Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 336
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39273419

RESUMO

The rise of antibiotic-resistant strains demands new alternatives in antibacterial treatment. Bacteriophages, with their precise host specificity and ability to target and eliminate bacteria safely, present a valuable option. Meanwhile, hydrogels, known for their excellent biodegradability and biocompatibility, serve as ideal carriers for bacteriophages. The combination of bacteriophages and hydrogels ensures heightened phage activity, concentration, controlled release, and strong antibacterial properties, making it a promising avenue for antibacterial treatment. This article provides a comprehensive review of different crosslinking methods for phage hydrogels, focusing on their application in treating infections caused by various drug-resistant bacteria and highlighting their effective antibacterial properties and controlled release capabilities.


Assuntos
Antibacterianos , Bacteriófagos , Hidrogéis , Hidrogéis/química , Bacteriófagos/fisiologia , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Bactérias/efeitos dos fármacos , Bactérias/virologia , Animais , Infecções Bacterianas/terapia , Terapia por Fagos/métodos
2.
J Med Microbiol ; 73(9)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39320361

RESUMO

Recently, bacteriophages have been considered alternatives to antibacterial treatments. Infectious diseases continue to plague the world because bacteria can adapt and develop defence mechanisms against antibiotics. The growing incidence of antibiotic-resistant bacterial infections necessitated the development of new techniques for treating bacterial infections worldwide. Clinical trials have shown efficiency against antibiotic-resistant bacteria. However, scientists in future clinical trials should scrutinize phage resistance implications, assess combination strategies with antimicrobial agents and address challenges in phage therapy delivery for effective implementation.


Assuntos
Infecções Bacterianas , Bacteriófagos , Ensaios Clínicos como Assunto , Terapia por Fagos , Terapia por Fagos/métodos , Humanos , Bacteriófagos/fisiologia , Infecções Bacterianas/terapia , Infecções Bacterianas/microbiologia , Antibacterianos/uso terapêutico , Bactérias/virologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana
3.
Front Cell Infect Microbiol ; 14: 1434397, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39290977

RESUMO

Given the increasing threat of antimicrobial resistance, scientists are urgently seeking adjunct antimicrobial strategies, such as phage therapy (PT). However, despite promising results for the treatment of musculoskeletal infections in our center, crucial knowledge gaps remain. Therefore, a prospective observational study (PHAGEFORCE) and a multidisciplinary approach was set up to achieve and optimize standardized treatment guidelines. At our center, PT is strictly controlled and monitored by a multidisciplinary taskforce. Each phage treatment follows the same pathway to ensure standardization and data quality. Within the PHAGEFORCE framework, we established a testing platform to gain insight in the safety and efficacy of PT, biodistribution, phage kinetics and the molecular interaction between phages and bacteria. The draining fluid is collected to determine the phage titer and bacterial load. In addition, all bacterial isolates are fully characterized by genome sequencing to monitor the emergence of phage resistance. We hereby present a standardized bench-to-bedside protocol to gain more insight in the kinetics and dynamics of PT for musculoskeletal infections.


Assuntos
Bacteriófagos , Terapia por Fagos , Terapia por Fagos/métodos , Humanos , Bacteriófagos/fisiologia , Estudos Prospectivos , Infecções Bacterianas/terapia , Doenças Musculoesqueléticas/terapia , Doenças Musculoesqueléticas/microbiologia , Bactérias/virologia
4.
BMC Microbiol ; 24(1): 338, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261757

RESUMO

Currently, phage biocontrol is increasingly used as a green and natural technology for treating Salmonella and other infections, but phages exhibit instability and activity loss during storage. Therefore, in this study, the effects of lyophilization on the activity and stability of phage cocktails for the control of multidrug-resistant Salmonella in broiler chickens were determined. Eight serotypes of Salmonella were isolated and identified from broiler chicken farms, and bacteriophages against multidrug-resistant Salmonella enterica subsp. enterica serovar Kentucky, Salmonella enterica subsp. enterica serovar Typhimrium and Salmonella enterica subsp. enterica serovar Enteritidis were isolated. The bacteriophage cocktail was prepared and lyophilized, and it was subjected to in vitro and in vivo examinations. A reconstituted lyophilized bacteriophage cocktail was used for the oral treatment of chicks before and after challenge with multidrug-resistant S. Kentucky. The colonization of cecum by S. Kentucky was detected by using real-time PCR, and the serum levels of IgM, IgA and IL-4 and pathological changes in the different groups were detected. Three Caudovirales phages families were identified including Autographiviridae, Straboviridae and Drexlerviridae against multidrug-resistant S. Kentucky, S. Typhimrium and S. Enteritidis. The groups treated with the bacteriophage cocktail showed no clinical signs, no postmortem lesions, and a mortality rate of 0%, which improved the growth performance parameters. Additionally, the estimated serum levels of IgM, IgA and IL-4 were significantly greater in the bacteriophage cocktail-treated groups. Lyophilization effectively preserves the long-term storage stability of phages. Therefore, lyophilized bacteriophage cocktail therapy is a valuable approach for controlling multidrug-resistant Salmonella infections in broiler chickens.


Assuntos
Galinhas , Farmacorresistência Bacteriana Múltipla , Liofilização , Doenças das Aves Domésticas , Salmonelose Animal , Fagos de Salmonella , Salmonella , Animais , Galinhas/microbiologia , Liofilização/métodos , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/terapia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/prevenção & controle , Salmonelose Animal/microbiologia , Salmonelose Animal/terapia , Salmonella/virologia , Fagos de Salmonella/fisiologia , Ceco/microbiologia , Ceco/virologia , Terapia por Fagos/métodos , Bacteriófagos/genética , Bacteriófagos/fisiologia , Bacteriófagos/isolamento & purificação
5.
Curr Microbiol ; 81(10): 346, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240286

RESUMO

The rise of methicillin-resistant Staphylococcus aureus (MRSA) poses a significant challenge in clinical settings due to its ability to evade conventional antibiotic treatments. This overview explores the potential of immunomodulatory strategies as alternative therapeutic approaches to combat MRSA infections. Traditional antibiotics are becoming less effective, necessitating innovative solutions that harness the body's immune system to enhance pathogen clearance. Recent advancements in immunotherapy, including the use of antimicrobial peptides, phage therapy, and mechanisms of immune cells, demonstrate promise in enhancing the body's ability to clear MRSA infections. However, the exact interactions between these therapies and immunomodulation are not fully understood, underscoring the need for further research. Hence, this review aims to provide a broad overview of the current understanding of non-traditional therapeutics and their impact on immune responses, which could lead to more effective MRSA treatment strategies. Additionally, combining immunomodulatory agents with existing antibiotics may improve outcomes, particularly for immunocompromised patients or those with chronic infections. As the landscape of antibiotic resistance evolves, the development of effective immunotherapeutic strategies could play a vital role in managing MRSA infections and reducing reliance on traditional antibiotics. Future research must focus on optimizing these approaches and validating their efficacy in diverse clinical populations to address the urgent need for effective MRSA management strategies.


Assuntos
Imunomodulação , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Humanos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/terapia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Imunoterapia/métodos , Terapia por Fagos/métodos , Animais , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/uso terapêutico , Fatores Imunológicos
6.
BMC Infect Dis ; 24(1): 923, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237903

RESUMO

BACKGROUND: Bone and joint infections represent a major public health issue due to their increasing prevalence, their functional prognosis and their cost to society. Phage therapy has valuable anti-biofilm properties against prosthetic joint infections (PJI). The aim of this study was to establish the proportion of patients eligible for phage therapy and to assess their clinical outcome judged against all patients presenting with PJI. METHOD: . Patients admitted for periprosthetic joint infection (PJI) at a French general hospital between 2015 and 2019 were retrospectively included. Eligibility for phage therapy was determined based on French recommendations, with polymicrobial infections serving as exclusion criteria. Patients were categorized into two groups: those eligible and those ineligible for phage therapy. We analyzed their characteristics and outcomes, including severe adverse events, duration of intravenous antibiotic therapy, length of hospitalization, and relapse rates. RESULTS: . In this study, 96 patients with PJI were considered in multidisciplinary medical meetings. Of these, 44% patients (42/96) were eligible for additional phage therapy. This group of patients had a longer duration of intravenous therapy (17 days vs. 10 days, p = 0.02), more severe adverse events (11 vs. 3, p = 0.08) and had a longer hospital stay (43 days vs. 18 days, p < 0.01). CONCLUSION: . A large number of patients met eligibility criteria for phage therapy and treatment and follow-up is more complex. A larger epidemiological study would more accurately describe the prognosis of eligible patients.


Assuntos
Antibacterianos , Terapia por Fagos , Infecções Relacionadas à Prótese , Humanos , Estudos Retrospectivos , Feminino , Masculino , Infecções Relacionadas à Prótese/terapia , Infecções Relacionadas à Prótese/microbiologia , Idoso , França/epidemiologia , Terapia por Fagos/métodos , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Antibacterianos/uso terapêutico , Resultado do Tratamento , Tempo de Internação
7.
Eur J Pharm Biopharm ; 203: 114438, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39111580

RESUMO

The resurgence of phage therapy, once abandoned in the early 20th century in part due to issues related to the purification process and stability, is spurred by the global threat of antibiotic resistance. Engineering advances have enabled more precise separation unit operations, improving overall purification efficiency. The present review discusses the physicochemical properties of impurities commonly found in a phage lysate, e.g., contaminants, phage-related impurities, and propagation-related impurities. Differences in phages and bacterial impurities properties are leveraged to elaborate a four-step phage purification process: clarification, capture and concentration, subsequent purification and polishing. Ultimately, a framework for rationalising the development of a purification process is proposed, considering three operational characteristics, i.e., scalability, transferability to various phages and duration. This guide facilitates the preselection of a sequence of unit operations, which can then be confronted with the expected impurities to validate the theoretical capacity of the process to purify the phage lysate.


Assuntos
Bacteriófagos , Contaminação de Medicamentos , Bacteriófagos/isolamento & purificação , Contaminação de Medicamentos/prevenção & controle , Terapia por Fagos/métodos , Humanos , Preparações Farmacêuticas/química , Preparações Farmacêuticas/isolamento & purificação
8.
mSystems ; 9(9): e0060724, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39166877

RESUMO

The global rise of antibiotic resistance has renewed interest in phage therapy, as an alternative to antibiotics to eliminate multidrug-resistant (MDR) bacterial pathogens. However, optimizing the broad-spectrum efficacy of phage therapy remains a challenge. In this study, we addressed this issue by employing strategies to improve antimicrobial efficacy of phage therapy against MDR Klebsiella pneumoniae strains, which are notorious for their resistance to conventional antibiotics. This includes the selection of broad host range phages, optimization of phage formulation, and combinations with last-resort antibiotics. Our findings unveil that having a broad host range was a dominant trait of isolated phages, and increasing phage numbers in combination with antibiotics significantly enhanced the suppression of bacterial growth. The decreased incidence of bacterial infection was explained by a reduction in pathogen density and emergence of bacterial resistance. Furthermore, phage-antibiotic synergy (PAS) demonstrated considerable broad-spectrum antibacterial potential against different clades of clinical MDR K. pneumoniae pathogens. The improved treatment outcomes of optimized PAS were also evident in a murine model, where mice receiving optimized PAS therapy demonstrated a reduced bacterial burden in mouse tissues. Taken together, these findings offer an important development in optimizing PAS therapy and its efficacy in the elimination of MDR K. pneumoniae pathogens. IMPORTANCE: The worldwide spread of antimicrobial resistance (AMR) has posed a great challenge to global public health. Phage therapy has become a promising alternative against difficult-to-treat pathogens. One important goal of this study was to optimize the therapeutic efficiency of phage-antibiotic combinations, known as phage-antibiotic synergy (PAS). Through comprehensive analysis of the phenotypic and genotypic characteristics of a large number of CRKp-specific phages, we developed a systematic model for phage cocktail combinations. Crucially, our finding demonstrated that PAS treatments not only enhance the bactericidal effects of colistin and tigecycline against multidrug-resistant (MDR) K. pneumoniae strains in in vitro and in vivo context but also provide a robust response when antibiotics fail. Overall, the optimized PAS therapy demonstrates considerable potential in combating diverse K. pneumoniae pathogens, highlighting its relevance as a strategy to mitigate antibiotic resistance threats effectively.


Assuntos
Antibacterianos , Bacteriófagos , Farmacorresistência Bacteriana Múltipla , Infecções por Klebsiella , Klebsiella pneumoniae , Terapia por Fagos , Klebsiella pneumoniae/virologia , Klebsiella pneumoniae/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Terapia por Fagos/métodos , Camundongos , Infecções por Klebsiella/terapia , Infecções por Klebsiella/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Feminino
9.
Artigo em Inglês | MEDLINE | ID: mdl-39210514

RESUMO

The increasing global population and climate change pose significant challenges to agriculture, particularly in managing plant diseases caused by phytopathogens. Traditional methods, including chemical pesticides and antibiotics, have become less effective due to pathogen resistance and environmental concerns. Phage therapy emerges as a promising alternative, offering a sustainable and precise approach to controlling plant bacterial diseases without harming beneficial soil microorganisms. This review explores the potential of bacteriophages as biocontrol agents, highlighting their specificity, rapid multiplication, and minimal environmental impact. We discuss the historical context, current applications, and prospects of phage therapy in agriculture, emphasizing its role in enhancing crop yield and quality. Additionally, the paper examines the integration of phage therapy with modern agricultural practices and the development phage cocktails and genetically engineered phages to combat resistant pathogens. The findings suggest that phage therapy could revolutionize phytopathological management, contributing to global food security and sustainable agricultural practices. ONE-SENTENCE SUMMARY: The burden of plant diseases and phage-based phytopathological treatment.


Assuntos
Agricultura , Bacteriófagos , Mudança Climática , Segurança Alimentar , Doenças das Plantas , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Agricultura/métodos , Terapia por Fagos/métodos , Produtos Agrícolas/microbiologia , Agentes de Controle Biológico
10.
Future Microbiol ; 19(13): 1177-1184, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39105632

RESUMO

Infectious diseases lead to significant morbidity and mortality. Often, resolution of the acute stage of the disease leads to microbial persistence, resulting in chronic debilitating disease. Management of persistent infections frequently requires lifelong therapy with antimicrobial agents. These infections could be chronic viral infections like HIV, hepatitis B or chronic bacterial persistent infections like prosthetic joint infections caused by multi-drug resistant organisms. Bacteriophages have been designed specifically to target recalcitrant bacterial infections, such as prosthetic joint infections with varying success. In this review, we describe the historic evolution of scenarios and risks associated with innovative therapy using infectious agents to treat other persistent infections.


[Box: see text].


Assuntos
Infecção Persistente , Humanos , Terapia por Fagos/métodos , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/terapia , Infecções Bacterianas/microbiologia , Anti-Infecciosos/uso terapêutico , Bacteriófagos/fisiologia , Viroses/tratamento farmacológico , Viroses/terapia , Viroses/virologia
11.
Mol Biol Rep ; 51(1): 925, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167154

RESUMO

The emergence and increase in antimicrobial resistance (AMR) is now widely recognized as a major public health challenge. Traditional antimicrobial drugs are becoming increasingly ineffective, while the development of new antibiotics is waning. As a result, alternative treatments for infections are garnering increased interest. Among these alternatives, bacteriophages, also known as phages, are gaining renewed attention and are reported to offer a promising solution to alleviate the burden of bacterial infections. This review discusses the current successes of phage therapy (PT) against multidrug-resistant organisms (MDROs), such as Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Enterobacter spp. The review also compares the efficacy of PT with that of chemical antibiotics, reporting on its benefits and limitations, while highlighting its impact on the human gut microbiome and immune system. Despite its potential, phage therapy is reported to face challenges such as the narrow antibacterial range, the complexity of developing phage cocktails, and the need for precise dosing and duration protocols. Nevertheless, continued research, improved regulatory frameworks, and increased public awareness are essential to realize its full potential and integration into standard medical practice, paving the way for innovative treatments that can effectively manage infections in an era of rising antimicrobial resistance.


Assuntos
Antibacterianos , Infecções Bacterianas , Bacteriófagos , Farmacorresistência Bacteriana Múltipla , Terapia por Fagos , Terapia por Fagos/métodos , Humanos , Infecções Bacterianas/terapia , Bacteriófagos/fisiologia , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Klebsiella pneumoniae/virologia , Klebsiella pneumoniae/efeitos dos fármacos , Farmacorresistência Bacteriana
12.
NPJ Biofilms Microbiomes ; 10(1): 77, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39209878

RESUMO

Fracture-related infections (FRIs), particularly those caused by methicillin-resistant Staphylococcus aureus (MRSA), are challenging to treat. This study designed and evaluated a hydrogel loaded with a cocktail of bacteriophages and vancomycin (1.2 mg/mL). The co-delivery hydrogel showed 99.72% reduction in MRSA biofilm in vitro. The hydrogel released 54% of phages and 82% of vancomycin within 72 h and maintained activity for eight days, in vivo the co-delivery hydrogel with systemic antibiotic significantly reduced bacterial load by 0.99 log10 CFU compared to controls, with active phages detected in tissues at euthanasia (2 × 103 PFU/mL). No phage resistance was detected in the phage treatment groups, and serum neutralization resulted in only a 20% reduction in phage count. In this work, we show that a phage-antibiotic co-delivery system via CMC hydrogel is a promising adjunct to systemic antibiotic therapy for MRSA-induced FRI, highlighting its potential for localized, sustained delivery and improved treatment outcomes.


Assuntos
Antibacterianos , Biofilmes , Hidrogéis , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Vancomicina , Vancomicina/administração & dosagem , Vancomicina/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Animais , Hidrogéis/química , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/terapia , Biofilmes/efeitos dos fármacos , Bacteriófagos/fisiologia , Fraturas Ósseas/terapia , Terapia por Fagos/métodos , Camundongos , Sistemas de Liberação de Medicamentos , Humanos , Modelos Animais de Doenças
13.
Antimicrob Agents Chemother ; 68(9): e0065024, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39136463

RESUMO

Burn wounds are a major burden, with high mortality rates due to infections. Staphylococcus aureus is a major causative agent of burn wound infections, which can be difficult to treat because of antibiotic resistance and biofilm formation. An alternative to antibiotics is the use of bacteriophages, viruses that infect and kill bacteria. We investigated the efficacy of bacteriophage therapy for burn wound infections, in both a porcine and a newly developed human ex vivo skin model. In both models, the efficacy of a reference antibiotic treatment (fusidic acid) and bacteriophage treatment was determined for a single treatment, successive treatment, and prophylaxis. Both models showed a reduction in bacterial load after a single bacteriophage treatment. Increasing the frequency of bacteriophage treatments increased bacteriophage efficacy in the human ex vivo skin model, but not in the porcine model. In both models, prophylaxis with bacteriophages increased treatment efficacy. In all cases, bacteriophage treatment outperformed fusidic acid treatment. Both models allowed investigation of bacteriophage-bacteria dynamics in burn wounds. Overall, bacteriophage treatment outperformed antibiotic control underlining the potential of bacteriophage therapy for the treatment of burn wound infections, especially when used prophylactically.


Assuntos
Antibacterianos , Bacteriófagos , Queimaduras , Terapia por Fagos , Infecções Estafilocócicas , Staphylococcus aureus , Infecção dos Ferimentos , Animais , Queimaduras/terapia , Queimaduras/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/virologia , Suínos , Terapia por Fagos/métodos , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecção dos Ferimentos/terapia , Infecção dos Ferimentos/microbiologia , Infecções Estafilocócicas/terapia , Infecções Estafilocócicas/microbiologia , Bacteriófagos/fisiologia , Ácido Fusídico/farmacologia , Ácido Fusídico/uso terapêutico , Modelos Animais de Doenças , Biofilmes/efeitos dos fármacos , Pele/microbiologia
14.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125718

RESUMO

Bacteriophages are emerging as a promising alternative in combating antibiotic-resistant bacteria amidst the escalating global antimicrobial resistance crisis. Recently, there has been a notable resurgence of interest in phages, prompting extensive research into their therapeutic potential. Beyond conventional microbiology and virology techniques, such as genomics and proteomics, novel phenotypic and chemical characterization methods are being explored. Among these, there is a growing interest in vibrational spectroscopy, especially in advanced modalities such as surface-enhanced Raman spectroscopy (SERS), tip-enhanced Raman spectroscopy (TERS), and atomic force microscopy-infrared spectroscopy (AFM-IR), which offer improved sensitivity and spatial resolution. This review explores the spectrum of uses of vibrational spectroscopy for bacteriophages, including its role in diagnostics, biosensing, phage detection, assistance in phage-based therapy, and advancing basic research.


Assuntos
Bacteriófagos , Análise Espectral Raman , Análise Espectral Raman/métodos , Humanos , Microscopia de Força Atômica/métodos , Técnicas Biossensoriais/métodos , Terapia por Fagos/métodos , Vibração
15.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125890

RESUMO

Patients with cystic fibrosis (CF) are prone to developing life-threatening lung infections with a variety of pathogens that are difficult to eradicate, such as Burkholderia cepacia complex (Bcc), Hemophilus influenzae, Mycobacterium abscessus (Mab), Pseudomonas aeruginosa, and Staphylococcus aureus. These infections still remain an important issue, despite the therapy for CF having considerably improved in recent years. Moreover, prolonged exposure to antibiotics in combination favors the development and spread of multi-resistant bacteria; thus, the development of alternative strategies is crucial to counter antimicrobial resistance. In this context, phage therapy, i.e., the use of phages, viruses that specifically infect bacteria, has become a promising strategy. In this review, we aim to address the current status of phage therapy in the management of multidrug-resistant infections, from compassionate use cases to ongoing clinical trials, as well as the challenges this approach presents in the particular context of CF patients.


Assuntos
Infecções Bacterianas , Fibrose Cística , Farmacorresistência Bacteriana Múltipla , Terapia por Fagos , Fibrose Cística/terapia , Fibrose Cística/microbiologia , Humanos , Terapia por Fagos/métodos , Infecções Bacterianas/terapia , Antibacterianos/uso terapêutico , Bacteriófagos/fisiologia
16.
Clin Microbiol Rev ; 37(3): e0004424, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39072666

RESUMO

SUMMARYDespite the early recognition of their therapeutic potential and the current escalation of multidrug-resistant (MDR) pathogens, the adoption of bacteriophages into mainstream clinical practice is hindered by unfamiliarity with their basic pharmacokinetic (PK) and pharmacodynamic (PD) properties, among others. Given the self-replicative nature of bacteriophages in the presence of host bacteria, the adsorption rate, and the clearance by the host's immunity, their PK/PD characteristics cannot be estimated by conventional approaches, and thus, the introduction of new considerations is required. Furthermore, the multitude of different bacteriophage types, preparations, and treatment schedules impedes drawing general conclusions on their in vivo PK/PD features. Additionally, the drawback of acquired bacteriophage resistance of MDR pathogens with clinical and environmental implications should be taken into consideration. Here, we provide an overview of the current state of the field of PK and PD of bacteriophage therapy with a focus on its application against MDR Gram-negative infections, highlighting the potential knowledge gaps and the challenges in translation from the bench to the bedside. After reviewing the in vitro PKs and PDs of bacteriophages against the four major MDR Gram-negative pathogens, Klebsiella pneumoniae, Acinetobacter baumannii complex, Pseudomonas aeruginosa, and Escherichia coli, specific data on in vivo PKs (tissue distribution, route of administration, and basic PK parameters in animals and humans) and PDs (survival and reduction of bacterial burden in relation to the route of administration, timing of therapy, dosing regimens, and resistance) are summarized. Currently available data merit close scrutiny, and optimization of bacteriophage therapy in the context of a better understanding of the underlying PK/PD principles is urgent to improve its therapeutic effect and to minimize the occurrence of bacteriophage resistance.


Assuntos
Bacteriófagos , Farmacorresistência Bacteriana Múltipla , Infecções por Bactérias Gram-Negativas , Terapia por Fagos , Terapia por Fagos/métodos , Humanos , Bacteriófagos/fisiologia , Infecções por Bactérias Gram-Negativas/terapia , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Animais , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/virologia , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
17.
Viruses ; 16(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39066209

RESUMO

Infections due to antimicrobial-resistant bacteria have become a major threat to global health. Some patients may carry resistant bacteria in their gut microbiota. Specific risk factors may trigger the conversion of these carriages into infections in hospitalized patients. Preventively eradicating these carriages has been postulated as a promising preventive intervention. However, previous attempts at such eradication using oral antibiotics or probiotics have led to discouraging results. Phage therapy, the therapeutic use of bacteriophage viruses, might represent a worthy alternative in this context. Taking inspiration from this clinical challenge, we built Gut-On-A-Chip (GOAC) models, which are tridimensional cell culture models mimicking a simplified gut section. These were used to better understand bacterial dynamics under phage pressure using two relevant species: Pseudomonas aeruginosa and Escherichia coli. Model mucus secretion was documented by ELISA assays. Bacterial dynamics assays were performed in GOAC triplicates monitored for 72 h under numerous conditions, such as pre-, per-, or post-bacterial timing of phage introduction, punctual versus continuous phage administration, and phage expression of mucus-binding properties. The potential genomic basis of bacterial phage resistance acquired in the model was investigated by variant sequencing. The bacterial "escape growth" rates under phage pressure were compared to static in vitro conditions. Our results suggest that there is specific bacterial prosperity in this model compared to other in vitro conditions. In E. coli assays, the introduction of a phage harboring unique mucus-binding properties could not shift this balance of power, contradicting previous findings in an in vivo mouse model and highlighting the key differences between these models. Genomic modifications were correlated with bacterial phage resistance acquisition in some but not all instances, suggesting that alternate ways are needed to evade phage predation, which warrants further investigation.


Assuntos
Bacteriófagos , Escherichia coli , Microbioma Gastrointestinal , Terapia por Fagos , Pseudomonas aeruginosa , Pseudomonas aeruginosa/virologia , Bacteriófagos/fisiologia , Bacteriófagos/genética , Humanos , Terapia por Fagos/métodos , Escherichia coli/virologia , Dispositivos Lab-On-A-Chip
18.
Viruses ; 16(7)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39066242

RESUMO

Pseudomonas aeruginosa is one of the main causes of healthcare-associated infection in Europe that increases patient morbidity and mortality. Multi-resistant pathogens are a major public health issue in burn centers. Mortality increases when the initial antibiotic treatment is inappropriate, especially if the patient is infected with P. aeruginosa strains that are resistant to many antibiotics. Phage therapy is an emerging option to treat severe P. aeruginosa infections. It involves using natural viruses called bacteriophages, which have the ability to infect, replicate, and, theoretically, destroy the P. aeruginosa population in an infected patient. We report here the case of a severely burned patient who experienced relapsing ventilator-associated pneumonia associated with skin graft infection and bacteremia due to extensively drug-resistant P. aeruginosa. The patient was successfully treated with personalized nebulized and intravenous phage therapy in combination with immunostimulation (interferon-γ) and last-resort antimicrobial therapy (imipenem-relebactam).


Assuntos
Bacteriemia , Queimaduras , Farmacorresistência Bacteriana Múltipla , Terapia por Fagos , Pneumonia Associada à Ventilação Mecânica , Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/virologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pneumonia Associada à Ventilação Mecânica/terapia , Pneumonia Associada à Ventilação Mecânica/tratamento farmacológico , Pneumonia Associada à Ventilação Mecânica/microbiologia , Terapia por Fagos/métodos , Infecções por Pseudomonas/terapia , Infecções por Pseudomonas/tratamento farmacológico , Queimaduras/complicações , Queimaduras/terapia , Bacteriemia/terapia , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Antibacterianos/uso terapêutico , Masculino , Recidiva , Bacteriófagos/fisiologia
19.
PLoS One ; 19(7): e0307079, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39012882

RESUMO

BACKGROUND: Most of the current bacteriophages (phages) are mostly isolated from environments. However, phages isolated from feces might be more specific to the bacteria that are harmful to the host. Meanwhile, some phages from the environment might affect non-pathogenic bacteria for the host. METHODS: Here, bacteriophages isolated from mouse feces were intratracheally (IT) or intravenously (IV) administered in pneumonia mice caused by Pseudomonas aeruginosa at 2 hours post-intratracheal bacterial administration. As such, the mice with phage treatment, using either IT or IV administration, demonstrated less severe pneumonia as indicated by mortality, serum cytokines, bacteremia, bacterial abundance in bronchoalveolar lavage fluid (BALF), and neutrophil extracellular traps (NETs) in lung tissue (immunofluorescence of neutrophil elastase and myeloperoxidase). RESULTS: Interestingly, the abundance of phages in BALF from the IT and IV injections was similar, supporting a flexible route of phage administration. With the incubation of bacteria with neutrophils, the presence of bacteriophages significantly improved bactericidal activity, but not NETs formation, with the elevated supernatant IL-6 and TNF-α, but not IL-1ß. In conclusion, our findings suggest that bacteriophages against Pseudomonas aeruginosa can be discovered from feces of the host. CONCLUSIONS: The phages attenuate pneumonia partly through an enhanced neutrophil bactericidal activity, but not via inducing NETs formation. The isolation of phages from the infected hosts themselves might be practically useful for future treatment. More studies are warranted.


Assuntos
Fezes , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Pseudomonas aeruginosa/virologia , Fezes/microbiologia , Fezes/virologia , Camundongos , Infecções por Pseudomonas/terapia , Infecções por Pseudomonas/microbiologia , Líquido da Lavagem Broncoalveolar/microbiologia , Líquido da Lavagem Broncoalveolar/virologia , Neutrófilos/imunologia , Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Armadilhas Extracelulares , Pneumonia/microbiologia , Pneumonia/terapia , Pneumonia/virologia , Citocinas/metabolismo , Citocinas/sangue , Terapia por Fagos/métodos , Feminino , Pulmão/microbiologia , Pulmão/virologia , Pneumonia Bacteriana/terapia , Pneumonia Bacteriana/microbiologia
20.
Nano Lett ; 24(28): 8752-8762, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38953881

RESUMO

Acute methicillin-resistant Staphylococcus aureus (MRSA) pneumonia is a common and serious lung infection with high morbidity and mortality rates. Due to the increasing antibiotic resistance, toxicity, and pathogenicity of MRSA, there is an urgent need to explore effective antibacterial strategies. In this study, we developed a dry powder inhalable formulation which is composed of porous microspheres prepared from poly(lactic-co-glycolic acid) (PLGA), internally loaded with indocyanine green (ICG)-modified, heat-resistant phages that we screened for their high efficacy against MRSA. This formulation can deliver therapeutic doses of ICG-modified active phages to the deep lung tissue infection sites, avoiding rapid clearance by alveolar macrophages. Combined with the synergistic treatment of phage therapy and photothermal therapy, the formulation demonstrates potent bactericidal effects in acute MRSA pneumonia. With its long-term stability at room temperature and inhalable characteristics, this formulation has the potential to be a promising drug for the clinical treatment of MRSA pneumonia.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Animais , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Microesferas , Terapia Fototérmica , Pneumonia Estafilocócica/terapia , Terapia por Fagos/métodos , Verde de Indocianina/química , Verde de Indocianina/farmacologia , Verde de Indocianina/uso terapêutico , Verde de Indocianina/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Administração por Inalação , Humanos , Bacteriófagos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA