Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Gerontol ; 194: 112520, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38992823

RESUMO

Medium-chain triglycerides (MCTs) and docosahexaenoic acid (DHA, Cn-3, 22:6) are essential in improving cognitive function and protecting neurocytes. This study explored the effects of the combined intervention of MCTs and DHA on inhibiting neurocyte apoptosis of the brain and improving cognitive function in senescence-accelerated mouse-prone 8 (SAMP8). Four-month-old male SAMP8 mice were randomly divided into four treatment groups (12 mice/group): DHA, MCT, DHA + MCT, and control groups, which intervened for seven months. Twelve age-matched male senescence-accelerated mouse resistant 1 (SAMR1) was used as the natural aging group. TUNEL assay and HE staining were used to assess neurocyte apoptosis and damage in the brain of mice. Moreover, the cognitive function was analyzed using the Morris water maze (MWM) and open field (OF) tests. The results showed that the cognitive function of 11-month-old SAMP8 mice decreased with age, and further pathological examination revealed the damaged neurocyte structure, karyopyknosis, cell atrophy, and even apoptosis. MCTs combined with DHA supplementation could increase octanoic acid (C8:0), decanoic acid (C10:0), and DHA levels in the serum, inhibit neurocyte apoptosis, improve neurocyte damage, moreover delay age-related cognitive decline after seven-month treatment. Furthermore, combining MCTs and DHA was significantly more beneficial than MCTs or DHA alone. In conclusion, MCTs combined with DHA could delay cognitive decline by inhibiting neurocyte apoptosis of the brain in SAMP8 mice.


Assuntos
Apoptose , Encéfalo , Cognição , Ácidos Docosa-Hexaenoicos , Triglicerídeos , Animais , Ácidos Docosa-Hexaenoicos/farmacologia , Apoptose/efeitos dos fármacos , Masculino , Cognição/efeitos dos fármacos , Camundongos , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Aprendizagem em Labirinto/efeitos dos fármacos , Suplementos Nutricionais , Envelhecimento , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Caprilatos/farmacologia , Modelos Animais de Doenças
2.
Neuromolecular Med ; 26(1): 29, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014255

RESUMO

Vascular dementia (VaD) is a cognitive disorder characterized by a decline in cognitive function resulting from cerebrovascular disease. The hippocampus is particularly susceptible to ischemic insults, leading to memory deficits in VaD. Astaxanthin (AST) has shown potential therapeutic effects in neurodegenerative diseases. However, the mechanisms underlying its protective effects in VaD and against hippocampal neuronal death remain unclear. In this study, We used the bilateral common carotid artery occlusion (BCCAO) method to establish a chronic cerebral hypoperfusion (CCH) rat model of VaD and administered a gastric infusion of AST at 25 mg/kg per day for 4 weeks to explore its therapeutic effects. Memory impairments were assessed using Y-maze and Morris water maze tests. We also performed biochemical analyses to evaluate levels of hippocampal neuronal death and apoptosis-related proteins, as well as the impact of astaxanthin on the PI3K/Akt/mTOR pathway and oxidative stress. Our results demonstrated that AST significantly rescued memory impairments in VaD rats. Furthermore, astaxanthin treatment protected against hippocampal neuronal death and attenuated apoptosis. We also observed that AST modulated the PI3K/Akt/mTOR pathway, suggesting its involvement in promoting neuronal survival and synaptic plasticity. Additionally, AST exhibited antioxidant properties, mitigating oxidative stress in the hippocampus. These findings provide valuable insights into the potential therapeutic effects of AST in VaD. By elucidating the mechanisms underlying the actions of AST, this study highlights the importance of protecting hippocampal neurons and suggests potential targets for intervention in VaD. There are still some unanswered questions include long-term effects and optimal dosage of the use in human. Further research is warranted to fully understand the therapeutic potential of AST and its application in the clinical treatment of VaD.


Assuntos
Apoptose , Demência Vascular , Hipocampo , Transtornos da Memória , Neurônios , Fármacos Neuroprotetores , Estresse Oxidativo , Ratos Sprague-Dawley , Xantofilas , Animais , Xantofilas/uso terapêutico , Xantofilas/farmacologia , Hipocampo/efeitos dos fármacos , Demência Vascular/tratamento farmacológico , Ratos , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Estresse Oxidativo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Morte Celular/efeitos dos fármacos , Antioxidantes/uso terapêutico , Antioxidantes/farmacologia , Teste do Labirinto Aquático de Morris/efeitos dos fármacos
3.
Phytomedicine ; 130: 155725, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38772181

RESUMO

BACKGROUND: Bidirectional communication between the gut microbiota and the brain may play an essential role in the cognitive dysfunction associated with chronic sleep deprivation(CSD). Salvia miltiorrhiza Bunge (Danshen, DS), a famous Chinese medicine and functional tea, is extensively used to protect learning and memory capacities, although the mechanism of action remains unknown. PURPOSE: The purpose of this research was to explore the efficacy and the underlying mechanism of DS in cognitive dysfunction caused by CSD. METHODS: DS chemical composition was analyzed by UPLC-QTOF-MS/MS. Forty rats were randomly assigned to five groups (n = 8): control (CON), model (MOD), low- (1.35 g/kg, DSL), high-dose (2.70 g/kg, DSH) DS group, and Melatonin(100 mg/kg, MT) group. A CSD rat model was established over 21 days. DS's effects and the underlying mechanism were explored using the open-field test(OFT), Morris water-maze(MWM), tissue staining(Hematoxylin and Eosin Staining, Nissl staining, Alcian blue-periodic acid SCHIFF staining, and Immunofluorescence), enzyme-linked immunosorbent assay, Western blot, quantitative real-time polymerase chain reaction(qPCR), and 16S rRNA sequencing. RESULTS: We demonstrated that CSD caused gut dysbiosis and cognitive dysfunction. Furthermore, 16S rRNA sequencing demonstrated that Firmicutes and Proteobacteria were more in fecal samples from model group rats, whereas Bacteroidota and Spirochaetota were less. DS therapy, on the contrary hand, greatly restored the gut microbial community, consequently alleviating cognitive impairment in rats. Further research revealed that DS administration reduced systemic inflammation via lowering intestinal inflammation and barrier disruption. Following that, DS therapy reduced Blood Brain Barrier(BBB) and neuronal damage, further decreasing neuroinflammation in the hippocampus(HP). Mechanistic studies revealed that DS therapy lowered lipopolysaccharide (LPS) levels in the HP, serum, and colon, consequently blocking the TLR4/MyD88/NF-κB signaling pathway and its downstream pro-inflammatory products(IL-1ß, IL-6, TNF-α, iNOS, and COX2) in the HP and colon. CONCLUSION: DS treatment dramatically improved spatial learning and memory impairments in rats with CSD by regulating the composition of the intestinal flora, preserving gut and brain barrier function, and reducing inflammation mediated by the LPS-TLR4 signaling pathway. Our findings provide novel insight into the mechanisms by which DS treats cognitive dysfunction caused by CSD.


Assuntos
Disfunção Cognitiva , Medicamentos de Ervas Chinesas , Ratos Sprague-Dawley , Salvia miltiorrhiza , Privação do Sono , Animais , Salvia miltiorrhiza/química , Privação do Sono/complicações , Privação do Sono/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Masculino , Medicamentos de Ervas Chinesas/farmacologia , Ratos , Microbioma Gastrointestinal/efeitos dos fármacos , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , NF-kappa B/metabolismo , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos
4.
Biomed Pharmacother ; 176: 116754, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38810401

RESUMO

Alzheimer's disease (AD) presents a significant challenge due to its prevalence and lack of cure, driving the quest for effective treatments. Anshen Bunao Syrup, a traditional Chinese medicine known for its neuroprotective properties, shows promise in addressing this need. However, understanding its precise mechanisms in AD remains elusive. This study aimed to investigate Anshen Bunao Syrup's therapeutic potential in AD treatment using a scopolamine-induced AD rat model. Assessments included novel-object recognition and Morris water maze tasks to evaluate spatial learning and memory, alongside Nissl staining and ELISA analyses for neuronal damage and biomarker levels. Results demonstrated that Anshen Bunao Syrup effectively mitigated cognitive dysfunction by inhibiting amyloid-ß and phosphorylation Tau aggregation, thereby reducing neuronal damage. Metabolomics profiling of rats cortex revealed alterations in key metabolites implicated in tryptophan and fatty acid metabolism pathways, suggesting a role in the therapeutic effects of Anshen Bunao Syrup. Additionally, ELISA and correlation analyses indicated attenuation of oxidative stress and immune response through metabolic remodeling. In conclusion, this study provides compelling evidence for the neuroprotective effects of Anshen Bunao Syrup in AD models, shedding light on its potential as a therapeutic agent for AD prevention and treatment.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Fármacos Neuroprotetores , Estresse Oxidativo , Ratos Sprague-Dawley , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Masculino , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Ratos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Escopolamina , Proteínas tau/metabolismo , Teste do Labirinto Aquático de Morris/efeitos dos fármacos
5.
J Ethnopharmacol ; 329: 118161, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599474

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Kai-Xin-San (KXS) is a classic herbal formula for the treatment and prevention of AD (Alzheimer's disease) with definite curative effect, but its mechanism, which involves multiple components, pathways, and targets, is not yet fully understood. AIM OF THE STUDY: To verify the effect of KXS on gut microbiota and explore its anti-AD mechanism related with gut microbiota. MATERIALS AND METHODS: AD rat model was established and evaluated by intraperitoneal injection of D-gal and bilateral hippocampal CA1 injections of Aß25-35. The pharmacodynamics of KXS in vivo includes general behavior, Morris water maze test, ELISA, Nissl & HE staining and immunofluorescence. Systematic analysis of gut microbiota was conducted using 16S rRNA gene sequencing technology. The potential role of gut microbiota in the anti-AD effect of KXS was validated with fecal microbiota transplantation (FMT) experiments. RESULTS: KXS could significantly improve cognitive impairment, reduce neuronal damage and attenuate neuroinflammation and colonic inflammation in vivo in AD model rats. Nine differential intestinal bacteria associated with AD were screened, in which four bacteria (Lactobacillus murinus, Ligilactobacillus, Alloprevotella, Prevotellaceae_NK3B31_group) were very significant. CONCLUSION: KXS can maintain the ecological balance of intestinal microbiota and exert its anti-AD effect by regulating the composition and proportion of gut microbiota in AD rats through the microbiota-gut-brain axis.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Disfunção Cognitiva , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Neurônios , Fragmentos de Peptídeos , Ratos Sprague-Dawley , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/induzido quimicamente , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/induzido quimicamente , Ratos , Neurônios/efeitos dos fármacos , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Teste do Labirinto Aquático de Morris/efeitos dos fármacos
6.
Cell Mol Life Sci ; 79(3): 148, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35195763

RESUMO

Patients with progressive neurodegenerative disorder retinitis pigmentosa (RP) are diagnosed in the midst of ongoing retinal degeneration and remodeling. Here, we used a Pde6b-deficient RP gene therapy mouse model to test whether treatment at late disease stages can halt photoreceptor degeneration and degradative remodeling, while sustaining constructive remodeling and restoring function. We demonstrated that when fewer than 13% of rods remain, our genetic rescue halts photoreceptor degeneration, electroretinography (ERG) functional decline and inner retinal remodeling. In addition, in a water maze test, the performance of mice treated at 16 weeks of age or earlier was indistinguishable from wild type. In contrast, no efficacy was apparent in mice treated at 24 weeks of age, suggesting the photoreceptors had reached a point of no return. Further, remodeling in the retinal pigment epithelium (RPE) and retinal vasculature was not halted at 16 or 24 weeks of age, although there appeared to be some slowing of blood vessel degradation. These data suggest a novel working model in which restoration of clinically significant visual function requires only modest threshold numbers of resilient photoreceptors, halting of destructive remodeling and sustained constructive remodeling. These novel findings define the potential and limitations of RP treatment and suggest possible nonphotoreceptor targets for gene therapy optimization.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Terapia Genética/métodos , Doenças Neurodegenerativas/metabolismo , Mutação Puntual , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Modelos Animais de Doenças , Eletrorretinografia/métodos , Camundongos , Camundongos Transgênicos , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Doenças Neurodegenerativas/genética , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Vasos Retinianos/metabolismo , Retinose Pigmentar/metabolismo , Tamoxifeno/administração & dosagem
7.
Bioengineered ; 13(1): 531-543, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34968163

RESUMO

In this study, we aimed to investigate the effect of Magnolol on Alzheimer's disease (AD). After the model of streptozotocin-induced AD mice with brain insulin resistance was established, the mice were treated with Magnolol or miR-200c antagomiR. The abilities of ambulations, rearings, discrimination, spatial learning, and memory were evaluated by open-field test (OFT), novel object recognition (NOR), and morris water maze (MWM) tests. The levels of malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), C-reactive protein (CRP), and miR-200c in the mice hippocampus were evaluated by enzyme-linked immunosorbent assay, Western blot, or Quantitative real-time Polymerase Chain Reaction. In AD mice model, streptozotocin induced the locomotor impairment and cognitive deficit, up-regulated levels of MDA, TNF-α, IL-6, and CRP, while down-regulated levels of GSH, SOD, and miR-200c. Magnolol increased the rearings numbers and discrimination index of AD mice in OFT and NOR tests. Magnolol increased the number of entries in the target quadrant and time spent in the target quadrant and decreased the escape latency of AD mice in the MWM test. Magnolol also down-regulated the levels of MDA, TNF-α, IL-6, and CRP, and up-regulated the levels of GSH, SOD, and miR-200c in the hippocampus tissues of AD mice. However, miR-200c antagomiR did the opposite and further offset the effects of the Magnolol on AD mice. Magnolol attenuated the locomotor impairment, cognitive deficit, and neuroinflammatory in AD mice with brain insulin resistance via up-regulating miR-200c.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Antagomirs/administração & dosagem , Compostos de Bifenilo/administração & dosagem , Resistência à Insulina , Lignanas/administração & dosagem , Estreptozocina/efeitos adversos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/genética , Doença de Alzheimer/psicologia , Animais , Antagomirs/farmacologia , Compostos de Bifenilo/farmacologia , Encéfalo , Modelos Animais de Doenças , Lignanas/farmacologia , Locomoção/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Camundongos , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Aprendizagem Espacial/efeitos dos fármacos
8.
Behav Brain Res ; 417: 113592, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34560131

RESUMO

To examine the role of estradiol in hippocampal-dependent spatial memory in women, 86 female undergraduates were tested in a virtual Morris water task (VMWT), a virtual radial arm maze (VRAM), and a mental rotation task (MRT) within a single daily session. The VMWT and RAM were also administered 24 h later to examine the effects of estradiol on memory consolidation. Women on oral contraceptives (OCs) or those who were naturally cycling and exhibited low estradiol (LE) or high estradiol (HE), as determined by salivary assays, were included. At the start of day two, the HE group showed superior spatial reference memory on the VMWT relative to the LE group, as evidenced by significantly shorter distances navigating to the hidden platform. The LE group also had the poorest probe trial performance at the start of day two compared to both other groups. There were no group differences in performance on the RAM or MRT. These results provide support for estradiol's role in the consolidation of spatial reference memory in women, and emphasize the differential sensitivities of various virtual memory tasks in assessing spatial memory function in women.


Assuntos
Estradiol/farmacologia , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Memória Espacial/fisiologia , Realidade Virtual , Adulto , Feminino , Hipocampo/efeitos dos fármacos , Humanos , Aprendizagem em Labirinto/efeitos dos fármacos , Rememoração Mental , Percepção Espacial/efeitos dos fármacos , Adulto Jovem
9.
Neurotoxicology ; 88: 155-167, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801587

RESUMO

Spinally-administered local anesthetics provide effective perioperative anesthesia and/or analgesia for children of all ages. New preparations and drugs require preclinical safety testing in developmental models. We evaluated age-dependent efficacy and safety following 1 % preservative-free 2-chloroprocaine (2-CP) in juvenile Sprague-Dawley rats. Percutaneous lumbar intrathecal 2-CP was administered at postnatal day (P)7, 14 or 21. Mechanical withdrawal threshold pre- and post-injection evaluated the degree and duration of sensory block, compared to intrathecal saline and naive controls. Tissue analyses one- or seven-days following injection included histopathology of spinal cord, cauda equina and brain sections, and quantification of neuronal apoptosis and glial reactivity in lumbar spinal cord. Following intrathecal 2-CP or saline at P7, outcomes assessed between P30 and P72 included: spinal reflex sensitivity (hindlimb thermal latency, mechanical threshold); social approach (novel rat versus object); locomotor activity and anxiety (open field with brightly-lit center); exploratory behavior (rearings, holepoking); sensorimotor gating (acoustic startle, prepulse inhibition); and learning (Morris Water Maze). Maximum tolerated doses of intrathecal 2-CP varied with age (1.0 µL/g at P7, 0.75 µL/g at P14, 0.5 µL/g at P21) and produced motor and sensory block for 10-15 min. Tissue analyses found no significant differences across intrathecal 2-CP, saline or naïve groups. Adult behavioral measures showed expected sex-dependent differences, that did not differ between 2-CP and saline groups. Single maximum tolerated in vivo doses of intrathecal 2-CP produced reversible spinal anesthesia in juvenile rodents without detectable evidence of developmental neurotoxicity. Current results cannot be extrapolated to repeated dosing or prolonged infusion.


Assuntos
Síndromes Neurotóxicas/etiologia , Procaína/análogos & derivados , Animais , Caspase 3/metabolismo , Cauda Equina/anatomia & histologia , Cauda Equina/efeitos dos fármacos , Feminino , Injeções Espinhais , Masculino , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Procaína/administração & dosagem , Procaína/toxicidade , Ratos , Ratos Sprague-Dawley , Filtro Sensorial/efeitos dos fármacos
10.
Biomolecules ; 11(12)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34944391

RESUMO

The investigation aimed to evaluate the favourable effects of rosinidin in lipopolysaccharide (LPS)-induced learning and memory impairment in rats. Adult Wistar rats (150-200 g) were segregated equally into four different groups and treated as below: Group 1 (normal) and Group 2 (LPS control) were administered orally with 3 mL of 0.5% SCMC (vehicle); Group 3 and Group 4 were test groups and orally administered with rosinidin lower dose (10 mg/kg) and higher dose 20 mg/kg. Daily, 1 h post-offer mentioned treatments, Group 1 animals were injected with normal saline (i.p.) and groups 2-4 were treated with 1 mg/kg/day of LPS. This treatment schedule was followed daily for 7 days. During the treatment, schedule rats were evaluated for spontaneous locomotor activity, memory, and learning abilities. The biochemical assessment was carried out of acetylcholine esterase (AChE), endogenous antioxidants (GSH, SOD, GPx, and catalase), oxidative stress marker MDA, neuroinflammatory markers (IL-6, IL-1ß, TNF-α, and NF-κB), and BDNF. LPS-induced reduced spontaneous locomotor activity and memory impairment in the animals. Moreover, LPS reduced GSH, SOD, GPx, and catalase levels; altered activities of AChE; elevated levels of MDA, IL-6, IL-1ß, TNF-α, and NF-κB; and attenuated the levels of BDNF in brain tissue. Administration of rosinidin to LPS-treated animals significantly reduced LPS-induced neurobehavioral impairments, oxidative stress, neuroinflammatory markers, and reversed the Ach enzyme activities and BDNF levels towards normal. Results demonstrated that rosinidin attenuates the effects of LPS on learning memory in rats.


Assuntos
Antocianinas/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Antioxidantes/administração & dosagem , Disfunção Cognitiva/tratamento farmacológico , Lipopolissacarídeos/efeitos adversos , Acetilcolinesterase/metabolismo , Administração Oral , Animais , Antocianinas/química , Antocianinas/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Modelos Animais de Doenças , Proteínas Ligadas por GPI/metabolismo , Masculino , Estrutura Molecular , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
11.
Food Chem Toxicol ; 158: 112665, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34780879

RESUMO

Excessive fluoride is capable of inducing cognitive deficits, but the mechanisms remain elusive. This study aimed to investigate the effects and underlying mechanisms of fluoride on mitochondrial dysfunction and neurobiological alterations, as well as cognitive impairment. C57BL/6 mice were orally administered 25, 50, and 100 mg/L NaF for 90 days. Cultured human neuroblastoma SH-SY5Y cells were exposed to NaF (110 mg/L) for 24 h in the presence or absence of Sirt3 overexpression. The results demonstrated that chronic exposure to high fluoride induced cognitive deficits and neural/synaptic injury in mice. Fluoride reduced mitochondrial antioxidant enzyme activities and elevated SOD2 acetylation by downregulating Sirt3 expression in the brains of mice and NaF-treated SH-SY5Y cells. Moreover, fluoride lowered mtDNA transcription and induced mitochondrial dysfunction along with increased FoxO3A acetylation in the brains of mice and NaF-treated SH-SY5Y cells. Subsequent experiments revealed that overexpression of Sirt3 significantly attenuated the adverse effects of fluoride on radical scavenging capabilities and mtDNA transcription, as well as mitochondrial function in SH-SY5Y cells. These results suggest that chronic long-term fluoride exposure evokes neural/synaptic injury and cognitive impairment through mitochondrial dysfunction and its associated oxidative stress, which is, at least partly, mediated by Sirt3 inhibition in the mouse brain.


Assuntos
Disfunção Cognitiva/induzido quimicamente , Mitocôndrias , Sirtuína 3 , Fluoreto de Sódio/toxicidade , Animais , Química Encefálica/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Neurotoxinas/toxicidade , Sirtuína 3/genética , Sirtuína 3/metabolismo
12.
J Diabetes Res ; 2021: 2118538, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34840987

RESUMO

BACKGROUND: The application of nanomedicine to antiretroviral drug delivery holds promise in reducing the comorbidities related to long-term systemic exposure to highly active antiretroviral therapy (HAART). However, the safety of drugs loaded with silver nanoparticles has been debatable. This study is aimed at evaluating the effects of HAART-loaded silver nanoparticles (HAART-AgNPs) on the behavioural assessment, biochemical indices, morphological, and morphometric of the hippocampus in diabetic Sprague-Dawley rats. METHODS: Conjugated HAART-AgNPs were characterized using FTIR spectroscopy, UV spectrophotometer, HR-TEM, SEM, and EDX for absorbance peaks, size and morphology, and elemental components. Forty-eight male SD rats (250 ± 13 g) were divided into nondiabetic and diabetic groups. Each group was subdivided into (n = 8) A (nondiabetic+vehicle), B (nondiabetic+HAART), C (nondiabetic+HAART-AgNPs), D (diabetic+vehicle), E (diabetic+HAART), and F (diabetic+HAART-AgNPs). Morris water maze, Y-maze test, and weekly blood glucose levels were carried out. Following the last dose of 8-week treatment, the rats were anaesthetized and euthanized. Brain tissues were carefully removed and postfixed for Nissl staining histology. RESULTS: 1.5 M concentration of HAART-AgNPs showed nanoparticle size 20.3 nm with spherical shape. HAART-AgNPs revealed 16.89% of silver and other elemental components of HAART. The diabetic control rats showed a significant increase in blood glucose, reduced spatial learning, positive hippocampal Nissl-stained cells, and a significant decrease in GSH and SOD levels. However, administration of HAART-AgNPs to diabetic rats significantly reduced blood glucose level, improved spatial learning, biochemical indices, and enhanced memory compared to diabetic control. Interestingly, diabetic HAART-AgNP-treated rats showed a significantly improved memory, increased GSH, SOD, and number of positive Nissl-stained neurons compared to diabetic-treated HAART only. CONCLUSION: Administration of HAART to diabetic rats aggravates the complications of diabetes and promotes neurotoxic effects on the experimental rats, while HAART-loaded silver nanoparticle (HAART-AgNP) alleviates diabetes-induced neurotoxicity.


Assuntos
Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Disfunção Cognitiva/prevenção & controle , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/complicações , Neuropatias Diabéticas/prevenção & controle , Hipocampo/efeitos dos fármacos , Nanopartículas Metálicas , Corpos de Nissl/efeitos dos fármacos , Compostos de Prata/farmacologia , Animais , Fármacos Anti-HIV , Terapia Antirretroviral de Alta Atividade/efeitos adversos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/psicologia , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/fisiopatologia , Neuropatias Diabéticas/psicologia , Combinação Efavirenz, Emtricitabina, Fumarato de Tenofovir Desoproxila , Hipocampo/patologia , Hipocampo/fisiopatologia , Locomoção/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Corpos de Nissl/patologia , Ratos Sprague-Dawley
13.
Lipids Health Dis ; 20(1): 164, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789244

RESUMO

BACKGROUND: Quercetin (QUE) is a flavonol reported with anti-inflammatory and antioxidant activities, and previous results from the group of this study have demonstrated its neuroprotective effect against lipopolysaccharide-induced neuropsychiatric injuries. However, little is known about its potential effect on neuropsychiatric injuries induced or accompanied by metabolic dysfunction of glucose and lipids. METHODS: A nonalcoholic fatty liver disease (NAFLD) rat model was induced via a high-fat diet (HFD), and glucolipid parameters and liver function were measured. Behavioral performance was observed via the open field test (OFT) and the Morris water maze (MWM). The plasma levels of triggering receptor expressed on myeloid cells-1 (TREM1) and TREM2 were measured via enzyme-linked immunosorbent assay (ELISA). The protein expression levels of Synapsin-1 (Syn-1), Synaptatogmin-1 (Syt-1), TREM1 and TREM2 in the hippocampus were detected using western blotting. Morphological changes in the liver and hippocampus were detected by HE and Oil red or silver staining. RESULTS: Compared with the control rats, HFD-induced NAFLD model rats presented significant metabolic dysfunction, hepatocyte steatosis, and impaired learning and memory ability, as indicated by the increased plasma concentrations of total cholesterol (TC) and triglyceride (TG), the impaired glucose tolerance, the accumulated fat droplets and balloon-like changes in the liver, and the increased escaping latency but decreased duration in the target quadrant in the Morris water maze. All these changes were reversed in QUE-treated rats. Moreover, apart from improving the morphological injuries in the hippocampus, treatment with QUE could increase the decreased plasma concentration and hippocampal protein expression of TREM1 in NAFLD rats and increase the decreased expression of Syn-1 and Syt-1 in the hippocampus. CONCLUSIONS: These results suggested the therapeutic potential of QUE against NAFLD-associated impairment of learning and memory, and the mechanism might involve regulating the metabolic dysfunction of glucose and lipids and balancing the protein expression of synaptic plasticity markers and TREM1/2 in the hippocampus.


Assuntos
Transtornos da Memória/tratamento farmacológico , Doenças Metabólicas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Quercetina/uso terapêutico , Animais , Western Blotting , Modelos Animais de Doenças , Teste de Tolerância a Glucose , Fígado/patologia , Masculino , Glicoproteínas de Membrana/sangue , Transtornos da Memória/etiologia , Doenças Metabólicas/etiologia , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/complicações , Teste de Campo Aberto/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores Imunológicos/sangue , Receptor Gatilho 1 Expresso em Células Mieloides/sangue
14.
Food Funct ; 12(22): 11704-11716, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34730571

RESUMO

In addition to beta-amyloid (Aß) plaques and neurofibrillary tangles, Alzheimer's disease (AD) is typically triggered or accompanied by abnormal inflammation, oxidative stress and astrocyte activation. Safflower (Carthamus tinctorius L.) leaf, featuring functional ingredients, is a commonly consumed leafy vegetable. Whether and how dietary safflower leaf powder (SLP) ameliorates cognitive function in an AD mouse model has remained minimally explored. Therefore, we orally administered SLP to APP/PS1 transgenic mice to explore the neuroprotective effects of SLP in preventing AD progression. We found that SLP markedly improved cognitive impairment in APP/PS1 mice, as indicated by the water maze test. We further demonstrated that SLP treatment ameliorated inflammation, oxidative stress and excessive astrocyte activation. Further investigation indicated that SLP decreased the Aß burden in APP/PS1 mice by mediating excessive astrocyte activation. Our study suggests that safflower leaf is possibly a promising, cognitively beneficial food for preventing and alleviating AD-related dementia.


Assuntos
Astrócitos/efeitos dos fármacos , Carthamus tinctorius/química , Cognição/efeitos dos fármacos , Extratos Vegetais/farmacologia , Doença de Alzheimer/metabolismo , Animais , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Transgênicos , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/química
15.
Curr Med Sci ; 41(5): 847-856, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34652631

RESUMO

OBJECTIVE: To determine whether B vitamin treatment was sufficient to reduce cognitive impairment associated with high-fat diets in rats and to modulate transketolase (TK) expression and activity. METHODS: To test this, we separated 50 rats into five groups that were either fed a standard chow diet (controls) or a high-fat diet (experimental groups H0, H1, H2, and H3). H0 group animals received no additional dietary supplementation, while H1 group animals were administered 100 mg/kg body weight (BW) thiamine, 100 mg/kg BW riboflavin, and 250 mg/kg BW niacin each day, and group H2 animals received daily doses of 100 mg/kg BW pyridoxine, 100 mg/kg BW cobalamin, and 5 mg/kg BW folate. Animals in the H3 group received the B vitamin regimens administered to both H1 and H2 each day. RESULTS: Over time, group H0 exhibited greater increases in BW and fat mass relative to other groups. When spatial and memory capabilities in these animals were evaluated via conditioned taste aversion (CTA) and Morris Water Maze (MWM), we found B vitamin treatment was associated with significant improvements relative to untreated H0 controls. Similarly, B vitamin supplementation was associated with elevated TK expression in erythrocytes and hypothalamus of treated animals relative to those in H0 (P<0.05). CONCLUSION: Together, these findings suggest B vitamin can modulate hypothalamic TK activity to reduce the severity of cognitive deficits in a rat model of obesity. As such, B vitamin supplementation may be a beneficial method for reducing cognitive dysfunction in clinical settings associated with high-fat diets.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Transcetolase/metabolismo , Complexo Vitamínico B/administração & dosagem , Animais , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/enzimologia , Suplementos Nutricionais , Modelos Animais de Doenças , Ácido Fólico/administração & dosagem , Ácido Fólico/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Masculino , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Niacina/administração & dosagem , Niacina/farmacologia , Piridoxina/administração & dosagem , Piridoxina/farmacologia , Ratos , Riboflavina/administração & dosagem , Riboflavina/farmacologia , Tiamina/administração & dosagem , Tiamina/farmacologia , Vitamina B 12/administração & dosagem , Vitamina B 12/farmacologia , Complexo Vitamínico B/farmacologia
16.
Biomed Pharmacother ; 143: 112200, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34649342

RESUMO

The pathology of cerebrovascular disorders takes an important role in traumatic brain injury (TBI) by increasing intracranial pressure. Fibroblast growth factor 20 (FGF20) is a brain-derived neurotrophic factor, that has been shown to play an important role in the survival of dopaminergic neurons and the treatment of Parkinson's disease (PD). However, little is known about the role of FGF20 in the treatment of TBI and its underlying mechanism. The purpose of this study was to evaluate the protective effect of recombinant human FGF20 (rhFGF20) on protecting cerebral blood vessels after TBI. In this study, we indicated that rhFGF20 could reduce brain edema, Evans blue penetration and upregulated the expression of blood-brain barrier (BBB)-related tight junction (TJ) proteins, exerting a protective effect on the BBB in vivo after TBI. In the TBI repair phase, rhFGF20 promoted angiogenesis, neurological and cognitive function recovery. In tumor necrosis factor-α (TNF-α)-induced human brain microvascular endothelial cells (hCMEC/D3), an in vitro BBB disruption model, rhFGF20 reversed the impairment in cell migration and tube formation induced by TNF-α. Moreover, in both the TBI mouse model and the in vitro model, rhFGF20 increased the expression of ß-catenin and GSK3ß, which are the two key regulators in the Wnt/ß-catenin signaling pathway. In addition, the Wnt/ß-catenin inhibitor IWR-1-endo significantly reversed the effects of rhFGF20. These results indicate that rhFGF20 may prevent vascular repair and angiogenesis through the Wnt/ß-catenin pathway.


Assuntos
Indutores da Angiogênese/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Células Endoteliais/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/farmacologia , Pressão Intracraniana , Neovascularização Fisiológica/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/fisiopatologia , Edema Encefálico/tratamento farmacológico , Edema Encefálico/metabolismo , Edema Encefálico/patologia , Edema Encefálico/fisiopatologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Permeabilidade Capilar/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Masculino , Memória/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Teste de Desempenho do Rota-Rod , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Junções Íntimas/patologia
17.
Food Chem Toxicol ; 157: 112591, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34614429

RESUMO

INTRODUCTION: Aluminum is a kind of chemical contaminants in food which can induce neurotoxicity. Aluminum exposure is closely related to neurodegenerative diseases (ND), in which neuroinflammation might involve. However, the molecular mechanism of aluminum-induced neuroinflammation through pyroptosis is not fully clarified yet. MATERIAL AND METHODS: The mice model of subacute exposure to aluminum chloride (AlCl3) was established. BV2 microglia cells was treated with AlCl3 in vitro. Resveratrol (Rsv) was adopted as intervention agent. RESULTS: Our results showed that aluminum induced cognitive impairment, destroying blood brain barrier (BBB), and causing nerve injury in mice. Meanwhile, aluminum could stimulate nucleotide oligomerization domain-like receptor family pyrin domain containing protein 3 (NLRP3) inflammasome assembly and activate caspase-1 (CASP1), inducing gasdermin D (GSDMD)-mediated pyroptosis signaling, releasing cytokines IL-1ß and IL-18, further promoting the activation of glial cells to magnify neuroinflammatory response. Moreover, DEAD-box helicase 3 X-linked (DDX3X) and stress granule RasGAP SH3-domain-binding protein 1 (G3BP1) both participated in neuroinflammation induced by aluminum. When co-treated with Rsv, these injuries were alleviated to some extent. CONCLUSION: Aluminum exposure could induce nerve cell pyroptosis and neuroinflammation by DDX3X-NLRP3 inflammasome signaling pathway, which could be rescued via Rsv activating sirtuin 1 (SIRT1).


Assuntos
Alumínio/toxicidade , Cognição/efeitos dos fármacos , RNA Helicases DEAD-box/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Cloreto de Alumínio/toxicidade , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Western Blotting , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/ultraestrutura , Imunofluorescência , Elevação dos Membros Posteriores , Inflamassomos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real
18.
Bioengineered ; 12(1): 7920-7928, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34622713

RESUMO

We aimed to assess the effects of dexmedetomidine (DEX) on postoperative cognitive function of sleep deprivation (SD) rats based on changes in inflammatory response. Male rats were randomly divided into blank control (C), SD, DEX, and SD+DEX groups. The SD model was established through intraperitoneal injection of DEX. The escape latency was detected through Morris water maze test daily, and the mechanical withdrawal threshold and thermal withdrawal latency were detected for 8 d. The content of malondialdehyde (MDA) and activity of superoxide dismutase (SOD) in hippocampus homogenate were determined, and the morphological changes in neurons were detected through Nissl staining. The concentration of interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and IL-6 in the hippocampus was detected by enzyme-linked immunosorbent assay, and the Rac1/protein kinase B (AKT)/nuclear factor-κB (NF-κB) expressions were detected by Western blotting. The changes in immunofluorescence localization of NF-κB were observed by confocal microscopy. Compared with SD group, the escape latency was shortened, original platform-crossing times increased, MDA content declined, SOD activity rose, neurons were arranged orderly and number of Nissl bodies increased in the hippocampal CA1 region, levels of IL-1ß, TNF-α, and IL-6 in the hippocampus decreased, Rac1/AKT/NF-κB expressions were down-regulated, and proportion of NF-κB entering the nucleus declined in SD+DEX group (P < 0.05). DEX can effectively alleviate postoperative hippocampal inflammation and improve cognitive function of SD rats. The ability of DEX to relieve oxidative stress of hippocampal neurons, restore damaged cells, and reduce hippocampal inflammation in SD rats may be related to the Rac1/AKT/NF-κB pathway.


Assuntos
Dexmedetomidina/administração & dosagem , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Complicações Pós-Operatórias/tratamento farmacológico , Privação do Sono/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Animais , Cognição/efeitos dos fármacos , Dexmedetomidina/farmacologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/imunologia , Injeções Intraperitoneais , Masculino , Malondialdeído/metabolismo , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , NF-kappa B/metabolismo , Neuropeptídeos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Complicações Pós-Operatórias/imunologia , Complicações Pós-Operatórias/psicologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Privação do Sono/genética , Privação do Sono/imunologia , Privação do Sono/psicologia , Superóxido Dismutase/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
19.
Eur J Pharmacol ; 912: 174578, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34695423

RESUMO

The environmental psychological stress causes depressive disorders. Stress causes many neurobiological, neurodegenerative changes in brain. Topiramate (TPM) is used in the treatment of epilepsy and psychiatric diseases. However, there are conflicting findings that TPM disrupts cognitive functions. We aimed to investigate the effects of TPM on depression, anxiety, learning and memory as well as neurobiological, morphological changes in rats exposed to chronic unpredictable mild stress (CUMS). After CUMS was formed by random application of nine mild stressors for 45 days, TPM (at doses of 0.1, 1, 10, 100 mg/kg) was administered for 21 days. Sucrose preference, locomotor activity, forced swimming, elevated plus maze and Morris water maze tests were performed. Corticosterone, BDNF (Brain-derived neurotrophic factor) and glutamate levels and volumes of hippocampus were evaluated. Body weights of the rats were measured. Immobilization time increased in CUMS, CUMS + TPM0.1 in forced swimming test and time spent in platform quadrant increased in Control + TPM1, CUMS, CUMS + TPM0.1, CUMS + TPM1 in Morris water maze test. Control + TPM1 decreased distance to platform in Morris water maze while CUMS + TPM100 increased. Learning is impaired in CUMS + TPM100 while it is improved in Control + TPM1. BDNF levels increased in CUMS and glutamate levels increased in CUMS, CUMS + TPM10. Body weight decreased in CUMS, CUMS + TPM0.1, CUMS + TPM1, CUMS + TPM100. Hippocampus volumes increased in CUMS. In conclusion, CUMS improved cognition and this finding was supported by the increase of BDNF levels and volume of hippocampus. TPM 1 mg/kg improved cognition in non-stressed rats. TPM 0.1 and 1 mg/kg improved while TPM 100 mg/kg impaired memory in rats exposed to stress.


Assuntos
Estresse Psicológico/tratamento farmacológico , Topiramato/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cognição/efeitos dos fármacos , Corticosterona/sangue , Modelos Animais de Doenças , Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Humanos , Locomoção/efeitos dos fármacos , Masculino , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Ratos Wistar , Topiramato/uso terapêutico
20.
Food Funct ; 12(22): 11482-11490, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34699582

RESUMO

Sulforaphane (SFN), a potent nuclear factor erythroid 2-related factor 2 (Nrf2) activator, presents a potential role in improving Alzheimer's disease (AD)-specific symptoms. However, the regulation mechanism of SFN in AD is poorly understood. Here, we established AD models both in vitro and in vivo. Animal behaviors were tested by the Morris water maze test. The pathology of the hippocampus and the content of Aß were detected. SFN (40 mg kg-1) decreased the escape latency (24.96 ± 7.43 s) and increased the target-zone frequency (3.19 ± 1.19) in rats. SFN improved the pathological morphology and the number of neurons in the hippocampus. Additionally, SFN significantly upregulated the contents of thioredoxin and glutathione as well as the activities of antioxidant enzymes, along with the expression of the Nrf2 protein. Conversely, SFN lowered the Aß content and ROS level in N2a/APP cells. After silencing the Nrf2 by SiRNA, the inhibitory effects of SFN on ROS and Aß production were partially weakened. In conclusion, the improvement of AD by SFN was closely related with Nrf2 activation.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Isotiocianatos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Sulfóxidos/farmacologia , Animais , Linhagem Celular Tumoral , Masculino , Camundongos , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA