties, the exothermic peak of mealworm chitin was similar to that of commercial chitin. In the FT-IR spectrum, a band was observed in mealworm chitin corresponding to the C=O of the NHCOCH3 group at 1645 cm-1, but this band showed low-intensity C=O in the mealworm chitosan due to deacetylation. Collectively, mealworm chitosan shows almost similar physical and chemical properties to commercial chitosan. Therefore, it is shown that an eco-friendly process can be introduced into chitosan production by using enzyme-extracted mealworms for chitin/chitosan production.


Assuntos
Quitina , Quitosana , Subtilisinas , Tenebrio , Animais , Acetilação , Varredura Diferencial de Calorimetria , Quitina/química , Quitina/isolamento & purificação , Quitina/metabolismo , Quitosana/química , Quitosana/isolamento & purificação , Quitosana/metabolismo , Crustáceos/química , Insetos Comestíveis/química , Insetos Comestíveis/metabolismo , Hidrólise , Proteólise , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Subtilisinas/metabolismo , Tenebrio/química , Tenebrio/metabolismo , Termodinâmica
13.
Ultrason Sonochem ; 95: 106379, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36965311

RESUMO

Currently, as a promising alternative protein source, the interest of edible insect protein has been continuously increased. However, the extraction processing had distinct effects on the physicochemical properties and functionalities of this novel and sustainable protein. In this study, Tenebrio molitor larvae protein (TMLP) was extracted via ultrasound (US)-assisted alkaline extraction. The changes of extraction kinetics, physicochemical characteristics, and functional properties of TMLP as a function of US time (10, 20, 30, 40, 50 min) were investigated. The results showed that 30 min US treatment rendered the maximum protein yield (60.04 %) (P < 0.05). Meanwhile, Peleg's model was considered a suitable model to represent the extraction kinetics of TMLP, with a correlation coefficient of 0.9942. Moreover, the protein secondary structure, particle size, and amino acid profiles of TMLP were changed under the US-assisted alkaline extraction process. Additionally, a significant improvement of the functional properties of TMLP extracted with this method was observed compared to traditional alkaline extraction. In conclusion, the present work suggests that US-assisted alkaline extraction could be considered as a potential method to improve the protein yield, quality profiles, and functional properties of TMLP.


Assuntos
Tenebrio , Animais , Larva/química , Tenebrio/química , Tenebrio/metabolismo , Ultrassonografia , Aminoácidos/metabolismo , Tamanho da Partícula
14.
Ultrason Sonochem ; 94: 106335, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36821935

RESUMO

Edible insects have been considered as a sustainable and novel protein source to replace animal-derived proteins. The present study aimed to extract Tenebrio molitor larvae proteins (TMP) using ultrasound-assisted alkaline extraction (UAE). Effects of different UAE times (10, 20, 30, 40, and 50 min) on the structural properties and in vitro digestibility of TMP were comparatively investigated with the traditional alkaline extraction method. The results revealed that ultrasonication could effectively alter the secondary/tertiary structures and thermal stability of TMP during UAE. The molecular unfolding and subsequent aggregation of TMP during UAE were mainly attributed to the formation of disulfide bonds and hydrophobic interactions. Moreover, TMP extracted by UAE had higher in vitro digestibility and digestion kinetics than those extracted without ultrasound, and the intermediate UAE time (30 min) was the optimal ultrasound parameter. However, longer UAE times (40 and 50 min) lowered the digestibility of TMP due to severe protein aggregation. The present work provides a potential strategy for the extraction of TMP with higher nutritional values.


Assuntos
Tenebrio , Animais , Larva/química , Tenebrio/química , Tenebrio/metabolismo , Interações Hidrofóbicas e Hidrofílicas
15.
J Phys Chem B ; 127(1): 121-132, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36594578

RESUMO

Quasi-ice-like hydration waters on the ice-binding surface (IBS) of an antifreeze protein (AFP) commonly exhibit sluggish dynamics especially at low temperatures. In this work, we have analyzed molecular dynamics (MD) simulation trajectories at two different temperatures for Tenebrio molitor antifreeze protein (TmAFP) to explore whether the unique quasi-ice-like structuring of hydration water has any impact on making their dynamics slower on the IBS of the protein. Our calculation reveals that, as translational dynamics is coupled with the conformational fluctuations, hydration water on the IBS exhibits sluggish translational motion due to reduced flexibility of the IBS compared to that on the non-ice-binding surface (NIBS) of the protein. Interestingly, it is noticed that rotational motion of hydration water is not coupled with the conformational fluctuations of the surfaces. In that case, structural relaxations of the protein-water (PW) and water-water (WW) hydrogen bonds compete with each other to make the rotational dynamics of hydration water around the IBS either faster or slower with respect to those around the NIBS. At low temperature, the slower structural relaxation of water-water hydrogen bonds dominates and imparts sluggish rotational motion of the hydration water on the IBS of the protein. The slower structural relaxation of water-water hydrogen bonds and hence the retarded rotational dynamics, despite the weak short-lived PW hydrogen bonds on the IBS, is clearly a manifestation of the rigid quasi-ice-like structure of the hydration shell on that surface.


Assuntos
Tenebrio , Animais , Proteínas Anticongelantes/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Tenebrio/química , Água/química
16.
Molecules ; 27(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36500560

RESUMO

Six types of nut-based bars with the addition of edible insect flour were obtained. Flours made from three different insects (Tenebrio molitor L., Acheta domesticus L., Alphitobius diaperinus P.) were used at two different additive levels (15% and 30%) in relation to the weight of the nuts. The addition of insect flour significantly increased protein content and the insoluble fraction of dietary fiber. The largest amount of these compounds was found in bars with 30% cricket flour, 15.51 g/100 g and 6.04 g/100 g, respectively, in comparison to standard bars, 10.78 g/100 g and 3.14 g/100 g, respectively. The greatest consumer acceptance was found in relation to bars with buffalo worm flour. The overall acceptance of these bars was 6.26-6.28 points compared to 6.48 for standard bars. Bars and raw materials were characterized by the high biological value of the protein. Cis linoleic acid dominated among unsaturated fatty acids. The percentage of this compound was in the range of 69.56%, for bars with a 30% addition of buffalo worm flour, to 73.88%, for bars with 15% cricket flour. Instrumental analysis of taste and smell compounds showed the presence of compounds such as 3-methylbutanoic acid, hexanal, and 2,3-pentanedione.


Assuntos
Insetos Comestíveis , Tenebrio , Animais , Pós , Valor Nutritivo , Tenebrio/química , Farinha/análise
17.
Food Res Int ; 158: 111499, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35840211

RESUMO

The current production of meat presents many disadvantages for the environment and much research focuses on alternative protein sources. Insects are novel protein sources highly valued for their nutritional and sustainable potential. However, many aspects concerning biological and nutritional properties of the insects after digestion, in comparison with other protein sources, are still overlooked. In this work, a comparative study on three different protein sources, namely almond, lean beef and insect Alphitobius diaperinus (lesser mealworm), was performed after in vitro simulated gastrointestinal digestion. An in-depth characterization of the chemical composition of the solubilized protein and lipid fractions of the digesta was performed by applying different analytical techniques, including chromatographic methods coupled to mass spectrometry and 1H NMR spectroscopy. Beef and insect were proven to be very similar in amino acid composition and protein solubilization after digestion, when considering the proper corrections for the chitin content. Lipid fraction from insects was solubilized during digestion as the one of almonds, but with a fastest kinetics. Thus, lesser mealworms are a good source of both lipids and highly nutritional proteins. Then, the amino acid composition of raw and digested protein fraction from the three sources was related to the PYY, ghrelin, GLP-1 and CCK release and rats' food intake. The composition of amino acids in insect digesta was found to be related to specific effects on enterohormone release, and the modulation of food intake in rats.


Assuntos
Besouros , Prunus dulcis , Tenebrio , Alérgenos/metabolismo , Aminoácidos/metabolismo , Animais , Bovinos , Digestão , Hormônios/metabolismo , Insetos , Lipídeos , Proteínas/metabolismo , Ratos , Tenebrio/química
18.
J Texture Stud ; 53(4): 540-549, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35560352

RESUMO

The use of insects is considered by Food and Agriculture Organization (FAO) as an alternative source of protein for human and animal food in order to reduce the carbon footprint caused by meat production and to supply the expected population increase with food. In this regard, the aim of this study was to analyze the physicochemical aspects (water activity, protein and fat content, size, optical and mechanical properties) of biscuits prepared with two different insect powders (Tenebrio molitor [TM] and Alphitobius diaperinus [AD], in different percentages [0, 13, 17, 20, and 25%]) based on total weight. In addition, the biscuits formulated with the highest insect powder content were subjected to sensory analysis. The results revealed that all the biscuits formulated with insect powders may be labeled as "high in protein" products following Regulation (EC) No. 1924/2006, although they were not as thick as the control biscuits. The L* and b* coordinates were significantly lower when the insect powders were included, which implied a darkening of the biscuits, which were also harder than the control biscuits, regardless the concentration used. According to the sensory analysis, most panelists perceived the biscuits containing insects as too dark and not crunchy enough and an increase in sweetness might improve their acceptability. Finally, further studies should be carried out to analyze the influence of different structural components and flavorings, such as chocolate, in the formulation of biscuits with insect powders to improve their sensory attributes.


Assuntos
Chocolate , Besouros , Tenebrio , Animais , Besouros/química , Besouros/metabolismo , Farinha , Humanos , Paladar , Tenebrio/química , Tenebrio/metabolismo
19.
Compr Rev Food Sci Food Saf ; 21(1): 148-197, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34773434

RESUMO

Nowadays, it is urgent to produce in larger quantities and more sustainably to reduce the gap between food supply and demand. In a circular bioeconomy vision, insects receive great attention as a sustainable alternative to satisfy food and nutritional needs. Among all insects, Tenebrio molitor (TM) is the first insect approved by the European Food Safety Authority as a novel food in specific conditions and uses, testifying its growing relevance and potential. This review holistically presents the possible role of TM in the sustainable and circular solution to the growing needs for food and nutrients. We analyze all high value-added products obtained from TM (powders and extracts, oils and fatty acids, proteins and peptides, and chitin and chitosan), their recovery processes (evaluating the best ones in technical and environmental terms), their nutritional and economical values, and their biological effects. Safety aspects are also mentioned. TM potential is undoubted, but some aspects still need to be discussed, including the health effects of substances and microorganisms in its body, the optimal production conditions (that affect product quality and safety), and TM capacity to convert by-products into new products. Environmental, economic, social, and market feasibility studies are also required to analyze the new value chains. Finally, to unlock the enormous potential of edible insects as a source of nutritious and sustainable food, it will be necessary to overcome the cultural, psychological, and regulatory barriers still present in Western countries.


Assuntos
Fenômenos Biológicos , Insetos Comestíveis , Tenebrio , Animais , Inocuidade dos Alimentos , Insetos , Tenebrio/química
20.
Molecules ; 26(9)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064526

RESUMO

The volatile compounds from insects (Tenebrio molitor and Zophobas morio larvae) roasted at 160, 180, or 200 °C and fed with potato starch or blue corn flour were isolated by solid-phase microextraction (SPME), and identified by gas chromatography-mass spectrometry (GC-MS). In the tested material, 48 volatile compounds were determined. Among them, eight are pyrazines, aroma compounds that are formed in food products during thermal processing due to the Maillard reaction. Eleven of the identified compounds influenced the roast, bread, fat, and burnt aromas that are characteristic for traditional baked dishes (meat, potatoes, bread). Most of them are carbonyl compounds and pyrazines. To confirm the contribution of the most important odorants identified, their odor potential activity values (OAVs) and %OAV were calculated. The highest value was noted for isobuthylpyrazine, responsible for roast aroma (%OAV > 90% for samples roasted at lower temperatures), and 2,5-dimethylpyrazine, responsible for burnt aroma (%OAV > 20% for samples roasted at the highest temperature). According to the study, the type of feed did not significantly affect the results of the sensory analysis of roasted insects. The decisive influence was the roasting temperature. The highest scores were achieved for Tenebrio molitor larvae heat-treated at 160 °C.


Assuntos
Besouros/química , Culinária , Sensação , Tenebrio/química , Animais , Cromatografia Gasosa-Espectrometria de Massas , Larva/química , Odorantes/análise , Solanum tuberosum , Amido , Perda Insensível de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA