Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 779
Filtrar
1.
Eur Radiol Exp ; 8(1): 92, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143267

RESUMO

BACKGROUND: Interventional magnetic resonance imaging (MRI) can provide a comprehensive setting for microwave ablation of tumors with real-time monitoring of the energy delivery using MRI-based temperature mapping. The purpose of this study was to quantify the accuracy of three-dimensional (3D) real-time MRI temperature mapping during microwave heating in vitro by comparing MRI thermometry data to reference data measured by fiber-optical thermometry. METHODS: Nine phantom experiments were evaluated in agar-based gel phantoms using an in-room MR-conditional microwave system and MRI thermometry. MRI measurements were performed for 700 s (25 slices; temporal resolution 2 s). The temperature was monitored with two fiber-optical temperature sensors approximately 5 mm and 10 mm distant from the microwave antenna. Temperature curves of the sensors were compared to MRI temperature data of single-voxel regions of interest (ROIs) at the sensor tips; the accuracy of MRI thermometry was assessed as the root-mean-squared (RMS)-averaged temperature difference. Eighteen neighboring voxels around the original ROI were also evaluated and the voxel with the smallest temperature difference was additionally selected for further evaluation. RESULTS: The maximum temperature changes measured by the fiber-optical sensors ranged from 7.3 K to 50.7 K. The median RMS-averaged temperature differences in the originally selected voxels ranged from 1.4 K to 3.4 K. When evaluating the minimum-difference voxel from the neighborhood, the temperature differences ranged from 0.5 K to 0.9 K. The microwave antenna and the MRI-conditional in-room microwave generator did not induce relevant radiofrequency artifacts. CONCLUSION: Accurate 3D real-time MRI temperature mapping during microwave heating with very low RMS-averaged temperature errors below 1 K is feasible in gel phantoms. RELEVANCE STATEMENT: Accurate MRI-based volumetric real-time monitoring of temperature distribution and thermal dose is highly relevant in clinical MRI-based interventions and can be expected to improve local tumor control, as well as procedural safety by extending the limits of thermal (e.g., microwave) ablation of tumors in the liver and in other organs. KEY POINTS: Interventional MRI can provide a comprehensive setting for the microwave ablation of tumors. MRI can monitor the microwave ablation using real-time MRI-based temperature mapping. 3D real-time MRI temperature mapping during microwave heating is feasible. Measured temperature errors were below 1 °C in gel phantoms. The active in-room microwave generator did not induce any relevant radiofrequency artifacts.


Assuntos
Géis , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Micro-Ondas , Imagens de Fantasmas , Termometria , Imageamento por Ressonância Magnética/métodos , Termometria/métodos , Temperatura , Temperatura Alta , Humanos
2.
Int J Hyperthermia ; 41(1): 2352545, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38991549

RESUMO

Magnetic resonance thermometry (MRT) can measure in-vivo 3D-temperature changes in real-time and noninvasively. However, for the oropharynx region and the entire head and neck, motion potentially introduces large artifacts. Considering long treatment times of 60-90 min, this study aims to evaluate whether MRT around the oropharynx is clinically feasible for hyperthermia treatments and quantify the effects of breathing and swallowing on MRT performance. A 3D-ME-FGRE sequence was used in a phantom cooling down and around the oropharynx of five volunteers over ∼75 min. The imaging protocol consisted of imaging with acceleration (ARC = 2), number of image averages (NEX = 1,2 and 3). For volunteers, the acquisitions included a breath-hold scan and scans with deliberate swallowing. MRT performance was quantified in neck muscle, spinal cord and masseter muscle, using mean average error (MAE), mean error (ME) and spatial standard deviation (SD). In phantom, an increase in NEX leads to a significant decrease in SD, but MAE and ME were unchanged. No significant difference was found in volunteers between the different scans. There was a significant difference between the regions evaluated: neck muscle had the best MAE (=1.96 °C) and SD (=0.82 °C), followed by spinal cord (MAE = 3.17 °C, SD = 0.92 °C) and masseter muscle (MAE = 4.53 °C, SD = 1.16 °C). Concerning the ME, spinal cord did best, then neck muscle and masseter muscle, with values of -0.64 °C, 1.15 °C and -3.05 °C respectively. Breathing, swallowing, and different ways of imaging (acceleration and NEX) do not significantly influence the MRT performance in the oropharynx region. The ROI selected however, leads to significant differences.


Assuntos
Imageamento por Ressonância Magnética , Orofaringe , Termometria , Humanos , Imageamento por Ressonância Magnética/métodos , Termometria/métodos , Orofaringe/diagnóstico por imagem , Masculino , Adulto , Hipertermia Induzida/métodos , Feminino , Imagens de Fantasmas
3.
Physiol Rep ; 12(14): e16155, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39039617

RESUMO

Numerous body locations have been utilized to obtain an accurate body temperature. While some are commonly used, their accuracy, response time, invasiveness varies greatly, and determines their potential clinical and/or research use. This review discusses human body temperature locations, their accuracy, ease of use, advantages, and drawbacks. We explain the concept of core body temperature and which of the locations achieve the best correlation to this temperature. The body locations include axilla, oral cavity, rectum, digestive and urinary tracts, skin, tympanic, nasopharynx, esophagus, and pulmonary artery. The review also discusses the latest temperature technologies, heat-flux technology and telemetric ingestible temperature pills, and the body locations used to validate these devices. Rectal and esophageal measurements are the most frequently used.


Assuntos
Temperatura Corporal , Humanos , Temperatura Corporal/fisiologia , Termografia/métodos , Termografia/instrumentação , Termometria/métodos , Termometria/instrumentação
4.
Biomed Mater ; 19(5)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38870928

RESUMO

In this investigation, we embarked on the synthesis of polyethylene glycol coated NaGdF4:Tm3+/Yb3+upconversion nanoparticles (UCNPs), aiming to assess their utility in enhancing image contrast within the context of swept source optical coherence tomography (OCT) and photo-thermal OCT imaging. Our research unveiled the remarkable UC emissions stemming from the transitions of Tm3+ions, specifically the1G4→3H6transitions, yielding vibrant blue emissions at 472 nm. We delved further into the UC mechanism, meticulously scrutinizing decay times and the nanoparticles' capacity to convert radiation into heat. Notably, these nanoparticles exhibited an impressive photo-thermal conversion efficiency of 37.5%. Furthermore, our investigations into their bio-compatibility revealed a promising outcome, with more than 90% cell survival after 24 h of incubation with HeLa cells treated with UCNPs. The nanoparticles demonstrated a notable thermal sensitivity of 4.7 × 10-3K-1at 300 K, signifying their potential for precise temperature monitoring at the cellular level.


Assuntos
Sobrevivência Celular , Meios de Contraste , Nanopartículas , Polietilenoglicóis , Tomografia de Coerência Óptica , Itérbio , Tomografia de Coerência Óptica/métodos , Humanos , Células HeLa , Polietilenoglicóis/química , Itérbio/química , Nanopartículas/química , Meios de Contraste/química , Termometria/métodos , Gadolínio/química , Túlio/química , Fluoretos/química , Temperatura , Materiais Revestidos Biocompatíveis/química , Raios Infravermelhos
5.
Ultrasonics ; 142: 107372, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38850600

RESUMO

The clinical use of high intensity focused ultrasound (HIFU) therapy for noninvasive tissue ablation has recently gained momentum. Guidance is provided by either magnetic resonance imaging (MRI) or conventional B-mode ultrasound imaging, each with its own advantages and disadvantages. The main limitation of ultrasound imaging is its inability to provide temperature measurements over the ranges corresponding to the target temperatures during ablative thermal therapies (between 55 °C and 70 °C). Here, variations in ultrasound backscattered energy (ΔBSE) were used to monitor temperature increases in liver tissue up to an absolute value of 90 °C during and after HIFU treatment. In vitro experimental measurements were performed in 47 bovine liver samples using a toroidal HIFU transducer operating at 2.5 MHz to increase the temperature of tissues. An ultrasound imaging probe working at 7.5 MHz was placed in the center of the HIFU transducer to monitor the backscattered signals. The free-field acoustic power was set to 9 W, 12 W or 16 W in the different experiments. HIFU sonications were performed for 240 s using a duty cycle of 83 % to allow ultrasound imaging and raw radiofrequency data acquisition during exposures. Measurements showed a linear relationship between ΔBSE (in dB) and temperature (r = 0.94, p < 0.001) over a temperature range from 37 °C to 90 °C, with a high reliability of temperature measurements below 75 °C. Monitoring can be performed at the frame rate of ultrasound imaging scanners with an accuracy within an acceptable threshold of 5 °C, given the temperatures targeted during thermal ablations. If the maximum temperature reached is below 70 °C, ΔBSE is also a reliable approach for estimating the temperature during cooling. Histological analysis shown the impact of the treatment on the spatial arrangement of cells that can explain the observed variation of ΔBSE. These results demonstrate the ability of ΔBSE measurements to estimate temperature in ultrasound images within an effective therapeutic range. This method can be implemented clinically and potentially applied to other thermal-based therapies.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Fígado , Termometria , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Animais , Bovinos , Termometria/métodos , Fígado/diagnóstico por imagem , Fígado/cirurgia , Transdutores , Técnicas In Vitro , Ultrassonografia/métodos , Temperatura
6.
Nat Commun ; 15(1): 3473, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724563

RESUMO

Neuronal differentiation-the development of neurons from neural stem cells-involves neurite outgrowth and is a key process during the development and regeneration of neural functions. In addition to various chemical signaling mechanisms, it has been suggested that thermal stimuli induce neuronal differentiation. However, the function of physiological subcellular thermogenesis during neuronal differentiation remains unknown. Here we create methods to manipulate and observe local intracellular temperature, and investigate the effects of noninvasive temperature changes on neuronal differentiation using neuron-like PC12 cells. Using quantitative heating with an infrared laser, we find an increase in local temperature (especially in the nucleus) facilitates neurite outgrowth. Intracellular thermometry reveals that neuronal differentiation is accompanied by intracellular thermogenesis associated with transcription and translation. Suppression of intracellular temperature increase during neuronal differentiation inhibits neurite outgrowth. Furthermore, spontaneous intracellular temperature elevation is involved in neurite outgrowth of primary mouse cortical neurons. These results offer a model for understanding neuronal differentiation induced by intracellular thermal signaling.


Assuntos
Diferenciação Celular , Neurônios , Transdução de Sinais , Temperatura , Animais , Células PC12 , Neurônios/fisiologia , Neurônios/citologia , Camundongos , Ratos , Crescimento Neuronal , Neurogênese/fisiologia , Neuritos/metabolismo , Neuritos/fisiologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/fisiologia , Termometria/métodos , Termogênese/fisiologia
7.
ACS Appl Bio Mater ; 7(6): 3821-3827, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38787698

RESUMO

Near-infrared fluorescence (NIRF) thermometry is an emerging method for the noncontact measurement of in vivo deep temperatures. Fluorescence-lifetime-based methods are effective because they are unaffected by optical loss due to excitation or detection paths. Moreover, the physiological changes in body temperature in deep tissues and their pharmacological effects are yet to be fully explored. In this study, we investigated the potential application of the NIRF lifetime-based method for temperature measurement of in vivo deep tissues in the abdomen using rare-earth-based particle materials. ß-NaYF4 particles codoped with Nd3+ and Yb3+ (excitation: 808 nm, emission: 980 nm) were used as NIRF thermometers, and their fluorescence decay curves were exponential. Slope linearity analysis (SLA), a screening method, was proposed to extract pixels with valid data. This method involves performing a linearity evaluation of the semilogarithmic plot of the decay curve collected at three delay times after cutting off the pulsed laser irradiation. After intragastric administration of the thermometer, the stomach temperature was monitored by using an NIRF time-gated imaging setup. Concurrently, a heater was attached to the lower abdomens of the mice under anesthesia. A decrease in the stomach temperature under anesthesia and its recovery via the heater indicated changes in the fluorescence lifetime of the thermometer placed inside the body. Thus, NaYF4:Nd3+/Yb3+ functions as a fluorescence thermometer that can measure in vivo temperature based on the temperature dependence of the fluorescence lifetime at 980 nm under 808 nm excitation. This study demonstrated the ability of a rare-earth-based NIRF thermometer to measure deep tissues in live mice, with the proposed SLA method for excluding the noisy deviations from the analysis for measuring temperature using the NIRF lifetime of a rare-earth-based thermometer.


Assuntos
Fluoretos , Imagem Óptica , Itérbio , Ítrio , Animais , Camundongos , Ítrio/química , Itérbio/química , Fluoretos/química , Neodímio/química , Materiais Biocompatíveis/química , Teste de Materiais , Tamanho da Partícula , Temperatura , Termometria/métodos , Raios Infravermelhos
8.
Phys Med Biol ; 69(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38688289

RESUMO

Objective. Conventional computed tomography (CT) imaging does not provide quantitative information on local thermal changes during percutaneous ablative therapy of cancerous and benign tumors, aside from few qualitative, visual cues. In this study, we have investigated changes in CT signal across a wide range of temperatures and two physical phases for two different tissue mimicking materials, each.Approach. A series of experiments were conducted using an anthropomorphic phantom filled with water-based gel and olive oil, respectively. Multiple, clinically used ablation devices were applied to locally cool or heat the phantom material and were arranged in a configuration that produced thermal changes in regions with inconsequential amounts of metal artifact. Eight fiber optic thermal sensors were positioned in the region absent of metal artifact and were used to record local temperatures throughout the experiments. A spectral CT scanner was used to periodically acquire and generate electron density weighted images. Average electron density weighted values in 1 mm3volumes of interest near the temperature sensors were computed and these data were then used to calculate thermal volumetric expansion coefficients for each material and phase.Main results. The experimentally determined expansion coefficients well-matched existing published values and variations with temperature-maximally differing by 5% of the known value. As a proof of concept, a CT-generated temperature map was produced during a heating time point of the water-based gel phantom, demonstrating the capability to map changes in electron density weighted signal to temperature.Significance. This study has demonstrated that spectral CT can be used to estimate local temperature changes for different materials and phases across temperature ranges produced by thermal ablations.


Assuntos
Técnicas de Ablação , Estudos de Viabilidade , Imagens de Fantasmas , Termometria , Tomografia Computadorizada por Raios X , Termometria/métodos , Técnicas de Ablação/métodos , Cirurgia Assistida por Computador/métodos , Temperatura , Humanos
9.
Anal Methods ; 16(14): 1968-1984, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38511286

RESUMO

Temperature homeostasis is critical for cells to perform their physiological functions. Among the diverse methods for temperature detection, fluorescent temperature probes stand out as a proven and effective tool, especially for monitoring temperature in cells and suborganelles, with a specific emphasis on mitochondria. The utilization of these probes provides a new opportunity to enhance our understanding of the mechanisms and interconnections underlying various physiological activities related to temperature homeostasis. However, the complexity and variability of cells and suborganelles necessitate fluorescent temperature probes with high resolution and sensitivity. To meet the demanding requirements for intracellular/subcellular temperature detection, several strategies have been developed, offering a range of options to address this challenge. This review examines four fundamental temperature-response strategies employed by small molecule and polymer probes, including intramolecular rotation, polarity sensitivity, Förster resonance energy transfer, and structural changes. The primary emphasis was placed on elucidating molecular design and biological applications specific to each type of probe. Furthermore, this review provides an insightful discussion on factors that may affect fluorescent thermometry, providing valuable perspectives for future development in the field. Finally, the review concludes by presenting cutting-edge response strategies and research insights for mitigating biases in temperature sensing.


Assuntos
Mitocôndrias , Termometria , Termometria/métodos , Corantes Fluorescentes/química , Temperatura
10.
Med Phys ; 51(5): 3195-3206, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513254

RESUMO

BACKGROUND: Percutaneous microwave ablation (pMWA) is a minimally invasive procedure that uses a microwave antenna placed at the tip of a needle to induce lethal tissue heating. It can treat cancer and other diseases with lower morbidity than conventional surgery, but one major limitation is the lack of control over the heating region around the ablation needle. Superparamagnetic iron oxide nanoparticles have the potential to enhance and control pMWA heating due to their ability to absorb microwave energy and their ease of local delivery. PURPOSE: The purpose of this study is to experimentally quantify the capabilities of FDA-approved superparamagnetic iron oxide Feraheme nanoparticles (FHNPs) to enhance and control pMWA heating. This study aims to determine the effectiveness of locally injected FHNPs in increasing the maximum temperature during pMWA and to investigate the ability of FHNPs to create a controlled ablation zone around the pMWA needle. METHODS: PMWA was performed using a clinical ablation system at 915 MHz in ex-vivo porcine liver tissues. Prior to ablation, 50 uL 5 mg/mL FHNP injections were made on one side of the pMWA needle via a 23-gauge needle. Local temperatures at the FHNP injection site were directly compared to equidistant control sites without FHNP. First, temperatures were compared using directly inserted thermocouples. Next, temperatures were measured non-invasively using magnetic resonance thermometry (MRT), which enabled comprehensive four-dimensional (volumetric and temporal) assessment of heating effects relative to nanoparticle distribution, which was quantified using dual-echo ultrashort echo time (UTE) subtraction MR imaging. Maximum heating within FHNP-exposed tissues versus control tissues were compared at multiple pMWA energy delivery settings. The ability to generate a controlled asymmetric ablation zone using multiple FHNP injections was also tested. Finally, intra-procedural MRT-derived heat maps were correlated with gold standard gross pathology using Dice similarity analysis. RESULTS: Maximum temperatures at the FHNP injection site were significantly higher than control (without FHNP) sites when measured using direct thermocouples (93.1 ± 6.0°C vs. 57.2 ± 8.1°C, p = 0.002) and using non-invasive MRT (115.6 ± 13.4°C vs. 49.0 ± 10.6°C, p = 0.02). Temperature difference between FHNP-exposed and control sites correlated with total energy deposition: 66.6 ± 17.6°C, 58.1 ± 8.5°C, and 20.8 ± 9.2°C at high (17.5 ± 2.2 kJ), medium (13.6 ± 1.8 kJ), and low (8.8 ± 1.1 kJ) energies, respectively (all pairwise p < 0.05). Each FHNP injection resulted in a nanoparticle distribution within 0.9 ± 0.2 cm radially of the injection site and a local lethal heating zone confined to within 1.1 ± 0.4 cm radially of the injection epicenter. Multiple injections enabled a controllable, asymmetric ablation zone to be generated around the ablation needle, with maximal ablation radius on the FHNP injection side of 1.6 ± 0.2 cm compared to 0.7 ± 0.2 cm on the non-FHNP side (p = 0.02). MRT intra-procedural predicted ablation zone correlated strongly with post procedure gold-standard gross pathology assessment (Dice similarity 0.9). CONCLUSIONS: Locally injected FHNPs significantly enhanced pMWA heating in liver tissues, and were able to control the ablation zone shape around a pMWA needle. MRI and MRT allowed volumetric real-time visualization of both FHNP distribution and FHNP-enhanced pMWA heating that was useful for intra-procedural monitoring. This work strongly supports further development of a FHNP-enhanced pMWA paradigm; as all individual components of this approach are approved for patient use, there is low barrier for clinical translation.


Assuntos
Técnicas de Ablação , Nanopartículas Magnéticas de Óxido de Ferro , Micro-Ondas , Termometria , Animais , Termometria/métodos , Técnicas de Ablação/métodos , Suínos , Imageamento por Ressonância Magnética , Temperatura , Fígado/cirurgia , Fígado/diagnóstico por imagem
11.
J Neurosurg ; 141(2): 518-528, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38457800

RESUMO

OBJECTIVE: MRI-guided laser interstitial thermal therapy (MRgLITT) has recently gained interest as an ablative stereotactic procedure for intractable epilepsy, movement disorders, and brain tumors. Conventionally, a LITT system consists of a laser generator and cooled laser applicator, which is a fiber optic core surrounded by a sheath through which cooled fluid is pumped. However, this footprint can make the system bulky and nonmobile, limit the maximum depth of targeting, and increase the chances of breakdown. Herein, the authors conduct a preclinical assessment of a noncooled MRgLITT system in a porcine model. METHODS: Three-tesla MRI was used to guide the in vivo placement of noncooled laser applicators in the porcine brain. The study consisted of a survival arm and terminal arm. The laser was activated at a power of 4-7 W for ≤ 180 seconds. Temperature changes were monitored using the MR thermometry software ThermoGuide in the survival arm (n = 5) or both ThermoGuide software and adjacently inserted thermal probes in the terminal arm (n = 3). Thermal damage was determined by the software using the temperature-time relationship of cumulative equivalent minutes at 43°C (CEM43). Temperatures calculated by the software were compared with those recorded by the temperature probes. The dimensions of thermal damage thresholds (TDTs; 2-9, 10-59, 60-239, ≥ 240 CEM43 isolines) given by MR thermometry were compared with the dimensions of irreversible damage on histopathological analysis. RESULTS: There was a strong correlation between temperature recordings by ThermoGuide and those by thermal probes at both 4 mm (r = 0.96) and 8 mm (r = 0.80), with a mean absolute error of 0.76°C ± 2.13°C and 0.17°C ± 1.65°C at 4 and 8 mm, respectively. The area of 2-9 CEM43 was larger than the area of irreversible damage seen on histopathological analysis. The dimensions of the 10 and 60 CEM43 correlated well with dimensions of the lesion on histopathological analysis. A well-defined border (≤ 1 mm) was observed between the area of irreversible damage and healthy brain tissue. CONCLUSIONS: This preclinical assessment showed that the noncooled LITT system was able to precisely reach the target and create well-defined lesions within a margin of safety, without any adverse effects. MR thermometry software provided an accurate near-real-time temperature of the brain tissue, and dimensions of the lesion as visualized by the software correlated well with histopathological findings. Further studies to test the system's efficacy and safety in human subjects are in progress.


Assuntos
Terapia a Laser , Imageamento por Ressonância Magnética , Termometria , Animais , Terapia a Laser/métodos , Terapia a Laser/instrumentação , Suínos , Termometria/métodos , Imageamento por Ressonância Magnética/métodos , Procedimentos Neurocirúrgicos/métodos , Encéfalo/cirurgia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Cirurgia Assistida por Computador/métodos
12.
Magn Reson Med ; 92(1): 15-27, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38501903

RESUMO

Proton resonance frequency shift (PRFS) MR thermometry is the most common method used in clinical thermal treatments because of its fast acquisition and high sensitivity to temperature. However, motion is the biggest obstacle in PRFS MR thermometry for monitoring thermal treatment in moving organs. This challenge arises because of the introduction of phase errors into the PRFS calculation through multiple methods, such as image misregistration, susceptibility changes in the magnetic field, and intraframe motion during MRI acquisition. Various approaches for motion correction have been developed for real-time, motion-robust, and volumetric MR thermometry. However, current technologies have inherent trade-offs among volume coverage, processing time, and temperature accuracy. These tradeoffs should be considered and chosen according to the thermal treatment application. In hyperthermia treatment, precise temperature measurements are of increased importance rather than the requirement for exceedingly high temporal resolution. In contrast, ablation procedures require robust temporal resolution to accurately capture a rapid temperature rise. This paper presents a comprehensive review of current cutting-edge MRI techniques for motion-robust MR thermometry, and recommends which techniques are better suited for each thermal treatment. We expect that this study will help discern the selection of motion-robust MR thermometry strategies and inspire the development of motion-robust volumetric MR thermometry for practical use in clinics.


Assuntos
Imageamento por Ressonância Magnética , Movimento (Física) , Humanos , Imageamento por Ressonância Magnética/métodos , Termometria/métodos , Termografia/métodos , Algoritmos , Hipertermia Induzida , Artefatos
13.
An Acad Bras Cienc ; 96(1): e20200570, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451591

RESUMO

In this study, videothermometry's application in detecting mammary tumors in dogs is explored in-depth. The research hypothesizes that this technique can effectively identify cancerous tissues during surgery by analyzing thermal patterns. The methodology involved comparing thermal imaging results from dogs with palpable mammary nodules against a control group, focusing on capturing real-time thermal patterns. Results were significant, showing distinct thermal patterns in carcinomas. This indicates videothermometry's capability in accurately identifying micro metastases and differentiating between neoplastic and non-neoplastic changes. The study concludes that videothermometry has considerable potential in enhancing surgical precision, especially in tumor resection and safety margin definition, but emphasizes the need for further research to thoroughly understand the thermal signatures of various mammary tumors in dogs.


Assuntos
Neoplasias Mamárias Animais , Termometria , Animais , Cães , Neoplasias Mamárias Animais/diagnóstico por imagem , Termometria/veterinária
14.
J Biophotonics ; 17(5): e202300531, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38414356

RESUMO

Temperature measurements in biological tissues play a crucial role in studying metabolic activities. In this study, we introduce a noninvasive thermometry technique based on two-color ultrasound-switchable fluorescence (USF). This innovative method allows for a local temperature mapping within a microtube filled with temperature-sensitive liposomes as nano imaging agents. By measuring the temperature-dependent fluorescence emission of the liposomes using a spectrometer, we identify four characteristic temperatures. The local background temperature can be estimated by analyzing the corresponding appearance time of these four characteristic temperatures in the dynamic USF signals captured by a camera-based USF system with two detection channels. Simultaneous measurements with an infrared (IR) camera showed a 0.38°C ± 0.27°C difference between USF thermometry and IR thermography in a physiological temperature range of 36.48°C-40.14°C. This shows that the two-color USF thermometry technique is a reliable, noninvasive tool with excellent spatial and thermal resolution.


Assuntos
Lipossomos , Temperatura , Termometria , Lipossomos/química , Termometria/métodos , Termometria/instrumentação , Fluorescência , Ondas Ultrassônicas , Termografia/métodos , Termografia/instrumentação
15.
Luminescence ; 39(2): e4692, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38383694

RESUMO

An optical thermometry strategy based on Mn2+ -doped dual-wavelength emission phosphor has been reported. Samples with different doping content were synthesized through a high-temperature solid-phase method under an air atmosphere. The electronic structure of Li4 Zn(PO4 )2 was calculated using density functional theory, revealing it to be a direct band gap material with an energy gap of 4.708 eV. Moreover, the emitting bands of Mn2+ at 530 and 640 nm can be simultaneously observed when using 417 nm as the exciting wavelength. This is due to the occupation of Mn2+ at the Zn2+ site and the interstitial site. Further analysis was conducted on the temperature-dependent emission characteristics of the sample in the range 293-483 K. Mn2+ has different responses to temperature at different doping sites in Li4 Zn(PO4 )2 . Based on the calculations using the fluorescence intensity ratio technique, the maximum relative sensitivity at a temperature of 483 K was determined to be 1.69% K-1 , while the absolute sensitivity was found to be 0.12% K-1 . The results showed that the Li4 Zn(PO4 )2 :Mn2+ phosphor has potential application in optical thermometry.


Assuntos
Termometria , Temperatura , Íons , Lítio , Zinco
16.
Phys Med Biol ; 69(4)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38252974

RESUMO

Objectives. Evaluate the reproducibility, temperature tolerance, and radiation dose requirements of spectral CT thermometry in tissue-mimicking phantoms to establish its utility for non-invasive temperature monitoring of thermal ablations.Methods. Three liver mimicking phantoms embedded with temperature sensors were individually scanned with a dual-layer spectral CT at different radiation dose levels during heating (35 °C-80 °C). Physical density maps were reconstructed from spectral results using varying reconstruction parameters. Thermal volumetric expansion was then measured at each temperature sensor every 5 °C in order to establish a correlation between physical density and temperature. Linear regressions were applied based on thermal volumetric expansion for each phantom, and coefficient of variation for fit parameters was calculated to characterize reproducibility of spectral CT thermometry. Additionally, temperature tolerance was determined to evaluate effects of acquisition and reconstruction parameters. The resulting minimum radiation dose to meet the clinical temperature accuracy requirement was determined for each slice thickness with and without additional denoising.Results. Thermal volumetric expansion was robustly replicated in all three phantoms, with a correlation coefficient variation of only 0.43%. Similarly, the coefficient of variation for the slope and intercept were 9.6% and 0.08%, respectively, indicating reproducibility of the spectral CT thermometry. Temperature tolerance ranged from 2 °C to 23 °C, decreasing with increased radiation dose, slice thickness, and iterative reconstruction level. To meet the clinical requirement for temperature tolerance, the minimum required radiation dose ranged from 20, 30, and 57 mGy for slice thickness of 2, 3, and 5 mm, respectively, but was reduced to 2 mGy with additional denoising.Conclusions. Spectral CT thermometry demonstrated reproducibility across three liver-mimicking phantoms and illustrated the clinical requirement for temperature tolerance can be met for different slice thicknesses. The reproducibility and temperature accuracy of spectral CT thermometry enable its clinical application for non-invasive temperature monitoring of thermal ablation.


Assuntos
Termometria , Reprodutibilidade dos Testes , Termometria/métodos , Temperatura , Fígado/diagnóstico por imagem , Fígado/cirurgia , Imagens de Fantasmas , Tomografia Computadorizada por Raios X
17.
Theranostics ; 14(1): 324-340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164157

RESUMO

Theranostic platforms, combining diagnostic and therapeutic approaches within one system, have garnered interest in augmenting invasive surgical, chemical, and ionizing interventions. Magnetic particle imaging (MPI) offers a quite recent alternative to established radiation-based diagnostic modalities with its versatile tracer material (superparamagnetic iron oxide nanoparticles, SPION). It also offers a bimodal theranostic framework that can combine tomographic imaging with therapeutic techniques using the very same SPION. Methods: We show the interleaved combination of MPI-based imaging, therapy (highly localized magnetic fluid hyperthermia (MFH)) and therapy safety control (MPI-based thermometry) within one theranostic platform in all three spatial dimensions using a commercial MPI system and a custom-made heating insert. The heating characteristics as well as theranostic applications of the platform were demonstrated by various phantom experiments using commercial SPION. Results: We have shown the feasibility of an MPI-MFH-based theranostic platform by demonstrating high spatial control of the therapeutic target, adequate MPI-based thermometry, and successful in situ interleaved MPI-MFH application. Conclusions: MPI-MFH-based theranostic platforms serve as valuable tools that enable the synergistic integration of diagnostic and therapeutic approaches. The transition into in vivo studies will be essential to further validate their potential, and it holds promising prospects for future advancements.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Termometria , Medicina de Precisão , Diagnóstico por Imagem/métodos , Nanopartículas de Magnetita/uso terapêutico , Campos Magnéticos
18.
Magn Reson Med ; 91(6): 2266-2277, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38181187

RESUMO

PURPOSE: A hybrid principal component analysis and projection onto dipole fields (PCA-PDF) MR thermometry motion compensation algorithm was optimized with atlas image augmentation and validated. METHODS: Experiments were conducted on a 3T Philips MRI and Profound V1 Sonalleve high intensity focused ultrasound (high intensity focused ultrasound system. An MR-compatible robot was configured to induce motion on custom gelatin phantoms. Trials with periodic and sporadic motion were introduced on phantoms while hyperthermia was administered. The PCA-PDF algorithm was augmented with a predictive atlas to better compensate for larger sporadic motion. RESULTS: During periodic motion, the temperature SD in the thermometry was improved from 1 . 1 ± 0 . 1 $$ 1.1\pm 0.1 $$ to 0 . 5 ± 0 . 1 ∘ $$ 0.5\pm 0.{1}^{\circ } $$ C with both the original and augmented PCA-PDF application. For large sporadic motion, the augmented atlas improved the motion compensation from the original PCA-PDF correction from 8 . 8 ± 0 . 5 $$ 8.8\pm 0.5 $$ to 0 . 7 ± 0 . 1 ∘ $$ 0.7\pm 0.{1}^{\circ } $$ C. CONCLUSION: The PCA-PDF algorithm improved temperature accuracy to <1°C during periodic motion, but was not able to adequately address sporadic motion. By augmenting the PCA-PDF algorithm, temperature SD during large sporadic motion was also reduced to <1°C, greatly improving the original PCA-PDF algorithm.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Hipertermia Induzida , Termometria , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Termometria/métodos , Imageamento por Ressonância Magnética/métodos , Temperatura , Hipertermia Induzida/métodos , Algoritmos
19.
Med Biol Eng Comput ; 62(4): 1229-1246, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38163835

RESUMO

A new noninvasive core-thermometry technique, based on the use of two heat flux sensors with different very low thermal resistances, is proposed. Thermodynamically derived equations, using a pair of skin temperatures and heat fluxes detected from the sensors, can give the estimated deep body temperature (DBT) together with thermal resistance of the skin tissue itself. The validity and accuracy of this method are firstly investigated through in vitro experiments using a tissue phantom model and, secondly, as in vivo comparisons with sublingual (Tsub) or rectal temperature (Trec) measurements in 9 volunteers, attaching the sensors around the upper sternum or the nape. Model experiments showed a good agreement between the measured and estimated temperatures, ranging from approximately 36 to 42 ℃. In vivo experiments demonstrated linear correlations between the estimated DBT and both Tsub and Trec values, though the estimated DBT was 0.13 ℃ higher than Tsub and 0.42 ℃ lower than Trec on average. The results also strongly suggested the possibility to estimate the tissue thermal resistance; this is discussed herein. Although further in vivo experiments under various environmental conditions are necessary, this method appears highly promising as an accurate, useful and convenient core-thermometry system for medical and healthcare settings.


Assuntos
Temperatura Alta , Termometria , Humanos , Temperatura Corporal , Termometria/métodos , Temperatura Cutânea , Temperatura
20.
NMR Biomed ; 37(2): e5046, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37837254

RESUMO

Temperature is a hallmark parameter influencing almost all magnetic resonance properties (e.g., T1 , T2 , proton density, and diffusion). In the preclinical setting, temperature has a large influence on animal physiology (e.g., respiration rate, heart rate, metabolism, and oxidative stress) and needs to be carefully regulated, especially when the animal is under anesthesia and thermoregulation is disrupted. We present an open-source heating and cooling system capable of regulating the temperature of the animal. The system was designed using Peltier modules capable of heating or cooling a circulating water bath with active temperature feedback. Feedback was obtained using a commercial thermistor, placed in the animal rectum, and a proportional-integral-derivative controller was used to modulate the temperature. Its operation was demonstrated in a phantom as well as in mouse and rat animal models, where the standard deviation of the temperature of the animal upon convergence was less than a 10th of a degree. An application where brain temperature of a mouse was modulated was demonstrated using an invasive optical probe and noninvasive magnetic resonance spectroscopic thermometry measurements.


Assuntos
Calefação , Termometria , Ratos , Camundongos , Animais , Temperatura , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Temperatura Corporal , Termometria/métodos , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA