Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.724
Filtrar
1.
Biol Open ; 13(10)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39229830

RESUMO

Tardigrades are known for their ability to survive extreme conditions. Reports indicate that tardigrade thermal tolerance is enhanced in the desiccated state; however, these reports have almost always used a single tardigrade species and drying/heating methods vary between studies. Using six different species of tardigrades we confirm that desiccation enhances thermal tolerance in tardigrades. Furthermore, we show that differences in thermal tolerance exist between tardigrade species both when hydrated and desiccated. While Viridiscus viridianus survives the highest temperatures in the hydrated state of any species tested here, under hydrated conditions, the thermal tolerance of V. viridianus is restricted to an acute transient stress. Furthermore, unlike other stresses, such as desiccation, where mild initial exposure preconditions some species to survive subsequent harsher treatment, for V. viridianus exposure to mild thermal stress in the hydrated state does not confer protection to harsher heating. Our results suggest that while tardigrades have the capacity to tolerate mild thermal stress while hydrated, survival of high temperatures in a desiccated state is a by-product of tardigrades' ability to survive desiccation.


Assuntos
Dessecação , Tardígrados , Animais , Tardígrados/fisiologia , Termotolerância , Temperatura , Estresse Fisiológico , Especificidade da Espécie , Adaptação Fisiológica
2.
Sci Total Environ ; 953: 176120, 2024 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-39260473

RESUMO

Aquatic organisms are challenged by changes in their external environment, such as temperature and salinity fluctuations. If these variables interacted with each other, the response of organisms to temperature changes would be modified by salinity and vice versa. We tested for potential interaction between temperature and salinity effects on freshwater, brackish, and marine organisms, including algae, macrophytes, heterotrophic protists, parasites, invertebrates, and fish. We performed a meta-analysis that compared the thermal tolerance (characterised by the temperature optimum, lower and upper temperature limits, and thermal breadth) at various salinities. The meta-analysis was based on 90 articles (algae: 15; heterotrophic protists: 1; invertebrates: 43; and fish: 31). Studies on macrophytes and parasites were lacking. We found that decreasing salinity significantly increased and decreased the lower and upper temperature limits, respectively, in all groups. Thus, a lowered salinity increased the thermal sensitivity of organisms. These findings mainly reflect the response of brackish and marine organisms to salinity changes, which dominated our database. The few studies on freshwater species showed that their lower thermal limits increased and the upper thermal limits decreased with increasing salinity, albeit statistically nonsignificant. Although non-significant, the response of thermal tolerance to salinity changes differed between various organism groups. It generally decreased in the order of: algae > invertebrates > fish. Overall, our findings indicate adverse effects of salinity changes on the temperature tolerance of aquatic organisms. For freshwater species, studies are comparatively scarce and further studies on their thermal performance at various salinity gradients are required to obtain more robust evidence for interactions between salinity and temperature tolerance. Considering test conditions such as acclimation temperature and potential infection with parasites in future studies may decrease the variability in the relationship between salinity and thermal tolerance.


Assuntos
Organismos Aquáticos , Salinidade , Organismos Aquáticos/fisiologia , Animais , Termotolerância , Invertebrados/fisiologia , Peixes/fisiologia , Temperatura , Água Doce
3.
PLoS One ; 19(9): e0309719, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39292637

RESUMO

Assisted sexual coral propagation, resulting in greater genet diversity via genetic recombination, has been hypothesized to lead to more adaptable and, hence, resilient restored populations compared to more common clonal techniques. Coral restoration efforts have resulted in substantial populations of 'Assisted sexual Recruits' (i.e., juvenile corals derived from assisted sexual reproduction; AR) of multiple species outplanted to reefs or held in in situ nurseries across many locations in the Caribbean. These AR populations provided context to evaluate their relative resilience compared to co-occurring coral populations during the 2023 marine heat wave of unprecedented duration and intensity that affected the entire Caribbean. Populations of six species of AR, most ranging in age from 1-4 years, were surveyed across five regions during the mass bleaching season in 2023 (Aug-Dec), alongside co-occurring groups of corals to compare prevalence of bleaching and related mortality. Comparison groups included conspecific adult colonies as available, but also the extant co-occurring coral assemblages in which conspecifics were rare or lacking, as well as small, propagated coral fragments. Assisted sexual recruits had significantly lower prevalence of bleaching impacts (overall pooled ~ 10%) than conspecific coral populations typically comprised of larger colonies (~ 60-100% depending on species). In addition, small corals derived from fragmentation (rather than sexual propagation) in two regions showed bleaching susceptibility intermediate between AR and wild adults. Overall, AR exhibited high bleaching resistance under heat stress exposure up to and exceeding Degree Heating Weeks of 20°C-weeks. As coral reefs throughout the globe are subject to increasingly frequent and intense marine heatwaves, restoration activities that include sexual reproduction and seeding can make an important contribution to sustain coral populations.


Assuntos
Antozoários , Recifes de Corais , Animais , Antozoários/fisiologia , Região do Caribe , Branqueamento de Corais , Termotolerância , Reprodução/fisiologia , Temperatura Alta/efeitos adversos
4.
J Therm Biol ; 124: 103946, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39265502

RESUMO

Animals' thermal sensitivities have long been characterized by thermal performance curves (TPCs) or reaction norms, and TPCs may predict animals' responses to climate change. Typically, TPCs are parameterized by measuring performance at a range of constant temperatures. Yet, animals encounter a range of thermal environments, and temperature variability is an aspect of climate change that may affect animals more than gradual warming. Daily temperature variability is particularly important for eggs in most taxa because they are highly sensitive to temperature and cannot behaviorally avoid stressful temperatures. Thus, the legacy of thermal conditions experienced during incubation may carryover to subsequent life stages. Here, I factorially manipulated mean temperature (20, 25, or 30 °C) and daily temperature range (DTR; ±0, 5, or 10 °C) during incubation for eggs of the variable field cricket (Gryllus lineaticeps) to integrate the role of DTR into the established paradigm of TPCs. Low DTR (±5 °C) was not generally costly, and it even improved hatchling starvation resistance (sensu hormesis). However, high DTR (±10 °C) reduced and delayed hatching at a warm mean temperature (30 °C). The effects of high DTR carried over to accelerate hatchling development at an expense to hatchling starvation resistance-therefore, thermal conditions during incubation can shape tradeoffs among important traits related to life history and stress tolerance later in life. In sum, animals may exhibit complex responses to their increasingly warmer, more thermally variable environments.


Assuntos
Temperatura , Animais , Gryllidae/fisiologia , Gryllidae/crescimento & desenvolvimento , Mudança Climática , Embrião não Mamífero/fisiologia , Feminino , Termotolerância
5.
Proc Biol Sci ; 291(2030): 20240587, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39257340

RESUMO

Adaptation of reef-building corals to global warming depends upon standing heritable variation in tolerance traits upon which selection can act. Yet limited knowledge exists on heat-tolerance variation among conspecific individuals separated by metres to hundreds of kilometres. Here, we performed standardized acute heat-stress assays to quantify the thermal tolerance traits of 709 colonies of Acropora spathulata from 13 reefs spanning 1060 km (9.5° latitude) of the Great Barrier Reef. Thermal thresholds for photochemical efficiency and chlorophyll retention varied considerably among individual colonies both among reefs (approximately 6°C) and within reefs (approximately 3°C). Although tolerance rankings of colonies varied between traits, the most heat-tolerant corals (i.e. top 25% of each trait) were found at virtually all reefs, indicating widespread phenotypic variation. Reef-scale environmental predictors explained 12-62% of trait variation. Corals exposed to high thermal averages and recent thermal stress exhibited the greatest photochemical performance, probably reflecting local adaptation and stress pre-acclimatization, and the lowest chlorophyll retention suggesting stress pre-sensitization. Importantly, heat tolerance relative to local summer temperatures was the greatest on higher latitude reefs suggestive of higher adaptive potential. These results can be used to identify naturally tolerant coral populations and individuals for conservation and restoration applications.


Assuntos
Antozoários , Recifes de Corais , Animais , Antozoários/fisiologia , Clorofila/metabolismo , Aclimatação , Temperatura Alta , Termotolerância , Aquecimento Global , Adaptação Fisiológica , Austrália
6.
Commun Biol ; 7(1): 1147, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39278981

RESUMO

Kelps are vital for marine ecosystems, yet the genetic diversity underlying their capacity to adapt to climate change remains unknown. In this study, we focused on the kelp Macrocystis pyrifera a species critical to coastal habitats. We developed a protocol to evaluate heat stress response in 204 Macrocystis pyrifera genotypes subjected to heat stress treatments ranging from 21 °C to 27 °C. Here we show that haploid gametophytes exhibiting a heat-stress tolerant (HST) phenotype also produced greater biomass as genetically similar diploid sporophytes in a warm-water ocean farm. HST was measured as chlorophyll autofluorescence per genotype, presented here as fluorescent intensity values. This correlation suggests a predictive relationship between the growth performance of the early microscopic gametophyte stage HST and the later macroscopic sporophyte stage, indicating the potential for selecting resilient kelp strains under warmer ocean temperatures. However, HST kelps showed reduced genetic variation, underscoring the importance of integrating heat tolerance genes into a broader genetic pool to maintain the adaptability of kelp populations in the face of climate change.


Assuntos
Resposta ao Choque Térmico , Macrocystis , Macrocystis/genética , Resposta ao Choque Térmico/genética , Termotolerância/genética , Variação Genética , Mudança Climática , Genótipo , Kelp/genética , Kelp/crescimento & desenvolvimento
7.
Adv Exp Med Biol ; 1461: 79-95, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39289275

RESUMO

Temperature affects a variety of cellular processes because the molecular motion of cellular constituents and the rate of biochemical reactions are sensitive to temperature changes. Thus, the adaptation to temperature is necessary to maintain cellular functions during temperature fluctuation, particularly in poikilothermic organisms. For a wide range of organisms, cellular lipid molecules play a pivotal role during thermal adaptation. Temperature changes affect the physicochemical properties of lipid molecules, resulting in the alteration of cell membrane-related functions and energy metabolism. Since the chemical structures of lipid molecules determine their physicochemical properties and cellular functions, cellular lipids, particularly fatty acid-containing lipid molecules, are remodeled as a thermal adaptation response to compensate for the effects of temperature change. In this chapter, we first introduce the structure and biosynthetic pathway of fatty acid-containing lipid molecules, such as phospholipid and triacylglycerol, followed by a description of the cellular lipid-mediated mechanisms of thermal adaptation and thermoregulatory behavior in animals.


Assuntos
Regulação da Temperatura Corporal , Metabolismo dos Lipídeos , Animais , Regulação da Temperatura Corporal/fisiologia , Metabolismo Energético , Fosfolipídeos/metabolismo , Fosfolipídeos/química , Adaptação Fisiológica/fisiologia , Ácidos Graxos/metabolismo , Ácidos Graxos/química , Triglicerídeos/metabolismo , Termotolerância/fisiologia , Temperatura
8.
Adv Exp Med Biol ; 1461: 253-265, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39289287

RESUMO

Thermal adaptation to environmental temperature is a driving force in animal evolution. This chapter presents thermal adaptation in ectotherms and endotherms from the perspective of developmental biology. In ectotherms, there are known examples of temperature influencing morphological characteristics, such as seasonal color change, melanization, and sex determination. Furthermore, the timing of embryonic development also varies with environmental temperature. This review will introduce the cellular and molecular mechanisms underlying temperature-dependent embryogenesis. The evolution of thermal adaptation in endotherms is also important for survival in cold climates. Recent genome-wide studies have revealed adaptive mutations in the genomes of extant humans as well as extinct species such as woolly mammoths and Neanderthals. These studies have shown that single-nucleotide polymorphisms in physiologically related genes (e.g., CPT1A, LRP5, THATA, PRKG1, and FADS1-3) allow humans to live in cold climates. At the end of this chapter, we present the remaining questions in terms of genetic assimilation, heat shock protein Hsp90, and embryonic development.


Assuntos
Desenvolvimento Embrionário , Animais , Humanos , Desenvolvimento Embrionário/genética , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Evolução Biológica , Dessaturase de Ácido Graxo Delta-5 , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Evolução Molecular , Adaptação Fisiológica/genética , Polimorfismo de Nucleotídeo Único , Termotolerância/genética , Aclimatação/genética
9.
Sci Total Environ ; 952: 175961, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39226957

RESUMO

Climate warming threatens sea turtles, among other effects, because high temperatures increase embryo mortality. However, not all species and populations are expected to respond the same way because they could have different thermal tolerances and capacities to adapt. We tested the effect of incubation temperature on egg mortality in a population of green turtles (Chelonia mydas) previously suggested to be less affected by extreme climatic events than others. We (1) assessed the relationship between temperature and hatching success, (2) defined an optimal range of temperatures that maximized hatching success and (3) assessed the variability in the response to temperature among clutches laid by different mothers, which could allow adaptation. Hatching success was consistently high in green turtle clutches with a skew toward high values, with 50 % of clutches having a success above 94 %. Yet, it was mildly affected by temperature, declining at both low and high temperatures. The optimal range of mean incubation temperatures was between ~30.5 °C and 32.5 °C. Current mean temperatures (31.3 °C) fall within the middle of the optimal range, indicating a potential resilience to further rises in mean nest temperature. Hatching success was best described by nest temperature and the interaction between female identity and temperature. This last predictor indicated a variability in thermal tolerance among clutches laid by different mothers and therefore, a capacity to adapt. The studied population of green turtles seems to be less vulnerable than others to climate warming. Understanding how different populations could respond to increasing temperatures could help complete the picture on the potential effects of climate change on sea turtles.


Assuntos
Mudança Climática , Óvulo , Termotolerância , Tartarugas , Animais , Tartarugas/fisiologia , Óvulo/fisiologia , Adaptação Fisiológica , Temperatura , Feminino , Temperatura Alta
10.
BMC Plant Biol ; 24(1): 842, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39242989

RESUMO

BACKGROUND: Calcium-dependent protein kinase (CDPK) plays a key role in cotton tolerance to abiotic stress. However, its role in cotton heat stress tolerance is not well understood. Here, we characterize the GhCDPK gene family and their expression profiles with the aim of identifying CDPK genes associated with heat stress tolerance. RESULTS: This study revealed 48 GhCDPK members in the cotton genome, distributed on 18 chromosomes. Tree phylogenetic analysis showed three main clustering groups of the GhCDPKs. Cis-elements revealed many abiotic stress and phytohormone pathways conserved promoter regions. Similarly, analysis of the transcription factor binding sites (TFBDS) in the GhCDPK genes showed many stress and hormone related sites. The expression analysis based on qRT-PCR showed that GhCDPK16 was highly responsive to high-temperature stress. Subsequent protein-protein interactions of GhCDPK16 revealed predictable interaction with ROS generating, calcium binding, and ABA signaling proteins. Overexpression of GhCDPK16 in cotton and Arabidopsis improved thermotolerance by lowering ROS compound buildup. Under heat stress, GhCDPK16 transgenic lines upregulated heat-inducible genes GhHSP70, GHSP17.3, and GhGR1, as demonstrated by qRT-PCR analysis. Contrarily, GhCDPK16 knockout lines in cotton exhibited an increase in ROS accumulation. Furthermore, antioxidant enzyme activity was dramatically boosted in the GhCDPK16-ox transgenic lines. CONCLUSIONS: The collective findings demonstrated that GhCDPK16 could be a viable gene to enhance thermotolerance in cotton and, therefore, a potential candidate gene for improving heat tolerance in cotton.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Resposta ao Choque Térmico , Proteínas de Plantas , Arabidopsis/genética , Arabidopsis/fisiologia , Gossypium/genética , Gossypium/fisiologia , Gossypium/metabolismo , Resposta ao Choque Térmico/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Termotolerância/genética
11.
Nat Commun ; 15(1): 7696, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227617

RESUMO

Heat stress (HS) poses a significant challenge to plant survival, necessitating sophisticated molecular mechanisms to maintain cellular homeostasis. Here, we identify SICKLE (SIC) as a key modulator of HS responses in Arabidopsis (Arabidopsis thaliana). SIC is required for the sequestration of RNA DEBRANCHING ENZYME 1 (DBR1), a rate-limiting enzyme of lariat intronic RNA (lariRNA) decay, into stress granules (SGs). The sequestration of DBR1 by SIC enhances the accumulation of lariRNAs, branched circular RNAs derived from excised introns during pre-mRNA splicing, which in turn promote the transcription of their parental genes. Our findings further demonstrate that SIC-mediated DBR1 sequestration in SGs is crucial for plant HS tolerance, as deletion of the N-terminus of SIC (SIC1-244) impairs DBR1 sequestration and compromises plant response to HS. Overall, our study unveils a mechanism of transcriptional regulation in the HS response, where lariRNAs are enriched through DBR1 sequestration, ultimately promoting the transcription of heat stress tolerance genes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Íntrons , Splicing de RNA , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Resposta ao Choque Térmico/genética , Íntrons/genética , Grânulos de Estresse/metabolismo , Grânulos de Estresse/genética , RNA de Plantas/metabolismo , RNA de Plantas/genética , Termotolerância/genética , RNA Circular/metabolismo , RNA Circular/genética , Plantas Geneticamente Modificadas
12.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39273241

RESUMO

Heat stress inhibits plant growth and productivity. Among the main regulators, B-box zinc-finger (BBX) proteins are well-known for their contribution to plant photomorphogenesis and responses to abiotic stress. Our research pinpoints that SlBBX31, a BBX protein harboring a conserved B-box domain, serves as a suppressor of plant growth and heat tolerance in tomato (Solanum lycopersicum L.). Overexpressing (OE) SlBBX31 in tomato exhibited yellowing leaves due to notable reduction in chlorophyll content and net photosynthetic rate (Pn). Furthermore, the pollen viability of OE lines obviously decreased and fruit bearing was delayed. This not only affected the fruit setting rate and the number of plump seeds but also influenced the size of the fruit. These results indicate that SlBBX31 may be involved in the growth process of tomato, specifically in terms of photosynthesis, flowering, and the fruiting process. Conversely, under heat-stress treatment, SlBBX31 knockout (KO) plants displayed superior heat tolerance, evidenced by their improved membrane stability, heightened antioxidant enzyme activities, and reduced accumulation of reactive oxygen species (ROS). Further transcriptome analysis between OE lines and KO lines under heat stress revealed the impact of SlBBX31 on the expression of genes linked to photosynthesis, heat-stress signaling, ROS scavenging, and hormone regulation. These findings underscore the essential role of SlBBX31 in regulating tomato growth and heat-stress resistance and will provide valuable insights for improving heat-tolerant tomato varieties.


Assuntos
Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fotossíntese , Termotolerância/genética , Espécies Reativas de Oxigênio/metabolismo , Plantas Geneticamente Modificadas/genética , Clorofila/metabolismo
13.
J Therm Biol ; 124: 103945, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39142266

RESUMO

This study evaluated the impact of coat color (CC) and hair coat characteristics (HC) on productive and physiological traits related to thermotolerance in Angus heifers. The goal was to determine if HC and/or CC were reliable indicators of thermotolerance on a large scale for future breeding programs. Ninety-three 15-month-old Angus heifers (52 black, 41 red) were evaluated in three periods on a beef cattle farm in Brazil. Heifers were classified by CC and HC, and body weight, body condition score (BCS), and reproductive tract score (RTS) were compared between groups. In the summer evaluation, surface temperature (infrared thermography), internal temperature (intravaginal sensors), sweating rate, and behavior were assessed in a subset of heifers. Temperature-humidity index (THI) was calculated using meteorological data. The proportion of heifers with short, fine, and smooth hair (HC1) increased (P < 0.05) over the evaluations. Heifers with thick, long, and woolly hair (HC3) had lower (P < 0.05) body weights than those with finer coats, regardless of CC. Black heifers had greater (P < 0.05) puberty rates than red heifers in the first two evaluations. At a THI of 66, black heifers with HC1 exhibited a lower (P < 0.05) internal temperature compared to black heifers with HC3. At a THI of 75, all heifers with HC1 had lower (P < 0.05) internal temperatures, regardless of CC. Red heifers and those with HC3 experienced hyperthermia for longer (P < 0.05) periods. Neither HC nor CC affected (P > 0.05) surface temperatures or sweating rates. At a THI of 72, more black heifers remained standing, suggesting behavioral adaptation. In conclusion, coat color and characteristics influence thermal stress and performance in Angus heifers, though color impact is limited. Internal temperature monitoring effectively determines thermotolerance. In tropical regions, selecting for short, fine, smooth hair may improve heat tolerance.


Assuntos
Pelo Animal , Cor de Cabelo , Termotolerância , Animais , Bovinos/fisiologia , Feminino , Sudorese , Peso Corporal
14.
J Therm Biol ; 124: 103943, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39151217

RESUMO

Mangrove habitats can serve as nursery areas for sharks and rays. Such environments can be thermally dynamic and extreme; yet, the physiological and behavioural mechanisms sharks and rays use to exploit such habitats are understudied. This study aimed to define the thermal niche of juvenile mangrove whiprays, Urogymnus granulatus. First, temperature tolerance limits were determined via the critical thermal maximum (CTMax) and minimum (CTMin) of mangrove whiprays at summer acclimation temperatures (28 °C), which were 17.5 °C and 39.9 °C, respectively. Then, maximum and routine oxygen uptake rates (MO2max and MO2routine, respectively), post-exercise oxygen debt, and recovery were estimated at current (28 °C) and heatwave (32 °C) temperatures, revealing moderate temperature sensitivities (i.e., Q10) of 2.4 (MO2max) and 1.6 (MO2routine), but opposing effects on post-exercise oxygen uptake. Finally, body temperatures (Tb) of mangrove whiprays were recorded using external temperature loggers, and environmental temperatures (Te) were recorded using stationary temperature loggers moored in three habitat zones (mangrove, reef flat, and reef crest). As expected, environmental temperatures varied between sites depending on depth. Individual mangrove whiprays presented significantly lower Tb relative to Te during the hottest times of the day. Electivity analysis showed tagged individuals selected temperatures from 24.0 to 37.0 °C in habitats that ranged from 21.1 to 43.5 °C. These data demonstrate that mangrove whiprays employ thermotaxic behaviours and a thermally insensitive aerobic metabolism to thrive in thermally dynamic and extreme habitats. Tropical nursery areas may, therefore, offer important thermal refugia for young rays. However, these tropical nursery areas could become threatened by mangrove and coral habitat loss, and climate change.


Assuntos
Termotolerância , Animais , Temperatura Alta , Ecossistema , Consumo de Oxigênio , Áreas Alagadas , Temperatura Corporal
15.
J Therm Biol ; 124: 103933, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39208468

RESUMO

To assess the vulnerability of birds and mammals to climate change recent studies have used the upper critical limit of thermoneutrality (TUC) as an indicator of thermal tolerance. But, the association between TUC and thermal tolerance is not straightforward and most studies describe TUC based solely on a deviation in metabolism from basal levels, without also considering the onset of evaporative cooling. It was argued recently that certain torpor-using bat species who survived prolonged exposure to high ambient temperatures (i.e. high thermal tolerance) experienced during extreme heat events did so by entering torpor and using facultative heterothermy to thermoconform and save on body water. Assuming that TUC is indicative of thermal tolerance, we expect TUC in torpor-using species to be higher than that of species which are obligate homeotherms, albeit that this distinction is based on confirmation of torpor use at low temperatures. To test this prediction, we performed a phylogenetically informed comparison of bat species known to use torpor (n = 48) and homeothermic (n = 16) bat species using published thermoregulatory datasets to compare the lower critical limit of thermoneutrality (TLC) and TUC in relation to body temperature. The influence of diet, biogeographical region, body mass and basal metabolic rate (BMR) was also considered. Body mass had a positive relationship with BMR, an inverse relationship with TLC and no relationship with TUC. Normothermic body temperature scaled positively with BMR, TLC and TUC. There was no relationship between diet or region and BMR, but both influenced thermal limits. Torpor-using bats had lower body mass and body temperatures than homeothermic bats, but there was no difference in BMR, TLC and TUC between them. Exceptional examples of physiological flexibility were observed in 34 torpor-using species and eight homeothermic species, which included 15 species of bats maintaining BMR-level metabolism at ambient temperatures as high as 40 °C (and corresponding body temperatures ∼39.2 °C). However, we argue that TUC based on metabolism alone is not an appropriate indicator of thermal tolerance as it disregards differences in the ability of animals to tolerate higher levels of hyperthermia, importance of hydration status and capacity for evaporative cooling. Also, the variability in TUC based on diet challenges the idea of evolutionary conservatism and warrants further consideration.


Assuntos
Quirópteros , Termotolerância , Quirópteros/fisiologia , Animais , Torpor/fisiologia , Metabolismo Basal , Regulação da Temperatura Corporal , Temperatura Corporal
16.
J Therm Biol ; 124: 103963, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39216191

RESUMO

Marine animals are challenged by chronically raised temperatures alongside an increased frequency of discrete, severe warming events. Exposure to repeated heat shocks could result in heat hardening, where sub-lethal exposure to thermal stress temporarily enhances thermotolerance, and may be an important mechanism by which marine species will cope with future thermal challenges. However, we have relatively little understanding of the effects of heat hardening in comparison to chronic exposure to elevated temperatures. Therefore, we compared the effects of heat hardening from repeated exposure to acute heat shocks and chronic exposure to elevated temperatures on thermal tolerance in the European abalone, Haliotis tuberculata. Adult abalones were exposed to either control temperature (15 °C), chronic warming (20 °C) or a regime of two events of repeated acute heat shock cycles (23-25 °C) during six months, and their thermal tolerance and performance, based upon cardiac activity, compared using a dynamic ramping assay. The cost associated with each treatment was also estimated via measurements of condition index (CI). Abalone exposed to both temperature treatments had higher upper thermal limits than the control, but heat-hardened individuals had significantly higher CI values, indicating an enhancement in condition status. Differences in the shape of the thermal performance curve suggest different mechanisms may be at play under different temperature exposure treatments. We conclude that heat hardening can boost thermal tolerance in this species, without performance trade-offs associated with chronic warming.


Assuntos
Gastrópodes , Resposta ao Choque Térmico , Temperatura Alta , Termotolerância , Animais , Gastrópodes/fisiologia
17.
Poult Sci ; 103(10): 104139, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39127007

RESUMO

The wide distribution and diverse varieties of chickens make them important models for studying genetic adaptation. The aim of this study was to identify genes that alter heat adaptation in commercial chicken breeds by comparing genetic differences between tropical and cold-resistant chickens. We analyzed whole-genome resequencing data of 186 chickens across various regions in Asia, including the following breeds: Bian chickens (B), Dagu chickens (DG), Beijing-You chickens (BY), and Gallus gallus jabouillei from China; Gallus gallus murghi from India; Vietnam native chickens (VN); Thailand native chickens (TN) and Gallus gallus spadiceus from Thailand; and Indonesia native chickens (IN), Gallus gallus gallus, and Gallus gallus bankiva from Indonesia. In total, 5,454,765 SNPs were identified for further analyses. Population genetic structure analysis revealed that each local chicken breed had undergone independent evolution. Additionally, when K = 5, B, BY, and DG chickens shared a common ancestor and exhibited high levels of inbreeding, suggesting that northern cold-resistant chickens are likely the result of artificial selection. In contrast, the runs of homozygosity (ROH) and the ROH-based genomic inbreeding coefficient (FROH) results for IN, TN, and VN chickens showed low levels of inbreeding. Low population differentiation index values indicated low differentiation levels, suggesting low genetic diversity in tropical chickens, implying increased vulnerability to environmental changes, decreased adaptability, and disease resistance. Whole-genome selection sweep analysis revealed 69 candidate genes, including LGR4, G6PC, and NBR1, between tropical and cold-resistant chickens. The genes were further subjected to GO and KEGG enrichment analyses, revealing that most of the genes were primarily enriched in biological synthesis processes, metabolic processes, central nervous system development, ion transmembrane transport, and the Wnt signaling pathway. Our study identified heat adaptation genes and their functions in chickens that primarily affect chickens in high-temperature environments through metabolic pathways. These heat-resistance genes provide a theoretical basis for improving the heat-adaptation capacity of commercial chicken breeds.


Assuntos
Galinhas , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma , Animais , Galinhas/genética , Galinhas/fisiologia , Sequenciamento Completo do Genoma/veterinária , Termotolerância/genética , Adaptação Fisiológica/genética
18.
Animal ; 18(9): 101273, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39153441

RESUMO

This study addresses the critical issue of high-temperature stress in Japanese flounder (Paralichthys olivaceus), a factor threatening both their survival and the growth of the aquaculture industry. The research aims to identify genetic markers associated with high-temperature tolerance, unravel the genetic regulatory mechanisms, and lay the foundation for breeding Japanese flounder with increased resistance to high temperatures. In this study, using a genome-wide association study was performed to identify single nucleotide polymorphisms (SNPs) and genes associated with high-temperature tolerance for Japanese flounder using 280 individuals with 342 311 high-quality SNPs. The traits of high-temperature tolerance were defined as the survival time and survival status of Japanese flounder at high water temperature (31℃) for 15 days cultivate. A genome-wide association study identified six loci on six chromosomes significantly correlated with survival time under high-temperature stress. Six candidate genes were successfully annotated. Additionally, 34 loci associated with survival status were identified and mapped to 15 chromosomes, with 22 candidate genes annotated. Functional analysis highlighted the potential importance of genes like traf4 and ppm1l in regulating apoptosis, impacting high-temperature tolerance in Japanese flounder. These findings provide a valuable theoretical framework for integrating molecular markers into Japanese flounder breeding programmes, serving as a molecular tool to enhance genetic traits linked to high-temperature tolerance in cultured Japanese flounder.


Assuntos
Linguado , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Animais , Linguado/genética , Linguado/fisiologia , Estudo de Associação Genômica Ampla/veterinária , Temperatura Alta/efeitos adversos , Aquicultura , Termotolerância/genética , Marcadores Genéticos , Cruzamento , Estresse Fisiológico/genética
19.
Trop Anim Health Prod ; 56(7): 230, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096401

RESUMO

Raising cattle is a lucrative business that operates globally but is confronted by many obstacles, such as thermal stress, which results in substantial monetary losses. A vital role of heat shock proteins (HSPs) is to protect cells from cellular damage. HSP90 is a highly prevalent, extremely adaptable gene linked to physiological resilience in thermal stress. This study aimed to find genetic polymorphisms of the HSP90AA1 gene in Karan Fries cattle and explore their relationship to thermal tolerance and production traits. One SNP (g.3292 A > C) was found in the Intron 8 and three SNPs loci (g.4776 A > G, g.5218T > C and g.5224 A > C) were found in the exon 11 of 100 multiparous Karan Fries cattle. The association study demonstrated that the SNP1-g.3292 A > C was significantly (P < 0.01) linked to the variables respiratory rate (RR), heat tolerance coefficient (HTC) and total milk yield (TMY (kg)) attributes. There was no significant correlation identified between any of the other SNP sites (SNP2-g.4776 A > G; SNP3-g.5218T > C; SNP4-g.5224 A > C) with the heat tolerance and production attributes in Karan Fries cattle. Haploview 4.2 and SHEsis software programs were used to analyse pair linkage disequilibrium and construct haplotypes for HSP90AA1. Association studies indicated that the Hap3 (CATA) was beneficial for heat tolerance breeding in Karan Fries cattle. In conclusion, genetic polymorphisms and haplotypes in the HSP90AA1 were associated with thermal endurance attributes. This relationship can be utilized as a beneficial SNP or Hap marker for genetic heat resistance selection in cow breeding platforms.


Assuntos
Proteínas de Choque Térmico HSP90 , Polimorfismo de Nucleotídeo Único , Termotolerância , Animais , Bovinos/genética , Bovinos/fisiologia , Termotolerância/genética , Proteínas de Choque Térmico HSP90/genética , Feminino , Índia , Haplótipos
20.
Sci Total Environ ; 950: 174969, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39117224

RESUMO

Deoxygenation is a growing threat to marine ecosystems, with an increase in the frequency, extent and intensity of hypoxia events in recent decades. These phenomena will pose various challenges to marine species, as it affects their survival, growth, body condition, metabolism and ability to handle other environmental stressors, such as temperature. Early life stages are particularly vulnerable to these changes. Thus, it is crucial to understand how these initial phases will respond to hypoxia to predict the impacts on marine populations and ecosystems. In this work, we aimed to evaluate the effect of oxygen (O2) availability on fitness related traits (mortality, growth and body condition), metabolism (Routine metabolic rates [RMR]) and thermal tolerance (CTmax), in early stages of Atherina presbyter, exposed for two weeks, to two O2 levels: normoxia (6.5-7.2 mg L-1) and hypoxia (2-2.5 mg L-1), through an experiment setup. Our findings showed that while low oxygen levels did not negatively impact mortality, total length, weight, or body condition (Fulton K), the larvae undergo metabolic depression when exposed to hypoxia, as an energy conservation mechanism. Furthermore, CTmax suffered a significant reduction in low O2 availability, due to the inability of the circulatory and respiratory systems to fulfill energy demands. These outcomes suggest that although early life stages of Atherina presbyter can survive under low oxygen environments, they are less capable of dealing with sudden increases in temperature when oxygen is scarce.


Assuntos
Larva , Termotolerância , Animais , Larva/crescimento & desenvolvimento , Termotolerância/fisiologia , Oxigênio/metabolismo , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA