Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.854
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731872

RESUMO

Numerous studies suggest the involvement of adenosine-5'-triphosphate (ATP) and similar nucleotides in the pathophysiology of asthma. Androgens, such as testosterone (TES), are proposed to alleviate asthma symptoms in young men. ATP and uridine-5'-triphosphate (UTP) relax the airway smooth muscle (ASM) via purinergic P2Y2 and P2Y4 receptors and K+ channel opening. We previously demonstrated that TES increased the expression of voltage-dependent K+ (KV) channels in ASM. This study investigates how TES may potentiate ASM relaxation induced by ATP and UTP. Tracheal tissues treated with or without TES (control group) from young male guinea pigs were used. In organ baths, tracheas exposed to TES (40 nM for 48 h) showed enhanced ATP- and UTP-evoked relaxation. Tetraethylammonium, a K+ channel blocker, annulled this effect. Patch-clamp experiments in tracheal myocytes showed that TES also increased ATP- and UTP-induced K+ currents, and this effect was abolished with flutamide (an androgen receptor antagonist). KV channels were involved in this phenomenon, which was demonstrated by inhibition with 4-aminopyridine. RB2 (an antagonist of almost all P2Y receptors except for P2Y2), as well as N-ethylmaleimide and SQ 22,536 (inhibitors of G proteins and adenylyl cyclase, respectively), attenuated the enhancement of the K+ currents induced by TES. Immunofluorescence and immunohistochemistry studies revealed that TES did not modify the expression of P2Y4 receptors or COX-1 and COX-2, while we have demonstrated that this androgen augmented the expression of KV1.2 and KV1.5 channels in ASM. Thus, TES leads to the upregulation of P2Y4 signaling and KV channels in guinea pig ASM, enhancing ATP and UTP relaxation responses, which likely limits the severity of bronchospasm in young males.


Assuntos
Trifosfato de Adenosina , Adenilil Ciclases , Relaxamento Muscular , Músculo Liso , Testosterona , Traqueia , Uridina Trifosfato , Animais , Uridina Trifosfato/farmacologia , Uridina Trifosfato/metabolismo , Cobaias , Relaxamento Muscular/efeitos dos fármacos , Masculino , Trifosfato de Adenosina/metabolismo , Traqueia/metabolismo , Traqueia/efeitos dos fármacos , Testosterona/farmacologia , Testosterona/metabolismo , Adenilil Ciclases/metabolismo , Músculo Liso/metabolismo , Músculo Liso/efeitos dos fármacos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptores Purinérgicos P2/metabolismo
2.
Reprod Domest Anim ; 59(5): e14583, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747479

RESUMO

Testosterone, an important sex hormone, regulates sexual maturation, testicular development, spermatogenesis and the maintenance of secondary sexual characteristics in males. Testicular Leydig cells are the primary source of testosterone production in the body. Hezuo pigs, native to the southern part of Gansu, China, are characterized by early sexual maturity, strong disease resistance and roughage tolerance. This study employed type IV collagenase digestion combined with cell sieve filtration to isolate and purify Leydig cells from the testicular tissue of 1-month-old Hezuo pigs. We also preliminarily investigated the functions of these cells. The results indicated that the purity of the isolated and purified Leydig cells was as high as 95%. Immunofluorescence analysis demonstrated that the isolated cells specifically expressed the 3ß-hydroxysteroid dehydrogenase antibody. Enzyme-linked immunosorbent assay results showed that the testosterone secretion of the Leydig cells cultured in vitro (generations 5-9) ranged between 1.29-1.67 ng/mL. Additionally, the content of the cellular autophagy signature protein microtubule-associated protein 1 light chain 3 was measured at 230-280 pg/mL. Through this study, we established an in vitro system for the isolation, purification and characterization of testicular Leydig cells from 1-month-old Hezuo pigs, providing a reference for exploring the molecular mechanism behind precocious puberty in Hezuo pigs.


Assuntos
Células Intersticiais do Testículo , Testosterona , Animais , Masculino , Células Intersticiais do Testículo/metabolismo , Testosterona/metabolismo , Suínos , Testículo/citologia , Células Cultivadas , Técnicas de Cultura de Células/veterinária , Separação Celular/métodos , Separação Celular/veterinária
3.
FASEB J ; 38(9): e23650, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38696238

RESUMO

The global challenge of male infertility is escalating, notably due to the decreased testosterone (T) synthesis in testicular Leydig cells under stress, underscoring the critical need for a more profound understanding of its regulatory mechanisms. CREBZF, a novel basic region-leucine zipper transcription factor, regulates testosterone synthesis in mouse Leydig cells in vitro; however, further validation through in vivo experiments is essential. Our study utilized Cyp17a1-Cre to knock out CREBZF in androgen-synthesis cells and explored the physiological roles of CREBZF in fertility, steroid hormone synthesis, and behaviors in adult male mice. Conditional knockout (cKO) CREBZF did not affect fertility and serum testosterone level in male mice. Primary Leydig cells isolated from CREBZF-cKO mice showed impaired testosterone secretion and decreased mRNA levels of Star, Cyp17a1, and Hsd3b1. Loss of CREBZF resulted in thickening of the adrenal cortex, especially X-zone, with elevated serum corticosterone and dehydroepiandrosterone levels and decreased serum dehydroepiandrosterone sulfate levels. Immunohistochemical staining revealed increased expression of StAR, Cyp11a1, and 17ß-Hsd3 in the adrenal cortex of CREBZF-cKO mice, while the expression of AR was significantly reduced. Along with the histological changes and abnormal steroid levels in the adrenal gland, CREBZF-cKO mice showed higher anxiety-like behavior and impaired memory in the elevated plus maze and Barnes maze, respectively. In summary, CREBZF is dispensable for fertility, and CREBZF deficiency in Leydig cells promotes adrenal function in adult male mice. These results shed light on the requirement of CREBZF for fertility, adrenal steroid synthesis, and stress response in adult male mice, and contribute to understanding the crosstalk between testes and adrenal glands.


Assuntos
Córtex Suprarrenal , Células Intersticiais do Testículo , Camundongos Knockout , Animais , Masculino , Camundongos , Células Intersticiais do Testículo/metabolismo , Córtex Suprarrenal/metabolismo , Androgênios/metabolismo , Testosterona/sangue , Testosterona/metabolismo , Comportamento Animal , Camundongos Endogâmicos C57BL
4.
Cell Mol Life Sci ; 81(1): 212, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724675

RESUMO

Leydig cells are essential components of testicular interstitial tissue and serve as a primary source of androgen in males. A functional deficiency in Leydig cells often causes severe reproductive disorders; however, the transcriptional programs underlying the fate decisions and steroidogenesis of these cells have not been fully defined. In this study, we report that the homeodomain transcription factor PBX1 is a master regulator of Leydig cell differentiation and testosterone production in mice. PBX1 was highly expressed in Leydig cells and peritubular myoid cells in the adult testis. Conditional deletion of Pbx1 in Leydig cells caused spermatogenic defects and complete sterility. Histological examinations revealed that Pbx1 deletion impaired testicular structure and led to disorganization of the seminiferous tubules. Single-cell RNA-seq analysis revealed that loss of Pbx1 function affected the fate decisions of progenitor Leydig cells and altered the transcription of genes associated with testosterone synthesis in the adult testis. Pbx1 directly regulates the transcription of genes that play important roles in steroidogenesis (Prlr, Nr2f2 and Nedd4). Further analysis demonstrated that deletion of Pbx1 leads to a significant decrease in testosterone levels, accompanied by increases in pregnenolone, androstenedione and luteinizing hormone. Collectively, our data revealed that PBX1 is indispensable for maintaining Leydig cell function. These findings provide insights into testicular dysgenesis and the regulation of hormone secretion in Leydig cells.


Assuntos
Infertilidade Masculina , Células Intersticiais do Testículo , Fator de Transcrição 1 de Leucemia de Células Pré-B , Testículo , Testosterona , Animais , Masculino , Células Intersticiais do Testículo/metabolismo , Células Intersticiais do Testículo/patologia , Fator de Transcrição 1 de Leucemia de Células Pré-B/metabolismo , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Camundongos , Testosterona/metabolismo , Testículo/metabolismo , Testículo/patologia , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Infertilidade Masculina/metabolismo , Diferenciação Celular/genética , Espermatogênese/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Mol Biol Rep ; 51(1): 656, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740671

RESUMO

BACKGROUND: Prokineticin 2 (PROK2), an important neuropeptide that plays a key role in the neuronal migration of gonadotropin-releasing hormone (GnRH) in the hypothalamus, is known to have regulatory effects on the gonads. In the present study, the impact of intracerebroventricular (icv) PROK2 infusion on hypothalamic-pituitary-gonadal axis (HPG) hormones, testicular tissues, and sperm concentration was investigated. METHODS AND RESULTS: Rats were randomly divided into four groups: control, sham, PROK2 1.5 and PROK2 4.5. Rats in the PROK2 1.5 and PROK2 4.5 groups were administered 1.5 nmol and 4.5 nmol PROK2 intracerebroventricularly for 7 days via an osmotic mini pump (1 µl/h), respectively. Rat blood serum follicle stimulating hormone (FSH), luteinizing hormone (LH) and testosterone hormone levels were determined with the ELISA method in the blood samples after 7 days of infusion. GnRH mRNA expression was determined with the RT-PCR in hypothalamus tissues. analyze Sperm concentration was determined, and testicular tissue was examined histologically with the hematoxylin-eosin staining method. It was observed that GnRH mRNA expression increased in both PROK2 infusion groups. Serum FSH, LH and testosterone hormone levels also increased in these groups. Although sperm concentration increased in PROK2 infusion groups when compared to the control and sham, the differences were not statistically significant. Testicular tissue seminiferous epithelial thickness was higher in the PROK2 groups when compared to the control and sham groups. CONCLUSION: The present study findings demonstrated that icv PROK2 infusion induced the HPG axis. It could be suggested that PROK2 could be a potential agent in the treatment of male infertility induced by endocrinological defects.


Assuntos
Hormônio Foliculoestimulante , Hormônios Gastrointestinais , Hormônio Liberador de Gonadotropina , Hormônio Luteinizante , Neuropeptídeos , Testículo , Testosterona , Masculino , Animais , Ratos , Hormônios Gastrointestinais/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Testosterona/sangue , Testosterona/metabolismo , Hormônio Foliculoestimulante/sangue , Hormônio Foliculoestimulante/metabolismo , Testículo/metabolismo , Testículo/efeitos dos fármacos , Hormônio Luteinizante/sangue , Hormônio Luteinizante/metabolismo , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Infusões Intraventriculares , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Contagem de Espermatozoides , Ratos Sprague-Dawley , Eixo Hipotalâmico-Hipofisário-Gonadal
6.
Sci Total Environ ; 929: 172426, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631641

RESUMO

BACKGROUND: Exposure to phthalate/DINCH metabolites can induce human reproductive toxicity, however, their endocrine-disrupting mechanisms are not fully elucidated. OBJECTIVE: To investigate the association between concentrations of phthalate/DINCH metabolites, serum kisspeptin, and reproductive hormones among European teenagers from three of the HBM4EU Aligned Studies. METHODS: In 733 Belgian (FLEHS IV study), Slovak (PCB cohort follow-up), and Spanish (BEA study) teenagers, ten phthalate and two DINCH metabolites were measured in urine by high-performance liquid chromatography-tandem mass spectrometry. Serum kisspeptin (kiss54) protein, follicle-stimulating hormone (FSH), total testosterone (TT), estradiol (E2), and sex hormone-binding globulin (SHBG) levels were measured by immunosorbent assays. Free Androgen Index (FAI) was calculated as a proxy of free testosterone. Adjusted sex-stratified linear regression models for individual studies, mixed effect models (LME) accounting for random effects for pooled studies, and g-computation and Bayesian kernel machine regression (BKMR) models for the phthalate/DINCH mixture were performed. RESULTS: The LME suggested that each IQR increase in ln-transformed levels of several phthalates was associated with lower kisspeptin [MnBP: %change (95%CI): -2.8 (-4.2;-0.4); MEHP: -1.4 (-3.4,0.2)] and higher FSH [∑DINP: 11.8 (-0.6;25.1)] levels in females from pooled studies. G-computation showed that the phthalates/DINCH mixture was associated with lower kisspeptin [-4.28 (-8.07;-0.34)] and higher FSH [22.13 (0.5;48.4)] also in females; BKMR showed similar although non-significant pattern. In males, higher phthalates metabolites [MEHP: -12.22 (-21.09;-1.18); oxo-MEHP: -12.73 (-22.34;-1.93)] were associated with lower TT and FAI, although higher DINCH [OH-MINCH: 16.31 (6.23;27.35), cx-MINCH: 16.80 (7.03;27.46), ∑DINCH: 17.37 (7.26;29.74)] were associated with higher TT levels. No mixture associations were found in males. CONCLUSION: We observed sex-specific associations between urinary concentrations of phthalate/DINCH metabolites and the panel of selected effect biomarkers (kisspeptin and reproductive hormones). This suggests that exposure to phthalates would be associated with changes in kisspeptin levels, which would affect the HPG axis and thus influence reproductive health. However, further research is needed, particularly for phthalate replacements such as DINCH.


Assuntos
Poluentes Ambientais , Kisspeptinas , Ácidos Ftálicos , Ácidos Ftálicos/urina , Humanos , Adolescente , Feminino , Estudos Transversais , Masculino , Poluentes Ambientais/urina , Poluentes Ambientais/sangue , Hormônio Foliculoestimulante/sangue , Testosterona/sangue , Testosterona/metabolismo , Exposição Ambiental/estatística & dados numéricos , Globulina de Ligação a Hormônio Sexual/metabolismo , Estradiol/sangue , Disruptores Endócrinos/urina
7.
Biol Sex Differ ; 15(1): 30, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566248

RESUMO

BACKGROUND: Neonatal hypoxia ischemia (HI) related brain injury is one of the major causes of learning disabilities and memory deficits in children. In both human and animal studies, female neonate brains are less susceptible to HI than male brains. Phosphorylation of the nerve growth factor receptor TrkB has been shown to provide sex-specific neuroprotection following in vivo HI in female mice in an estrogen receptor alpha (ERα)-dependent manner. However, the molecular and cellular mechanisms conferring sex-specific neonatal neuroprotection remain incompletely understood. Here, we test whether female neonatal hippocampal neurons express autonomous neuroprotective properties and assess the ability of testosterone (T) to alter this phenotype. METHODS: We cultured sexed hippocampal neurons from ERα+/+ and ERα-/- mice and subjected them to 4 h oxygen glucose deprivation and 24 h reoxygenation (4-OGD/24-REOX). Sexed hippocampal neurons were treated either with vehicle control (VC) or the TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) following in vitro ischemia. End points at 24 h REOX were TrkB phosphorylation (p-TrkB) and neuronal survival assessed by immunohistochemistry. In addition, in vitro ischemia-mediated ERα gene expression in hippocampal neurons were investigated following testosterone (T) pre-treatment and TrkB antagonist therapy via q-RTPCR. Multifactorial analysis of variance was conducted to test for significant differences between experimental conditions. RESULTS: Under normoxic conditions, administration of 3 µM 7,8-DHF resulted an ERα-dependent increase in p-TrkB immunoexpression that was higher in female, as compared to male neurons. Following 4-OGD/24-REOX, p-TrkB expression increased 20% in both male and female ERα+/+ neurons. However, with 3 µM 7,8-DHF treatment p-TrkB expression increased further in female neurons by 2.81 ± 0.79-fold and was ERα dependent. 4-OGD/24-REOX resulted in a 56% increase in cell death, but only female cells were rescued with 3 µM 7,8-DHF, again in an ERα dependent manner. Following 4-OGD/3-REOX, ERα mRNA increased ~ 3 fold in female neurons. This increase was blocked with either the TrkB antagonist ANA-12 or pre-treatment with T. Pre-treatment with T also blocked the 7,8-DHF- dependent sex-specific neuronal survival in female neurons following 4-OGD/24-REOX. CONCLUSIONS: OGD/REOX results in sex-dependent TrkB phosphorylation in female neurons that increases further with 7,8-DHF treatment. TrkB phosphorylation by 7,8-DHF increased ERα mRNA expression and promoted cell survival preferentially in female hippocampal neurons. The sex-dependent neuroprotective actions of 7,8-DHF were blocked by either ANA-12 or by T pre-treatment. These results are consistent with a model for a female-specific neuroprotective pathway in hippocampal neurons in response to hypoxia. The pathway is activated by 7,8-DHF, mediated by TrkB phosphorylation, dependent on ERα and blocked by pre-exposure to T.


Assuntos
Receptor alfa de Estrogênio , Fármacos Neuroprotetores , Criança , Feminino , Animais , Masculino , Camundongos , Humanos , Receptor alfa de Estrogênio/metabolismo , Neuroproteção , Caracteres Sexuais , Testosterona/farmacologia , Testosterona/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Neurônios/metabolismo , Hipocampo/metabolismo , Isquemia , Hipóxia/metabolismo , RNA Mensageiro/metabolismo
8.
Cell Reprogram ; 26(2): 79-84, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579133

RESUMO

Cumulus cells (CCs) synthesize estrogens that are essential for follicular development. However, the effects of androgen on estrogen production in buffalo CCs remain unknown. In the present study, the impacts of testosterone on estrogen synthesis of buffalo CCs surrounding in vitro-matured oocytes were investigated. The results showed that testosterone supplementation improved both the expression levels of estrogen synthesis-related genes (CYP11A1, CYP19A1, and 17ß-HSD) and the secretion levels of estradiol in buffalo CCs surrounding in vitro-matured oocytes. Furthermore, testosterone treatment enhanced the sensitivity of buffalo CCs surrounding in vitro-matured oocytes to follicle-stimulating hormone (FSH). This study indicated that testosterone supplementation promoted the estrogen synthesis of buffalo CCs surrounding in vitro-matured oocytes mainly through strengthening the responsiveness of CCs to FSH. The present study serves as a foundation of acquiring high-quality recipient oocytes for buffalo somatic cell nuclear transfer.


Assuntos
Búfalos , Testosterona , Feminino , Animais , Testosterona/farmacologia , Testosterona/metabolismo , Células do Cúmulo , Oócitos , Hormônio Foliculoestimulante/farmacologia , Hormônio Foliculoestimulante/metabolismo , Suplementos Nutricionais , Estrogênios/farmacologia , Estrogênios/metabolismo
9.
Biomolecules ; 14(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38672421

RESUMO

Captivity is an important and efficient technique for rescuing endangered species. However, it induces infertility, and the underlying mechanism remains obscure. This study used the plateau pika (Ochotona curzoniae) as a model to integrate physiological, metagenomic, metabolomic, and transcriptome analyses and explore whether dysbiosis of the gut microbiota induced by artificial food exacerbates infertility in captive wild animals. Results revealed that captivity significantly decreased testosterone levels and the testicle weight/body weight ratio. RNA sequencing revealed abnormal gene expression profiles in the testicles of captive animals. The microbial α-diversity and Firmicutes/Bacteroidetes ratio were drastically decreased in the captivity group. Bacteroidetes and Muribaculaceae abundance notably increased in captive pikas. Metagenomic analysis revealed that the alteration of flora increased the capacity for carbohydrate degradation in captivity. The levels of microbe metabolites' short-chain fatty acids (SCFAs) were significantly high in the captive group. Increasing SCFAs influenced the immune response of captivity plateau pikas; pro-inflammatory cytokines were upregulated in captivity. The inflammation ultimately contributed to male infertility. In addition, a positive correlation was observed between Gastranaerophilales family abundance and testosterone concentration. Our results provide evidence for the interactions between artificial food, the gut microbiota, and male infertility in pikas and benefit the application of gut microbiota interference in threatened and endangered species.


Assuntos
Disbiose , Microbioma Gastrointestinal , Infertilidade Masculina , Lagomorpha , Testosterona , Animais , Masculino , Disbiose/microbiologia , Disbiose/metabolismo , Infertilidade Masculina/microbiologia , Infertilidade Masculina/metabolismo , Testosterona/metabolismo , Lagomorpha/microbiologia , Testículo/microbiologia , Testículo/metabolismo , Ácidos Graxos Voláteis/metabolismo
10.
Ecotoxicol Environ Saf ; 277: 116348, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38669872

RESUMO

Alkylphenols, such as nonylphenol and 4-tert-octylphenol (OP), are byproducts of the biodegradation of alkylphenol ethoxylates and present substantial ecological and health risks in aquatic environments and higher life forms. In this context, our study aimed to explore the effect of OP on reproductive endocrine function in both female and male zebrafish. Over a period of 21 days, the zebrafish were subjected to varying concentrations of OP (0, 0.02, 0.1, and 0.5 µg/L), based on the lowest effective concentration (EC10 = 0.48 µg/L) identified for zebrafish embryos. OP exposure led to a pronounced increase in hepatic vitellogenin (vtg) mRNA expression and 17ß-estradiol biosynthesis in both sexes. Conversely, OP exhibits anti-androgenic properties, significantly diminishes gonadal androgen receptor (ar) mRNA expression, and reduces endogenous androgen (testosterone and 11-ketotestosterone) levels in male zebrafish. Notably, cortisol and thyroid hormone (TH) levels demonstrated concentration-dependent elevations in zebrafish, influencing the regulation of gonadal steroid hormones (GSHs). These findings suggest that prolonged OP exposure may result in sustained reproductive dysfunction in adult zebrafish, which is largely attributable to the intricate reciprocal relationship between hormone levels and the associated gene expression. Our comprehensive biological response analysis of adult zebrafish offers vital insights into the reproductive toxicological effects of OP, thereby enriching future ecological studies on aquatic systems.


Assuntos
Disruptores Endócrinos , Estrogênios , Fenóis , Receptores Androgênicos , Hormônios Tireóideos , Vitelogeninas , Poluentes Químicos da Água , Peixe-Zebra , Animais , Fenóis/toxicidade , Masculino , Poluentes Químicos da Água/toxicidade , Feminino , Vitelogeninas/metabolismo , Disruptores Endócrinos/toxicidade , Hormônios Tireóideos/metabolismo , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Estrogênios/toxicidade , Estradiol/toxicidade , Antagonistas de Androgênios/toxicidade , Testosterona/metabolismo , Testosterona/análogos & derivados , Hidrocortisona
11.
J Pediatr Endocrinol Metab ; 37(5): 419-424, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38557593

RESUMO

OBJECTIVES: The most suitable biochemical markers for therapy adjustment in patients with congenital adrenal hyperplasia are controversial. 11-Oxygenated androgens are a promising new approach. The objective of this study was to investigate the diurnal rhythm of 11-ketotestosterone in children and adolescents in saliva and to correlate it with salivary 17-hydroxyprogesterone. METHODS: Fifty-one samples of steroid day-profiles from 17 patients were additionally analysed for 11-ketotestosterone, retrospectively. All patients were treated in our university outpatient clinic for paediatric endocrinology between 2020 and 2022. Steroid day-profiles of 17 patients could be examined. The cohort showed a balanced sex ratio. The median age was 13 years. The measurements for 17-hydroxyprogesterone were carried out during routine care by immunoassay. The measurements of 11-ketotestosterone were performed from frozen saliva samples using an implemented in-house protocol for liquid chromatography-tandem mass spectrometry (LC-MS/MS). The most important outcome were the absolute values for 11-ketotestosterone, their diurnal rhythmicity and the correlation with 17-hydroxyprogesterone. RESULTS: Both steroids show a circadian diurnal rhythm. 17-hydroxyprogesterone and 11-ketotestosterone correlate significantly. 11-Ketotestosterone showed a positive correlation with BMI at all times of the day. CONCLUSIONS: 11-Ketotestosterone shows circadian rhythmicity in our cohort and correlates with 17-hydroxyprogesterone. These findings serve as an important basis for prospective research into 11-oxygenated androgens as therapeutic markers in paediatrics. However, 11-ketotestosterone appears to be very dependent on BMI.


Assuntos
17-alfa-Hidroxiprogesterona , Hiperplasia Suprarrenal Congênita , Ritmo Circadiano , Saliva , Testosterona , Testosterona/análogos & derivados , Humanos , Hiperplasia Suprarrenal Congênita/tratamento farmacológico , Hiperplasia Suprarrenal Congênita/metabolismo , Feminino , Saliva/química , Saliva/metabolismo , 17-alfa-Hidroxiprogesterona/análise , 17-alfa-Hidroxiprogesterona/metabolismo , Masculino , Adolescente , Criança , Testosterona/análise , Testosterona/metabolismo , Estudos Retrospectivos , Biomarcadores/análise , Biomarcadores/metabolismo , Prognóstico , Seguimentos , Pré-Escolar , Espectrometria de Massas em Tandem
12.
J Agric Food Chem ; 72(18): 10616-10626, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38656193

RESUMO

Deoxynivalenol (DON) is a common food contaminant that can impair male reproductive function. This study investigated the effects and mechanisms of DON exposure on progenitor Leydig cell (PLC) development in prepubertal male rats. Rats were orally administrated DON (0-4 mg/kg) from postnatal days 21-28. DON increased PLC proliferation but inhibited PLC maturation and function, including reducing testosterone levels and downregulating biomarkers like HSD11B1 and INSL3 at ≥2 mg/kg. DON also stimulated mitochondrial fission via upregulating DRP1 and FIS1 protein levels and increased oxidative stress by reducing antioxidant capacity (including NRF2, SOD1, SOD2, and CAT) in PLCs in vivo. In vitro, DON (2-4 µM) inhibited PLC androgen biosynthesis, increased reactive oxygen species production and protein levels of DRP1, FIS1, MFF, and pAMPK, decreased mitochondrial membrane potential and MFN1 protein levels, and caused mitochondrial fragmentation. The mitochondrial fission inhibitor mdivi-1 attenuated DON-induced impairments in PLCs. DON inhibited PLC steroidogenesis, increased oxidative stress, perturbed mitochondrial homeostasis, and impaired maturation. In conclusion, DON disrupts PLC development in prepubertal rats by stimulating mitochondrial fission.


Assuntos
Células Intersticiais do Testículo , Mitocôndrias , Dinâmica Mitocondrial , Estresse Oxidativo , Ratos Sprague-Dawley , Tricotecenos , Animais , Masculino , Dinâmica Mitocondrial/efeitos dos fármacos , Ratos , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Células Intersticiais do Testículo/citologia , Tricotecenos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Testosterona/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/citologia , Humanos , Dinaminas/metabolismo , Dinaminas/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos
13.
J Theor Biol ; 587: 111806, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38574968

RESUMO

Cancer therapy often leads to the selective elimination of drug-sensitive cells from the tumour. This can favour the growth of cells resistant to the therapeutic agent, ultimately causing a tumour relapse. Castration-resistant prostate cancer (CRPC) is a well-characterised instance of this phenomenon. In CRPC, after systemic androgen deprivation therapy (ADT), a subset of drug-resistant cancer cells autonomously produce testosterone, thus enabling tumour regrowth. A previous theoretical study has shown that such a tumour relapse can be delayed by inhibiting the growth of drug-resistant cells using biotic competition from drug-sensitive cells. In this context, the centrality of resource dynamics to intra-tumour competition in the CRPC system indicates clear scope for the construction of theoretical models that can explicitly incorporate the underlying mechanisms of tumour ecology. In the current study, we use a modified logistic framework to model cell-cell interactions in terms of the production and consumption of resources. Our results show that steady state composition of CRPC can be understood as a composite function of the availability and utilisation efficiency of two resources-oxygen and testosterone. In particular, we show that the effect of changing resource availability or use efficiency is conditioned by their general abundance regimes. Testosterone typically functions in trace amounts and thus affects steady state behaviour of the CRPC system differently from oxygen, which is usually available at higher levels. Our data thus indicate that explicit consideration of resource dynamics can produce novel and useful mechanistic understanding of CRPC. Furthermore, such a modelling approach also incorporates variables into the system's description that can be directly measured in a clinical context. This is therefore a promising avenue of research in cancer ecology that could lead to therapeutic approaches that are more clearly rooted in the biology of CRPC.


Assuntos
Modelos Biológicos , Neoplasias de Próstata Resistentes à Castração , Testosterona , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Testosterona/metabolismo , Oxigênio/metabolismo , Comunicação Celular/fisiologia , Resistencia a Medicamentos Antineoplásicos
14.
Food Chem Toxicol ; 188: 114656, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615797

RESUMO

In recent years, with the acceleration of industrialization, the decline of male fertility caused by heavy metal pollution has attracted much attention. However, whether the inhibition of testicular function after cadmium exposure is reversible remains to be studied. In this study, we constructed rat models of cadmium exposure and dis-exposure, and collected relative samples to observe the changes of related indicators. The results showed that cadmium exposure could reduce the fertility, inhibit the hypothalamic-pituitary-testis axis and activate hypothalamic-pituitary-adrenal axis function, the testicular GR/PI3K-AKT/AMPK signal was abnormal, cell proliferation was inhibited and apoptosis was enhanced. Four weeks after the exposure was stopped, the fertility was still decreased, testicular testosterone synthesis and spermatogenesis were inhibited, cell proliferation was inhibited and apoptosis was enhanced, but all of them were reversed. After eight weeks of cadmium exposure, the above indicators were observed to return to normal. At the same time, by giving different concentrations of corticosterone to spermatogonium, we confirmed that corticosterone may regulate the proliferation and apoptosis of spermatogonium through GR/PI3K-AKT/AMPK signal. In this study, the reproductive toxicity of cadmium, a metal environmental pollutant, was analyzed in depth to provide a new theoretical and experimental basis for ensuring male reproductive health.


Assuntos
Apoptose , Cádmio , Ratos Sprague-Dawley , Testículo , Masculino , Animais , Cádmio/toxicidade , Testículo/efeitos dos fármacos , Testículo/metabolismo , Ratos , Apoptose/efeitos dos fármacos , Testosterona/metabolismo , Espermatogênese/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Corticosterona , Transdução de Sinais/efeitos dos fármacos
15.
Endocrinology ; 165(4)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38470466

RESUMO

The neuroendocrine system that controls the preovulatory surge of gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH), which triggers ovulation in female mammals, is sexually differentiated in rodents. A transient increase in circulating testosterone levels in male rats within a few hours of birth is primarily responsible for the defeminization of anteroventral periventricular nucleus (AVPV) kisspeptin neurons, which are critical regulators of the GnRH/LH surge. The present study aimed to determine whether neonatal estradiol-17ß (E2) converted from testosterone by aromatase primarily causes the defeminization of AVPV kisspeptin neurons and the surge of GnRH/LH in male rodents. The results of the present study showed that the neonatal administration of letrozole (LET), a nonsteroidal aromatase inhibitor, within 2 hours of birth rescued AVPV Kiss1 expression and the LH surge in adult male rats, while the neonatal administration of testosterone propionate (TP) irreversibly attenuated AVPV Kiss1 expression and the LH surge in adult female rats. Furthermore, the neonatal LET-treated Kiss1-Cre-activated tdTomato reporter males exhibited a comparable number of AVPV Kiss1-Cre-activated tdTomato-expressing cells to that of vehicle-treated female rats, while neonatal TP-treated females showed fewer AVPV Kiss1-Cre-activated tdTomato-expressing cells than vehicle-treated females. Moreover, neonatal TP administration significantly decreased the number of arcuate Kiss1-expressing and Kiss1-Cre-activated tdTomato-positive cells and suppressed LH pulses in adult gonadectomized female rats; however, neonatal LET administration failed to affect them. These results suggest that E2 converted from neonatal testosterone is primarily responsible for the defeminization of AVPV kisspeptin neurons and the subsequent GnRH/LH surge generation in male rats.


Assuntos
Aromatase , Kisspeptinas , Proteína Vermelha Fluorescente , Animais , Feminino , Masculino , Ratos , Aromatase/metabolismo , Estradiol/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo Anterior/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Mamíferos/metabolismo , Neurônios/metabolismo , Testosterona/metabolismo
16.
Steroids ; 204: 109398, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513983

RESUMO

Estrogen and testosterone are typically thought of as gonadal or adrenal derived steroids that cross the blood brain barrier to signal via both rapid nongenomic and slower genomic signalling pathways. Estrogen and testosterone signalling has been shown to drive interlinked behaviours such as social behaviours and cognition by binding to their cognate receptors in hypothalamic and forebrain nuclei. So far, acute brain slices have been used to study short-term actions of 17ß-estradiol, typically using electrophysiological measures. For example, these techniques have been used to investigate, nongenomic signalling by estrogen such as the estrogen modulation of long-term potentiation (LTP) in the hippocampus. Using a modified method that preserves the slice architecture, we show, for the first time, that acute coronal slices from the prefrontal cortex and from the hypothalamus maintained in aCSF over longer periods i.e. 24 h can be steroidogenic, increasing their secretion of testosterone and estrogen. We also show that the hypothalamic nuclei produce more estrogen and testosterone than the prefrontal cortex. Therefore, this extended acute slice system can be used to study the regulation of steroid production and secretion by discrete nuclei in the brain.


Assuntos
Estradiol , Estrogênios , Camundongos , Animais , Estrogênios/metabolismo , Estradiol/metabolismo , Potenciação de Longa Duração/fisiologia , Testosterona/metabolismo , Esteroides/metabolismo , Hipocampo/metabolismo
17.
J Sports Sci ; 42(3): 281-289, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38507579

RESUMO

This study investigated the recovery responses to the Total Quality Recovery (TQR), Well-Being questionnaire (WBQ), and Heart Rate (HR) responses to Submaximal Running Test (SRT), and the influence of salivary testosterone concentration (TEST) on these responses in 25 elite youth (U15) male basketball players. TQR, WBQ, and HR measurements were assessed after 48 hours of rest (T1), 24 hours after the 1st day of training (T2) and 24 hours after the 2nd day of training (T3). Salivary sampling was conducted at T1 and T3. A significant decrease was observed for TQR (F = 4.06; p = 0.01) and for WBQ (F = 5.37; p = 0.008) from T1 to T3. No difference among the three-time points was observed for HR and HR Recovery, and the TEST concentration did not influence the results. These results show that TQR and WBQ are sensitive to acute transient alterations in training loads (TL) and may be utilized to monitor recovery in elite youth basketball players. The HR related measurements presented limited responsiveness, and the TEST seems not to influence the recovery of these players who are competing at highest performance level.


Assuntos
Desempenho Atlético , Basquetebol , Frequência Cardíaca , Saliva , Testosterona , Humanos , Basquetebol/fisiologia , Basquetebol/psicologia , Testosterona/análise , Testosterona/metabolismo , Masculino , Frequência Cardíaca/fisiologia , Adolescente , Saliva/química , Saliva/metabolismo , Desempenho Atlético/fisiologia , Desempenho Atlético/psicologia , Inquéritos e Questionários , Corrida/fisiologia , Teste de Esforço , Condicionamento Físico Humano/fisiologia , Descanso/fisiologia
18.
BMC Vet Res ; 20(1): 108, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500117

RESUMO

BACKGROUND: Camel milk and silymarin have many different beneficial effects on several animal species. Meanwhile, Aflatoxins are mycotoxins with extraordinary potency that pose major health risks to several animal species. Additionally, it has been documented that aflatoxins harm the reproductive systems of a variety of domestic animals. The present design aimed to investigate the impact of aflatoxin B1 (AFB1) on rat body weight and reproductive organs and the ameliorative effects of camel milk and silymarin through measured serum testosterone, testes pathology, and gene expression of tumor necrosis factor (TNF-α), luteinizing hormone receptor (LHR), and steroidogenic acute regulatory protein (StAR) in the testes. A total of sixty mature male Wister white rats, each weighing an average of 83.67 ± 0.21 g, were used. There were six groups created from the rats. Each division had ten rats. The groups were the control (without any treatment), CM (1 ml of camel milk/kg body weight orally), S (20 mg silymarin/kg b. wt. suspension, orally), A (1.4 mg aflatoxin/kg diet), ACM (aflatoxin plus camel milk), and AS (aflatoxin plus silymarin). RESULTS: The results indicated the positive effects of camel milk and silymarin on growth, reproductive organs, and gene expression of TNF-α, LHR, and StAR with normal testicular architecture. Also, the negative effect of AFB1 on the rat's body weight and reproductive organs, as indicated by low body weight and testosterone concentration, was confirmed by the results of histopathology and gene expression. However, these negative effects were ameliorated by the ingestion of camel milk and silymarin. CONCLUSION: In conclusion, camel milk and silymarin could mitigate the negative effect of AFB1 on rat body weight and reproductive organs.


Assuntos
Aflatoxinas , Silimarina , Masculino , Ratos , Animais , Aflatoxina B1/toxicidade , Aflatoxina B1/metabolismo , Silimarina/farmacologia , Camelus , Leite , Fator de Necrose Tumoral alfa/metabolismo , Ratos Wistar , Testículo/metabolismo , Testosterona/metabolismo , Peso Corporal
19.
Steroids ; 205: 109391, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38437943

RESUMO

A unified total synthesis route has been used to prepare 18- and 19-trideuterated testosterone, androstenedione and progesterone. The 18-trideuterated steroid synthetic method starts with the synthesis of 2-(methyl-d3)-1,3-cyclopentanedione from CD3I and 1,3-cyclopentanedione and is subsequently converted into the Hajos-Parrish ketone for synthesis of these trideuterated steroids. The 19-trideuterated steroid synthesis proceeds through non-deuterated Hajos-Parrish ketone with incorporation of the 19-methyl-d3 group from CD3I at a later stage of the same synthetic route. Utilization of CD3I at both the initial and later stages of the synthesis provides a route to 18,19-hexadeuterated steroids. The deuterated steroids are useful for studies of steroid biosynthesis and metabolism.


Assuntos
Androstenodiona , Progesterona , Androstenodiona/metabolismo , Progesterona/metabolismo , Testosterona/metabolismo , Esteroides , Cetonas
20.
J Chem Inf Model ; 64(6): 2058-2067, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38457234

RESUMO

The biochemical basis for substrate dependences in apparent inhibition constant values (Ki) remains unknown. Our study aims to elucidate plausible structural determinants underpinning these observations. In vitro steady-state inhibition assays conducted using human recombinant CYP3A4 enzyme and testosterone substrate revealed that fibroblast growth factor receptor (FGFR) inhibitors erdafitinib and pemigatinib noncompetitively inhibited CYP3A4 with apparent Ki values of 10.2 ± 1.1 and 3.3 ± 0.9 µM, respectively. However, when rivaroxaban was adopted as the probe substrate, there were 2.0- and 3.2-fold decreases in its apparent Ki values. To glean mechanistic insights into this phenomenon, erdafitinib and pemigatinib were docked to allosteric sites in CYP3A4. Subsequently, molecular dynamics (MD) simulations of apo- and holo-CYP3A4 were conducted to investigate the structural changes induced. Comparative structural analyses of representative MD frames extracted by hierarchical clustering revealed that the allosteric inhibition of CYP3A4 by erdafitinib and pemigatinib did not substantially modulate its active site characteristics. In contrast, we discovered that allosteric binding of the FGFR inhibitors reduces the structural flexibility of the F-F' loop region, an important gating mechanism to regulate access of the substrate to the catalytic heme. We surmised that the increased rigidity of the F-F' loop engenders a more constrained entrance to the CYP3A4 active site, which in turn impedes access to the larger rivaroxaban molecule to a greater extent than testosterone and culminates in more potent inhibition of its CYP3A4-mediated metabolism. Our findings suggest a potential mechanism to rationalize probe substrate dependencies in Ki arising from the allosteric noncompetitive inhibition of CYP3A4.


Assuntos
Citocromo P-450 CYP3A , Rivaroxabana , Humanos , Citocromo P-450 CYP3A/metabolismo , Sítio Alostérico , Simulação de Dinâmica Molecular , Testosterona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA