Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Curr Genet ; 70(1): 13, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101952

RESUMO

Bacillus thuringiensis is the most widely used biopesticide, targets a diversity of insect pests belonging to several orders. However, information regarding the B. thuringiensis strains and toxins targeting Zeugodacus cucurbitae is very limited. Therefore, in the present study, we isolated and identified five indigenous B. thuringiensisstrains toxic to larvae of Z. cucurbitae. However, of five strains NBAIR BtPl displayed the highest mortality (LC50 = 37.3 µg/mL) than reference strain B. thuringiensis var. israelensis (4Q1) (LC50 = 45.41 µg/mL). Therefore, the NBAIR BtPl was considered for whole genome sequencing to identify the cry genes present in it. Whole genome sequencing of our strain revealed genome size of 6.87 Mb with 34.95% GC content. Homology search through the BLAST algorithm revealed that NBAIR BtPl is 99.8% similar to B. thuringiensis serovar tolworthi, and gene prediction through Prokka revealed 7406 genes, 7168 proteins, 5 rRNAs, and 66 tRNAs. BtToxin_Digger analysis of NBAIR BtPl genome revealed four cry gene families: cry1, cry2, cry8Aa1, and cry70Aa1. When tested for the presence of these four cry genes in other indigenous strains, results showed that cry70Aa1 was absent. Thus, the study provided a basis for predicting cry70Aa1 be the possible reason for toxicity. In this study apart from novel genes, we also identified other virulent genes encoding zwittermicin, chitinase, fengycin, and bacillibactin. Thus, the current study aids in predicting potential toxin-encoding genes responsible for toxicity to Z. cucurbitae and thus paves the way for the development of B. thuringiensis-based formulations and transgenic crops for management of dipteran pests.


Assuntos
Bacillus thuringiensis , Proteínas de Bactérias , Genoma Bacteriano , Sequenciamento Completo do Genoma , Bacillus thuringiensis/genética , Animais , Proteínas de Bactérias/genética , Toxinas de Bacillus thuringiensis/genética , Endotoxinas/genética , Controle Biológico de Vetores , Tephritidae/genética , Tephritidae/microbiologia , Proteínas Hemolisinas/genética , Larva/genética , Filogenia
2.
Microb Ecol ; 87(1): 81, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829379

RESUMO

Koinobiont endoparasitoids regulate the physiology of their hosts through altering host immuno-metabolic responses, processes which function in tandem to shape the composition of the microbiota of these hosts. Here, we employed 16S rRNA and ITS amplicon sequencing to investigate whether parasitization by the parasitoid wasps, Diachasmimorpha longicaudata (Ashmaed) (Hymenoptera: Braconidae) and Psyttalia cosyrae (Wilkinson) (Hymenoptera: Braconidae), induces gut dysbiosis and differentially alter the gut microbial (bacteria and fungi) communities of an important horticultural pest, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). We further investigated the composition of bacterial communities of adult D. longicaudata and P. cosyrae to ascertain whether the adult parasitoids and parasitized host larvae share microbial taxa through transmission. We demonstrated that parasitism by D. longicaudata induced significant gut perturbations, resulting in the colonization and increased relative abundance of pathogenic gut bacteria. Some pathogenic bacteria like Stenotrophomonas and Morganella were detected in both the guts of D. longicaudata-parasitized B. dorsalis larvae and adult D. longicaudata wasps, suggesting a horizontal transfer of microbes from the parasitoid to the host. The bacterial community of P. cosyrae adult wasps was dominated by Arsenophonus nasoniae, whereas that of D. longicaudata adults was dominated by Paucibater spp. and Pseudomonas spp. Parasitization by either parasitoid wasp was associated with an overall reduction in fungal diversity and evenness. These findings indicate that unlike P. cosyrae which is avirulent to B. dorsalis, parasitization by D. longicaudata induces shifts in the gut bacteriome of B. dorsalis larvae to a pathobiont-dominated community. This mechanism possibly enhances its virulence against the pest, further supporting its candidacy as an effective biocontrol agent of this frugivorous tephritid fruit fly pest.


Assuntos
Bactérias , Microbioma Gastrointestinal , Larva , RNA Ribossômico 16S , Tephritidae , Vespas , Animais , Tephritidae/microbiologia , Tephritidae/parasitologia , Vespas/microbiologia , Vespas/fisiologia , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Larva/microbiologia , Larva/parasitologia , Larva/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Fungos/genética , Fungos/fisiologia , Interações Hospedeiro-Parasita , Microbiota , Disbiose/microbiologia , Disbiose/parasitologia
3.
Parasit Vectors ; 17(1): 217, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734668

RESUMO

BACKGROUND: Gut bacteria, which serve as essential modulators, exert a significant impact on insect physiology and behavior and have substantial application potential in pest management. The dynamics of gut bacteria and their impact on Phortica okadai behavior remain unclear. METHODS: In this study, the dynamics of gut bacteria at different developmental stages in P. okadai were analyzed using 16S ribosomal RNA (rRNA) gene sequencing, and the species and abundance of gut bacteria that affect host behavior were examined via behavioral experiments. RESULTS: A total of 19 phyla, 29 classes, 74 orders, 101 species, and 169 genera were identified. The results of the behavioral experiments indicated that the species Lactiplantibacillus argentoratensis, Acetobacter tropicalis, Leuconostoc citreum, and Levilactobacillus brevis effectively influenced the feeding preference of P. okadai, and the single-bacterium-seeded P. okadai exhibited feeding preferences distinct from those of the germ-free (GF) and wild-type P. okadai. CONCLUSIONS: The species and relative abundance of gut bacteria together positively impact P. okadai behavior. Lactiplantibacillus argentoratensis, as the most attractive bacteria to P. okadai, presents opportunities for novel pest control strategies targeting this vector and agricultural pest.


Assuntos
Bactérias , Microbioma Gastrointestinal , RNA Ribossômico 16S , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Comportamento Animal , Comportamento Alimentar , Tephritidae/microbiologia , Tephritidae/fisiologia
4.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38618721

RESUMO

The gut microbiota of insects has been shown to regulate host detoxification enzymes. However, the potential regulatory mechanisms involved remain unknown. Here, we report that gut bacteria increase insecticide resistance by activating the cap "n" collar isoform-C (CncC) pathway through enzymatically generated reactive oxygen species (ROS) in Bactrocera dorsalis. We demonstrated that Enterococcus casseliflavus and Lactococcus lactis, two lactic acid-producing bacteria, increase the resistance of B. dorsalis to ß-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities. These gut symbionts also induced the expression of CncC and muscle aponeurosis fibromatosis. BdCncC knockdown led to a decrease in resistance caused by gut bacteria. Ingestion of the ROS scavenger vitamin C in resistant strain affected the expression of BdCncC/BdKeap1/BdMafK, resulting in reduced P450 and GST activity. Furthermore, feeding with E. casseliflavus or L. lactis showed that BdNOX5 increased ROS production, and BdNOX5 knockdown affected the expression of the BdCncC/BdMafK pathway and detoxification genes. Moreover, lactic acid feeding activated the ROS-associated regulation of P450 and GST activity. Collectively, our findings indicate that symbiotic gut bacteria modulate intestinal detoxification pathways by affecting physiological biochemistry, thus providing new insights into the involvement of insect gut microbes in the development of insecticide resistance.


Assuntos
Microbioma Gastrointestinal , Resistência a Inseticidas , Piretrinas , Espécies Reativas de Oxigênio , Tephritidae , Animais , Espécies Reativas de Oxigênio/metabolismo , Piretrinas/farmacologia , Piretrinas/metabolismo , Resistência a Inseticidas/genética , Tephritidae/microbiologia , Tephritidae/genética , Inseticidas/farmacologia , Inseticidas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Lactobacillales/genética , Lactobacillales/metabolismo , Lactobacillales/efeitos dos fármacos , Lactobacillales/fisiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Enterococcus/genética , Enterococcus/metabolismo , Enterococcus/efeitos dos fármacos , Glutationa Transferase/genética , Glutationa Transferase/metabolismo
5.
PLoS One ; 19(4): e0300875, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568989

RESUMO

Gut microbial communities are critical in determining the evolutive success of fruit fly phytophagous pests (Diptera, Tephritidae), facilitating their adaptation to suboptimal environmental conditions and to plant allelochemical defences. An important source of variation for the microbial diversity of fruit flies is represented by the crop on which larvae are feeding. However, a "crop effect" is not always the main driver of microbial patterns, and it is often observed in combination with other and less obvious processes. In this work, we aim at verifying if environmental stress and, by extension, changing environmental conditions, can promote microbial diversity in Zeugodacus cucurbitae (Coquillett), a cosmopolitan pest of cucurbit crops. With this objective, 16S rRNA metabarcoding was used to test differences in the microbial profiles of wild fly populations in a large experimental setup in Eastern Central Tanzania. The analysis of 2,973 unique ASV, which were assigned to 22 bacterial phyla, 221 families and 590 putative genera, show that microbial α diversity (as estimated by Abundance Coverage Estimator, Faith's Phylogenetic Diversity, Shannon-Weiner and the Inverse Simpson indexes) as well as ß microbial diversity (as estimated by Compositional Data analysis of ASVs and of aggregated genera) significantly change as the species gets closer to its altitudinal limits, in farms where pesticides and agrochemicals are used. Most importantly, the multivariate dispersion of microbial patterns is significantly higher in these stressful environmental conditions thus indicating that Anna Karenina effects contribute to the microbial diversity of Z. cucurbitae. The crop effect was comparably weaker and detected as non-consistent changes across the experimental sites. We speculate that the impressive adaptive potential of polyphagous fruit flies is, at least in part, related to the Anna Karenina principle, which promotes stochastic changes in the microbial diversity of fly populations exposed to suboptimal environmental conditions.


Assuntos
Microbiota , Tephritidae , Humanos , Animais , Tephritidae/genética , Tephritidae/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Bactérias/genética , Microbiota/genética , Drosophila/genética
6.
Pest Manag Sci ; 80(8): 3935-3944, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38520323

RESUMO

BACKGROUND: Gut microbiota mediating insect-plant interactions have many manifestations, either by provisioning missing nutrients, or by overcoming plant defensive reactions. However, the mechanism by which gut microbiota empower insects to survive by overcoming a variety of plant secondary metabolites remains largely unknown. Bactrocera minax larvae develop in immature citrus fruits, which present numerous phenolic compounds that challenge the larvae. To explore the role of gut microbes in host use and adaptability, we uncovered the mechanisms of phenol degradation by gut microbes using metagenomic and metatranscriptomic analyses, and verified the degradation ability of isolated and cultured bacteria. Research on this subject can help develop potential strain for the environmental friendly pest management operations. RESULTS: We demonstrated the ability of gut microbes in B. minax larvae to degrade phenols in unripe citrus. After antibiotic treatment, coniferyl alcohol and coumaric aldehyde significantly reduced the survival rate, body length and body weight of the larvae. The metagenomic and metatranscriptomic analyses in B. minax provided evidence for the presence of genes in bacteria and the related pathway involved in phenol degradation. Among them, Enterococcus faecalis and Serratia marcescens, isolated from the gut of B. minax larvae, played critical roles in phenol degradation. Furthermore, supplementation of E. faecalis and S. marcescens in artificial diets containing coniferyl alcohol and coumaric aldehyde increased the survival rate of larvae. CONCLUSION: In summary, our results provided the first comprehensive analysis of gut bacterial communities by high-throughput sequencing and elucidated the role of bacteria in phenol degradation in B. minax, which shed light on the mechanism underlying specialist insect adaption to host secondary metabolites via gut bacteria. © 2024 Society of Chemical Industry.


Assuntos
Microbioma Gastrointestinal , Larva , Metagenômica , Fenol , Tephritidae , Animais , Tephritidae/microbiologia , Tephritidae/metabolismo , Larva/microbiologia , Larva/crescimento & desenvolvimento , Larva/metabolismo , Fenol/metabolismo , Fenóis/metabolismo , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Citrus/microbiologia
7.
BMC Biol ; 20(1): 201, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104720

RESUMO

BACKGROUND: Nitrogen is considered the most limiting nutrient element for herbivorous insects. To alleviate nitrogen limitation, insects have evolved various symbiotically mediated strategies that enable them to colonize nitrogen-poor habitats or exploit nitrogen-poor diets. In frugivorous tephritid larvae developing in fruit pulp under nitrogen stress, it remains largely unknown how nitrogen is obtained and larval development is completed. RESULTS: In this study, we used metagenomics and metatranscriptomics sequencing technologies as well as in vitro verification tests to uncover the mechanism underlying the nitrogen exploitation in the larvae of Bactrocera dorsalis. Our results showed that nitrogenous waste recycling (NWR) could be successfully driven by symbiotic bacteria, including Enterobacterales, Lactobacillales, Orbales, Pseudomonadales, Flavobacteriales, and Bacteroidales. In this process, urea hydrolysis in the larval gut was mainly mediated by Morganella morganii and Klebsiella oxytoca. In addition, core bacteria mediated essential amino acid (arginine excluded) biosynthesis by ammonium assimilation and transamination. CONCLUSIONS: Symbiotic bacteria contribute to nitrogen transformation in the larvae of B. dorsalis in fruit pulp. Our findings suggest that the pattern of NWR is more likely to be applied by B. dorsalis, and M. morganii, K. oxytoca, and other urease-positive strains play vital roles in hydrolysing nitrogenous waste and providing metabolizable nitrogen for B. dorsalis.


Assuntos
Nitrogênio , Tephritidae , Animais , Bactérias/genética , Bactérias/metabolismo , Drosophila/metabolismo , Larva/metabolismo , Nitrogênio/metabolismo , Simbiose , Tephritidae/metabolismo , Tephritidae/microbiologia
8.
ISME J ; 16(7): 1831-1842, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35418221

RESUMO

Penicillium and Bactrocera dorsalis (oriental fruit fly, Hendel) are major pathogens and pests of citrus fruits, as both of them can cause detrimental losses in citrus production. However, their interaction in the cohabitation of citrus fruits remains elusive. In this study, we revealed a mutualistic relationship between Penicillium and B. dorsalis. We found that insect behaviors can facilitate the entry of fungal pathogens into fruits, and fungal pathogens promote the fitness of insects in return. More specifically, Penicillium could take advantage of the openings left by ovipositors of flies, and adult flies contaminated with Penicillium could spread the fungus to new sites. Moreover, the volatile emissions from fungi could attract gravid flies to the infected site for egg laying. The fungus and B. dorsalis were able to establish mutual interaction, as revealed by the presence of Penicillium DNA in intestinal tracts of flies throughout all larval stages. The fungal partner seemed to promote the emergence rate and shorten the emergence duration of the flies by providing pyridoxine, one of the B group vitamins. Different from previously reported scenarios of strong avoidance of Drosophila and attraction of Aedes aegypti toward Penicillium, our findings unveil a hitherto new paradigm of the mutualism between Penicillium and B. dorsalis, by which both insect and fungus earn benefits to facilitate their propagation.


Assuntos
Oviposição , Tephritidae , Animais , Feminino , Fungos , Nutrientes , Simbiose , Tephritidae/microbiologia
9.
Sci Rep ; 12(1): 477, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013476

RESUMO

Insect mitogenome organisation is highly conserved, yet, some insects, especially with parasitic life cycles, have rearranged mitogenomes. Furthermore, intraspecific mitochondrial diversity can be reduced by fitness-affecting bacterial endosymbionts like Wolbachia due to their maternal coinheritance with mitochondria. We have sequenced mitogenomes of the Wolbachia-infected endoparasitoid Dipterophagus daci (Strepsiptera: Halictophagidae) and four of its 22 known tephritid fruit fly host species using total genomic extracts of parasitised flies collected across > 700 km in Australia. This halictophagid mitogenome revealed extensive rearrangements relative to the four fly mitogenomes which exhibited the ancestral insect mitogenome pattern. Compared to the only four available other strepsipteran mitogenomes, the D. daci mitogenome had additional transpositions of one rRNA and two tRNA genes, and a single nucleotide frameshift deletion in nad5 requiring translational frameshifting or, alternatively, resulting in a large protein truncation. Dipterophagus daci displays an almost completely endoparasitic life cycle when compared to Strepsiptera that have maintained the ancestral state of free-living adults. Our results support the hypothesis that the transition to extreme endoparasitism evolved together with increased levels of mitogenome changes. Furthermore, intraspecific mitogenome diversity was substantially smaller in D. daci than the parasitised flies suggesting Wolbachia reduced mitochondrial diversity because of a role in D. daci fitness.


Assuntos
Genoma de Inseto , Genoma Mitocondrial , Tephritidae/genética , Tephritidae/microbiologia , Wolbachia/fisiologia , Animais , Austrália , Mutação da Fase de Leitura , Rearranjo Gênico , Proteínas de Insetos/genética , Deleção de Sequência , Tephritidae/classificação , Tephritidae/fisiologia
10.
J Insect Physiol ; 134: 104308, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34474015

RESUMO

The microbiota influences hosts' health and fitness. However, the extent to which the microbiota affects host' foraging decisions and related life history traits remains to be fully understood. Our study explored the effects of microbiota manipulation on foraging preference and phenotypic traits of larval and adult stages of the polyphagous fruit fly Bactrocera tryoni, one of the main horticultural pests in Australia. We generated three treatments: control (non-treated microbiota), axenic (removed microbiota), and reinoculation (individuals which had their microbiota removed then re-introduced). Our results confirmed that axenic larvae and immature (i.e., newly emerged 0 day-old, sexually-immature) adults were lighter than control and reinoculated individuals. Interestingly, we found a sex-specific effect of the microbiota manipulation on carbohydrate intake and body composition of 10 day-old mature adults. Axenic males ate less carbohydrate, and had lower body weight and total body fat relative to control and reinoculated males. Conversely, axenic females ate more carbohydrate than control and reinoculated ones, although body weight and lipid reserves were similar across treatments. Axenic females produced fewer eggs than control and reinoculated females. Our findings corroborate the far-reaching effects of microbiota in insects found in previous studies and show, for the first time, a sex-specific effect of microbiota on feeding behaviour in flies. Our results underscore the dynamic relationship between the microbiota and the host with the reinoculation of microbes restoring some traits that were affected in axenic individuals.


Assuntos
Composição Corporal , Comportamento Alimentar/fisiologia , Fatores Sexuais , Tephritidae , Animais , Metabolismo dos Carboidratos , Dípteros/microbiologia , Dípteros/fisiologia , Feminino , Fertilidade , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Larva/microbiologia , Larva/fisiologia , Masculino , Tephritidae/microbiologia , Tephritidae/fisiologia
11.
PLoS One ; 16(9): e0256284, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495983

RESUMO

The olive fruit fly, specialized to become monophagous during several life stages, remains the most important olive tree pest with high direct production losses, but also affecting the quality, composition, and inherent properties of the olives. Thought to have originated in Africa is nowadays present wherever olive groves are grown. The olive fruit fly evolved to harbor a vertically transmitted and obligate bacterial symbiont -Candidatus Erwinia dacicola- leading thus to a tight evolutionary history between olive tree, fruit fly and obligate, vertical transmitted symbiotic bacterium. Considering this linkage, the genetic diversity (at a 16S fragment) of this obligate symbiont was added in the understanding of the distribution pattern of the holobiont at nine locations throughout four countries in the Mediterranean Basin. This was complemented with mitochondrial (four mtDNA fragments) and nuclear (ten microsatellites) data of the host. We focused on the previously established Iberian cluster for the B. oleae structure and hypothesised that the Tunisian samples would fall into a differentiated cluster. From the host point of view, we were unable to confirm this hypothesis. Looking at the symbiont, however, two new 16S haplotypes were found exclusively in the populations from Tunisia. This finding is discussed in the frame of host-symbiont specificity and transmission mode. To understand olive fruit fly population diversity and dispersion, the dynamics of the symbiont also needs to be taken into consideration, as it enables the fly to, so efficiently and uniquely, exploit the olive fruit resource.


Assuntos
Erwinia/fisiologia , Tephritidae/microbiologia , Animais , DNA Bacteriano/genética , DNA Mitocondrial/genética , Haplótipos , Região do Mediterrâneo , Filogenia , Simbiose , Tephritidae/fisiologia
12.
Environ Microbiol ; 23(9): 5587-5604, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34390609

RESUMO

Wolbachia are widespread endosymbionts that affect arthropod reproduction and fitness. Mostly maternally inherited, Wolbachia are occasionally transferred horizontally. Previously, two Wolbachia strains were reported at low prevalence and titres across seven Australian tephritid species, possibly indicative of frequent horizontal transfer. Here, we performed whole-genome sequencing of field-caught Wolbachia-positive flies. Unexpectedly, we found complete mitogenomes of an endoparasitic strepsipteran, Dipterophagus daci, suggesting that Wolbachia in the flies are linked to concealed parasitization. We performed the first genetic characterization of D. daci and detected D. daci in Wolbachia-positive flies not visibly parasitized, and most but not all Wolbachia-negative flies were D. daci-negative, presumably reflecting polymorphism for the Wolbachia infections in D. daci. We dissected D. daci from stylopized flies and confirmed that Wolbachia infects D. daci, but also found Wolbachia in stylopized fly tissues, likely somatic, horizontally transferred, non-heritable infections. Furthermore, no Wolbachia cif and wmk genes were detected and very low mitogenomic variation in D. daci across its distribution. Therefore, Wolbachia may influence host fitness without reproductive manipulation. Our study of 13 tephritid species highlights that concealed early stages of strepsipteran parasitization led to the previous incorrect assignment of Wolbachia co-infections to tephritid species, obscuring ecological studies of this common endosymbiont and its horizontal transmission by parasitoids.


Assuntos
Simbiose , Tephritidae , Wolbachia , Animais , Austrália , Tephritidae/microbiologia , Wolbachia/genética
13.
Bull Entomol Res ; 111(3): 379-384, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33541447

RESUMO

The olive fruit fly, Bactrocera oleae, the most serious pest of olives, requires the endosymbiotic bacteria Candidatus Erwinia dacicola in order to complete its development in unripe green olives. Hence a better understanding of the symbiosis of Ca. E. dacicola and its insect host may lead to new strategies for reduction of B. oleae and thus minimize its economic impact on olive production. Studies of this symbiosis are hampered as the bacterium cannot be grown in vitro and the established B. oleae laboratory populations, raised on artificial diets, are devoid of this bacterium. Here, we sought to develop a method to transfer the bacteria from wild samples to laboratory populations. We tested several strategies. Cohabitation of flies from the field with the laboratory line did not result in a stable transfer of bacteria. We provided the bacteria directly to the egg and also in the food of the larvae but neither approach was successful. However, a robust method for transfer of Ca. E. dacicola from wild larvae or adults to uninfected flies by transplantation to females was established. Single female lines were set up and the bacteria were successfully transmitted for at least three generations. These results open up the possibilities to study the interaction between the symbiont and the host under controlled conditions, in view of both understanding the molecular underpinnings of an exciting, unique in nature symbiotic relationship, as well as developing novel, innovative control approaches.


Assuntos
Erwinia/crescimento & desenvolvimento , Tephritidae/microbiologia , Animais , Produtos Agrícolas , Controle de Insetos , Laboratórios , Olea , Controle de Pragas , Simbiose
14.
Insect Sci ; 28(2): 363-376, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32091660

RESUMO

Fruit flies usually harbor diverse communities of bacteria in their digestive systems, which are known to play a significant role in their fitness. However, little information is available on Zeugodacus tau, a polyphagous pest worldwide. This study reports the first extensive analysis of bacterial communities in different life stages and their effect on the development and reproduction of laboratory-reared Z. tau. Cultured bacteria were identified using the conventional method, and all bacteria were identified by high-throughput technologies (16S ribosomal RNA gene sequencing of V3-V4 region). A total of six bacterial phyla were identified in larvae, pupae, and male and female adult flies, which were distributed into 14 classes, 32 orders, 58 families and 96 genera. Proteobacteria was the most represented phylum in all the stages except larvae. Enterobacter, Klebsiella, Providencia, and Pseudomonas were identified by conventional and next-generation sequencing analysis in both male and female adult flies, and Enterobacter was found to be the main genus. After being fed with antibiotics from the first instar larvae, bacterial diversity changed markedly in the adult stage. Untreated flies laid eggs and needed 20 days before oviposition while the treated flies showed ovary development inhibited and were not able to lay eggs, probably due to the alteration of the microbiota. These findings provide the cornerstone for unexplored research on bacterial function in Z. tau, which will help to develop an environmentally friendly management technique for this kind of harmful insect.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Tephritidae/microbiologia , Tephritidae/fisiologia , Animais , Bactérias/classificação , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Larva/crescimento & desenvolvimento , Larva/microbiologia , Masculino , Óvulo/crescimento & desenvolvimento , Óvulo/microbiologia , Pupa/crescimento & desenvolvimento , Pupa/microbiologia , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Reprodução , Tephritidae/crescimento & desenvolvimento
15.
Insect Sci ; 28(4): 874-884, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32519794

RESUMO

Investigations on microbial symbioses in Tephritidae have increased over the past 30 years owing to the potential use of these relationships in developing new control strategies for economically important fruit flies. Bactrocera oleae (Rossi)-the olive fruit fly-is a monophagous species strictly associated with the olive tree, and among all the tephritids, its symbionts are the most investigated. The bacterium Candidatus Erwinia dacicola is the major persistent resident endosymbiont in wild B. oleae populations. Its relationship with B. oleae has been investigated since being identified in 2005. This endosymbiont is vertically transmitted through generations from the female to the egg. It exists at every developmental stage, although it is more abundant in larvae and ovipositing females, and is necessary for both larvae and adults. Studying B. oleae-Ca. E. dacicola, or other B. oleae-microbe interactions, will allow us to develop modern biological control systems for area-wide olive protection and set an example for similar programs in other important food crops. This review summarizes the information available on tephritid-microbe interactions and investigates relationships among fruit flies, bacteria and host plants; however, its focus is on B. oleae and its strict association with Ca. E. dacicola to promote environmentally friendly control strategies for area-wide pest management.


Assuntos
Bactérias , Olea , Controle Biológico de Vetores , Tephritidae/microbiologia , Animais , Bactérias/genética , Bactérias/patogenicidade , Produtos Agrícolas , Genes Bacterianos , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Simbiose
16.
BMC Genet ; 21(Suppl 2): 138, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339499

RESUMO

BACKGROUND: Bactrocera dorsalis is a destructive polyphagous and highly invasive insect pest of tropical and subtropical species of fruit and vegetable crops. The sterile insect technique (SIT) has been used for decades to control insect pests of agricultural, veterinary, and human health importance. Irradiation of pupae in SIT can reduce the ecological fitness of the sterile insects. Our previous study has shown that a gut bacterial strain BD177 that could restore ecological fitness by promoting host food intake and metabolic activities. RESULTS: Using long-read sequence technologies, we assembled the complete genome of K. michiganensis BD177 strain. The complete genome of K. michiganensis BD177 comprises one circular chromosome and four plasmids with a GC content of 55.03%. The pan-genome analysis was performed on 119 genomes (strain BD177 genome and 118 out of 128 published Klebsiella sp. genomes since ten were discarded). The pan-genome includes a total of 49305 gene clusters, a small number of 858 core genes, and a high number of accessory (10566) genes. Pan-genome and average nucleotide identity (ANI) analysis showed that BD177 is more similar to the type strain K. michiganensis DSM2544, while away from the type strain K. oxytoca ATCC13182. Comparative genome analysis with 21 K. oxytoca and 12 K. michiganensis strains, identified 213 unique genes, several of them related to amino acid metabolism, metabolism of cofactors and vitamins, and xenobiotics biodegradation and metabolism in BD177 genome. CONCLUSIONS: Phylogenomics analysis reclassified strain BD177 as a member of the species K. michiganensis. Comparative genome analysis suggested that K. michiganensis BD177 has the strain-specific ability to provide three essential amino acids (phenylalanine, tryptophan and methionine) and two vitamins B (folate and riboflavin) to B. dorsalis. The clear classification status of BD177 strain and identification of unique genetic characteristics may contribute to expanding our understanding of the symbiotic relationship of gut microbiota and B. dorsalis.


Assuntos
Genoma Bacteriano , Klebsiella/genética , Simbiose , Tephritidae/microbiologia , Animais , Hibridização Genômica Comparativa , Microbioma Gastrointestinal , Fenótipo , Filogenia , RNA Ribossômico 16S/genética
17.
BMC Microbiol ; 20(1): 307, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046014

RESUMO

BACKGROUND: Olive production is the main agricultural activity in Tunisia. The diversity of fungi was explored in two different olive groves located in two distant geographical zones in Sfax (Tunisia) with different management practices. RESULTS: Fungal isolation was made from soil and the major olive tree pests, namely the Olive fly, Bactrocera oleae Gmelin (Diptera: Tephritidae), and the Olive psyllid, Euphyllura olivina Costa (Homoptera: Psyllidae). A total of 34 fungal isolates were identified according to their phenotypic, genotypic, biochemical and biological activities. Twenty fungal species were identified belonging to six different genera (Alternaria, Aspergillus, Cladosporium, Fusarium, Lecanicillium and Penicillium) by the analysis of their ITS1-5.8S-ITS2 ribosomal DNA region. Different bioassays performed in this work revealed that 25/34 (73.5%) of the identified fungal isolates showed an entomopathogenic and/or antagonistic activity, 9/34 (26.5%) of them displayed phytopathogenic features. CONCLUSIONS: Fungal species that showed entomopathogenic and/or antagonistic potentialities and that are non-phytopathogenic, (17/34; 50%) of our fungal isolates, could be explored for olive protection against fungal diseases and pests, and might have a future application as biocontrol agents.


Assuntos
Fungos/genética , Fungos/fisiologia , Olea/microbiologia , Tephritidae/microbiologia , Agricultura , Animais , Fungos/classificação , Fungos/isolamento & purificação , Controle Biológico de Vetores , Microbiologia do Solo , Tunísia
18.
Sci Rep ; 10(1): 16550, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024226

RESUMO

Bactrocera tryoni (Froggatt), the Queensland fruit fly (Qfly), is a highly polyphagous tephritid fly that is widespread in Eastern Australia. Qfly physiology is closely linked with its fungal associates, with particular relationship between Qfly nutrition and yeast or yeast-like fungi. Despite animal-associated fungi typically occurring in multi-species communities, Qfly studies have predominately involved the culture and characterisation of single fungal isolates. Further, only two studies have investigated the fungal communities associated with Qfly, and both have used culture-dependant techniques that overlook non-culturable fungi and hence under-represent, and provide a biased interpretation of, the overall fungal community. In order to explore a potentially hidden fungal diversity and complexity within the Qfly mycobiome, we used culture-independent, high-throughput Illumina sequencing techniques to comprehensively, and holistically characterized the fungal community of Qfly larvae and overcome the culture bias. We collected larvae from a range of fruit hosts along the east coast of Australia, and all had a mycobiome dominated by ascomycetes. The most abundant fungal taxa belonged to the genera Pichia (43%), Candida (20%), Hanseniaspora (10%), Zygosaccharomyces (11%) and Penicillium (7%). We also characterized the fungal communities of fruit hosts, and found a strong degree of overlap between larvae and fruit host communities, suggesting that these communities are intimately inter-connected. Our data suggests that larval fungal communities are acquired from surrounding fruit flesh. It is likely that the physiological benefits of Qfly exposure to fungal communities is primarily due to consumption of these fungi, not through syntrophy/symbiosis between fungi and insect 'host'.


Assuntos
Frutas/microbiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Larva/microbiologia , Micobioma/fisiologia , Simbiose , Tephritidae/microbiologia , Animais , Ascomicetos/isolamento & purificação , Ascomicetos/fisiologia , Austrália , Candida/isolamento & purificação , Candida/fisiologia , Hanseniaspora/isolamento & purificação , Hanseniaspora/fisiologia , Penicillium/isolamento & purificação , Penicillium/fisiologia , Pichia/isolamento & purificação , Pichia/fisiologia , Zygosaccharomyces/isolamento & purificação , Zygosaccharomyces/fisiologia
19.
BMC Microbiol ; 20(1): 321, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087056

RESUMO

BACKGROUND: Symbiotic interactions between insects and bacteria have been associated with a vast variety of physiological, ecological and evolutionary consequences for the host. A wide range of bacterial communities have been found in association with the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), an important pest of cultivated fruit in most regions of the world. We evaluated the diversity of gut bacteria in B. dorsalis specimens from several populations in Kenya and investigated the roles of individual bacterial isolates in the development of axenic (germ-free) B. dorsalis fly lines and their responses to the entomopathogenic fungus, Metarhizium anisopliae. RESULTS: We sequenced 16S rRNA to evaluate microbiomes and coupled this with bacterial culturing. Bacterial isolates were mono-associated with axenic B. dorsalis embryos. The shortest embryonic development period was recorded in flies with an intact gut microbiome while the longest period was recorded in axenic fly lines. Similarly, larval development was shortest in flies with an intact gut microbiome, in addition to flies inoculated with Providencia alcalifaciens. Adult B. dorsalis flies emerging from embryos that had been mono-associated with a strain of Lactococcus lactis had decreased survival when challenged with a standard dosage of M. anisopliae ICIPE69 conidia. However, there were no differences in survival between the germ-free lines and flies with an intact microbiome. CONCLUSIONS: These findings will contribute to the selection of probiotics used in artificial diets for B. dorsalis rearing and the development of improved integrated pest management strategies based on entomopathogenic fungi.


Assuntos
Bactérias/classificação , Controle Biológico de Vetores , RNA Ribossômico 16S/genética , Tephritidae/microbiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Quênia , Lactococcus lactis/isolamento & purificação , Metarhizium/genética , Filogenia , Providencia/isolamento & purificação , Simbiose
20.
Adv Exp Med Biol ; 1195: 21-32, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32468454

RESUMO

Pesticides are necessary to fight agricultural pests, yet they are often nonspecific, and their widespread use is a hazard to the environment and human health. The genomic era allows for new approaches to specifically target agricultural pests, based on analysis of their genome and their microbiome. We present such an approach, to combat Bactrocera oleae, a widespread pest whose impact is devastating on olive production. To date, there is no specific pesticide to control it. Herein, we propose a novel strategy to manage this pest via identifying novel pharmacological targets on the genome of its obligate endosymbiotic bacterium Candidatus Erwinia dacicola. Three genes were selected as pharmacological targets. The 3D models of the Helicase, Polymerase, and Protease-C gene products were designed and subsequently optimized by means of molecular dynamics simulations. Successively, a series of structure-based pharmacophore models were elucidated in an effort to pave the way for the efficient high-throughput virtual screening of libraries of low molecular weight compounds and thus the discovery of novel modulating agents. Our methodology provides the means to design, test, and identify highly specific pest control substances that minimize the impact of toxic chemicals on health, economy, and the environment.


Assuntos
Erwinia/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Controle de Pragas/métodos , Simbiose/efeitos dos fármacos , Tephritidae/efeitos dos fármacos , Tephritidae/microbiologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA